sy
>

y
—~

SW

DNEY

NG

2

y

U

S

Z

=<

COMP4161
Advanced Topics in Software Verification

—

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
(7]
(8]
8.9]
[9,10]
10]

?al due; a2 due; a3 due

Last Time

=» Equations and Term Rewriting

Last Time

=» Equations and Term Rewriting

Last Time

=» Equations and Term Rewriting

=» Confluence and Termination of reduction systems

Last Time

=» Equations and Term Rewriting
=» Confluence and Termination of reduction systems

=» Term Rewriting in Isabelle

Applying a Rewrite Rule

= | — r applicable to term t[s]

Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

n, M Tanaka, J Am

Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

=» Result: t[o r]

Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:

Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:

Rule: 0+n—n
Term: a+ (0+ (b+¢))

Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:

Rule: 0+n—n
Term: a+ (0+ (b+¢))
Substitution: ¢ = {n+— b+ c}

Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:

Rule: 0+n—n

Term: a+ (0+ (b+¢))
Substitution: ¢ = {n+— b+ c}
Result: a+ (b+ ¢)

Conditional Term Rewriting

Rewrite rules can be conditional:

[Pr..P]=1=r

n, M Tanaka, J Am

Conditional Term Rewriting

Rewrite rules can be conditional:

[Pr..P]=1=r

is applicable to term t[s] with o if
= o /=sand
=*» o Pi, ..., 0 P, are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

n, M Tanaka, J Am

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.
Can lead to non-termination.

Example:

lemma"f x=gxAgx=fx=1fx=2"

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma"f x=gxAgx=fx=1fx=2"
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions

(simp (no-asm_use)) simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

-A +— A= False
A—B —~ A=—B
AANB +— A B

Vx. Ax — A7?x
A +— A= True

Preprocessing

Preprocessing (recursive) for maximal simplification power:

-A — A= False
A—B —» A=—B
AANB +— A B
Vx. Ax +— A7?x
A +— A= True
Example: (p—qgA-r)As

=

Preprocessing

Preprocessing (recursive) for maximal simplification power:

-A — A= False
A—B —» A=—B
AANB +— A B
Vx. Ax +— A7?x
A — A= True
Example: (p—qgA-r)As
—

p = q = True p = r = False s = True

Demo

Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)

Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)
Automatic

Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)
Automatic

P (case e of 0 = a|Sucn = b)

(e:0—>Pa)/\(Vr:e:Sucn—>Pb)

Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)
Automatic

P (case e of 0 = a|Sucn = b)

(e:0—>Pa)/\(Vr:e:Sucn—>Pb)
Manually: apply (simp split: nat.split)

Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)
Automatic
P (case e of 0 = a|Sucn = b)

(e:0—>Pa)/\(Vr:e:Sucn—>Pb)
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)

M Tanaka, J Amar

Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.
Example: [P=P ;P —=Q=Q]= (P —Q)=(P — Q)
Read: to simplify P — @

10 | COMP4161

Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.
Example: [P=P ;P —=Q=Q]= (P —Q)=(P — Q)

Read: to simplify P — @
=» first simplify P to P’

10 | COMP4161

Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.
Example: [P=P ;P —=Q=Q]= (P —Q)=(P — Q)
Read: to simplify P — @

=» first simplify P to P’
=» then simplify Q to Q' using P’ as assumption

10 | COMP4161

Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.
Example: [P=P ;P —=Q=Q]= (P —Q)=(P — Q)
Read: to simplify P — @

=» first simplify P to P’

=» then simplify Q to Q' using P’ as assumption
= theresultis P — Q'

10 | COMP4161

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P;P = Q=Q]= (PAQ)= (P AQ)

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P;P = Q=Q]= (PAQ)= (P AQ)

Context for if-then-else:
ifcong: [b=cc=x=uc=y=v]=
(if b then x else y) = (if ¢ then u else v)

11 | COMP4161

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;PP = Q=Q]= (PAQ)=(P ANQ)
Context for if-then-else:

ifcong: [b=cc=x=uc=y=v]=
(if b then x else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then x else y)

11 | COMP4161 | G Kilei

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P;P = Q=Q]= (PAQ)= (P AQ)

Context for if-then-else:
ifcong: [b=cc=x=uc=y=v]=
(if b then x else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then x else y)

=» declare own congruence rules with [cong] attribute

11 | COMP4161

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;PP = Q=Q]= (PAQ)=(P ANQ)
Context for if-then-else:

ifcong: [b=cc=x=uc=y=v]=
(if b then x else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then x else y)

=» declare own congruence rules with [cong] attribute
=» delete with [cong del]

11 | COMP4161

More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;PP = Q=Q]= (PAQ)=(P ANQ)
Context for if-then-else:

ifcong: [b=cc=x=uc=y=v]=
(if b then x else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then x else y)

=» declare own congruence rules with [cong] attribute
=» delete with [cong del]
=» use locally with e.g. apply (simp cong: <rule>)

11 | COMP4161

Ordered rewriting

Problem: x + y — y 4 x does not terminate

Ordered rewriting

Problem: x + y — y 4 x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example:

Ordered rewriting

Problem: x + y — y 4 x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+b~ b+ a.

Ordered rewriting

Problem: x + y — y 4 x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+b~ b+ a.

For types nat, int etc:
e lemmas add_ac sort any sum (+)

e lemmas mult_ac sort any product (x)

Example: apply (simp add: add_ac) yields
(b+c)+a~---~a+(b+c)

AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=yOx

AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=yOx

These 2 rules alone get stuck too early (not confluent).

Example: (zox)o(yov)

OMP4161

AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=yOx

These 2 rules alone get stuck too early (not confluent).

Example: (zOx) O (y @ v)
Wewant: (zOX)O(yov)=vo(xo(yoz))

AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=yOx

These 2 rules alone get stuck too early (not confluent).
Example: (zoOx)O(y©v)
Wewant: (zOx)0(yov)=ve(xo(yoz)
We get: zox)o(yov)=ve (yo(xoe2))

AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=yOx

These 2 rules alone get stuck too early (not confluent).
Example: (zox)o(yov)

Wewant: (zOx)0(yov)=ve(xo(yoz)
We get: (zox)oyov)=ve(yo(xoz))

We need: ACrule xO(y©0z)=y®(x02)

AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=y0®x

These 2 rules alone get stuck too early (not confluent).

Example: (zOx) O (y @ v)
Wewant: (zOx)0(yov)=ve(xo(yoz)
We get: (zOX)O(yov)=ve(yo(xo2z)

We need: ACrule xO(y©0z)=y®(x02)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

Demo

Back to Confluence

Last time: confluence in general is undecidable.

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let h — 1 and b — r» be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with bh.

OMP4161

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let h — 1 and b — r» be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with bh.

Example:
Ruless (1)fx—a () gy—b @B)f(gz)—b
Critical pairs:

OMP4161) Aman Pohjola, R

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let h — 1 and b — r» be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with bh.

Example:
Ruless (1)fx—a () gy—b @B)f(gz)—b
Critical pairs:

(1)+(3) {x— gz} a gz o

3) (2

(B)1@2) {zwy) b fy) Do

Completion

()fx—a (2Qgy—b (B)f(gz)—b

is not confluent

Completion

()fx—a (2Qgy—b (B)f(gz)—b

is not confluent

But it can be made confluent by adding rules!

Completion

()fx—a (2Qgy—b (B)f(gz)—b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Completion

()fx—a (2Qgy—b (B)f(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x— g z} a& f(g 2) @)b

shows that a = b (because a <— b),

16 | COMP4161 | G Kle

Completion

()fx—a (2Qgy—b (B)f(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x— g z} a& f(g 2) @)b

shows that a = b (because a «+— b), so we add a — b as a rule

16 | COMP4161 | G Kle

Completion

()fx—a (2Qgy—b (B)f(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x— g z} a& f(g 2) @)b
a

shows that a = b (because a «+— b), so we add a — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

16 | COMP4161 | G Kle

Demo: Waldmeister

Orthogonal Rewriting Systems

Definitions:

Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.
A rewrite system is left-linear if all rules are.

Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

OMP4161

Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

OMP4161

Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

=» Conditional term rewriting

We have learned today ...

=» Conditional term rewriting

=>» Congruence rules

We have learned today ...

=» Conditional term rewriting

=» Congruence rules
=> AC rules

We have learned today ...

=» Conditional term rewriting

=» Congruence rules
=> AC rules
=» More on confluence

