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Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
(7]
(8]
8.9]
[9,10]
10]

?al due; a2 due; a3 due
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=» Equations and Term Rewriting
=» Confluence and Termination of reduction systems

=» Term Rewriting in Isabelle
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Applying a Rewrite Rule

= | — r applicable to term t[s]
if there is substitution o such that o I = s

=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:

Rule: 0+n—n

Term: a+ (0+ (b+¢))
Substitution: ¢ = {n+— b+ c}
Result: a+ (b+ ¢)
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Rewrite rules can be conditional:

[Pr..P]=1=r
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Conditional Term Rewriting

Rewrite rules can be conditional:

[Pr..P]=1=r

is applicable to term t[s] with o if
= o /=sand
=*» o Pi, ..., 0 P, are provable by rewriting.
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Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma"f x=gxAgx=fx=1fx=2"
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions

(simp (no-asm_use))  simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions
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Preprocessing

Preprocessing (recursive) for maximal simplification power:

-A — A= False
A—B —» A=—B
AANB +— A B
Vx. Ax +— A7?x
A — A= True
Example: (p—qgA-r)As
—

p = q = True p = r = False s = True
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Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)
Automatic

P (case e of 0 = a|Sucn = b)

(e:0—>Pa)/\(Vr:e:Sucn—>Pb)
Manually: apply (simp split: nat.split)




Case splitting with simp

P (if A then s else t)

(A— Ps)AN(mA— P t)
Automatic
P (case e of 0 = a|Sucn = b)

(e:0—>Pa)/\(Vr:e:Sucn—>Pb)
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split
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Congruence Rules

congruence rules are about using context

Example: in P — Q we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.
Example: [P=P ;P —=Q=Q]= (P —Q)=(P — Q)
Read: to simplify P — @

=» first simplify P to P’

=» then simplify Q to Q' using P’ as assumption
= theresultis P — Q'

10 | COMP4161
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More Congruence

Sometimes useful, but not used automatically (slowdown):
conjcong: [P=P ;PP = Q=Q]= (PAQ)=(P ANQ)
Context for if-then-else:

ifcong: [b=cc=x=uc=y=v]=
(if b then x else y) = (if ¢ then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: b = ¢ = (if b then x else y) = (if ¢ then x else y)

=» declare own congruence rules with [cong] attribute
=» delete with [cong del]
=» use locally with e.g. apply (simp cong: <rule>)

11 | COMP4161
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Ordered rewriting

Problem: x + y — y 4 x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+b~ b+ a.

For types nat, int etc:
e lemmas add_ac sort any sum (+)

e lemmas mult_ac sort any product (x)

Example: apply (simp add: add_ac) yields
(b+c)+a~---~a+(b+c)
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AC Rules

Example for associative-commutative rules:
Associative: (xOy)Ooz=x0(y®z)
Commutative: xOy=y0®x

These 2 rules alone get stuck too early (not confluent).

Example: (zOx) O (y @ v)
Wewant: (zOx)0(yov)=ve(xo(yoz)
We get: (zOX)O(yov)=ve(yo(xo2z)

We need: ACrule xO(y©0z)=y®(x02)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly




Demo
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Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let h — 1 and b — r» be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with bh.

Example:
Ruless (1)fx—a () gy—b @B)f(gz)—b
Critical pairs:

(1)+(3) {x— gz} a gz o

3) (2

(B)1@2) {zwy) b fy) Do
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Completion

()fx—a (2Qgy—b (B)f(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x— g z} a& f(g 2) @)b

shows that a = b (because a <— b),
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Completion

()fx—a (2Qgy—b (B)f(gz)—b
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x— g z} a& f(g 2) @)b
a

shows that a = b (because a «+— b), so we add a — b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

16 | COMP4161 | G Kle
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Orthogonal Rewriting Systems

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
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We have learned today ...

=» Conditional term rewriting

=» Congruence rules
=> AC rules
=» More on confluence




