COMP4161
Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison
T3/2023

Content

\rightarrow Foundations \& Principles

- Intro, Lambda calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatype induction, primitive recursion
- General recursive functions, termination proofs
- Proof automation, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep
${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

Last Time

\rightarrow Equations and Term Rewriting

Last Time

\rightarrow Equations and Term Rewriting

Last Time

\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems

Last Time

\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems
\rightarrow Term Rewriting in Isabelle

Applying a Rewrite Rule

$\rightarrow I \longrightarrow r$ applicable to term $t[s]$

Applying a Rewrite Rule

$\rightarrow I \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma I=s$

Applying a Rewrite Rule

$\rightarrow I \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma I=s$
\rightarrow Result: $t\left[\begin{array}{ll}\sigma & r\end{array}\right]$

Applying a Rewrite Rule

$\rightarrow \quad I \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma I=s$
\rightarrow Result: $t\left[\begin{array}{ll}\sigma & r\end{array}\right.$
\rightarrow Equationally: $t[s]=t\left[\begin{array}{ll}\sigma & r\end{array}\right]$
Example:

Applying a Rewrite Rule

$\rightarrow \quad I \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma I=s$
\rightarrow Result: $t\left[\begin{array}{ll}\sigma & r\end{array}\right.$
\rightarrow Equationally: $t[s]=t\left[\begin{array}{ll}\sigma & r\end{array}\right]$
Example:

$$
\begin{aligned}
& \text { Rule: } 0+n \longrightarrow n \\
& \text { Term: } a+(0+(b+c))
\end{aligned}
$$

Applying a Rewrite Rule

$\rightarrow \quad I \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma l=s$
\rightarrow Result: $t\left[\begin{array}{ll}\sigma & r\end{array}\right.$
\rightarrow Equationally: $t[s]=t\left[\begin{array}{ll}\sigma & r\end{array}\right]$
Example:
Rule: $0+n \longrightarrow n$
Term: $a+(0+(b+c))$
Substitution: $\sigma=\{n \mapsto b+c\}$

Applying a Rewrite Rule

$\rightarrow \quad I \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma l=s$
\rightarrow Result: $t\left[\begin{array}{ll}\sigma & r\end{array}\right.$
\rightarrow Equationally: $t[s]=t\left[\begin{array}{ll}\sigma & r\end{array}\right]$
Example:
Rule: $0+n \longrightarrow n$
Term: $a+(0+(b+c))$
Substitution: $\sigma=\{n \mapsto b+c\}$
Result: $a+(b+c)$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow I=r
$$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow I=r
$$

is applicable to term $t[s]$ with σ if
$\rightarrow \sigma I=s$ and
$\rightarrow \sigma P_{1}, \ldots, \sigma P_{n}$ are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.
Can lead to non-termination.
Example:

$$
\text { lemma " } f x=g x \wedge g x=f x \Longrightarrow f x=2 \text { " }
$$

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.
Can lead to non-termination.
Example:

$$
\text { lemma " } f x=g x \wedge g x=f x \Longrightarrow f x=2 \text { " }
$$

simp
(simp (no_asm))
(simp (no_asm_use))
(simp (no_asm_simp))
use and simplify assumptions
ignore assumptions
simplify, but do not use assumptions use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$
\begin{array}{rll}
\neg A & \mapsto & A=\text { False } \\
A \longrightarrow B & \mapsto & A \Longrightarrow B \\
A \wedge B & \mapsto & A, B \\
\forall x . A x & \mapsto & A ? x \\
A & \mapsto & A=\text { True }
\end{array}
$$

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$
\begin{array}{rll}
\neg A & \mapsto & A=\text { False } \\
A \longrightarrow B & \mapsto & A \Longrightarrow B \\
A \wedge B & \mapsto & A, B \\
\forall x . A x & \mapsto & A ? x \\
A & \mapsto & A=\text { True }
\end{array}
$$

Example:
$(p \longrightarrow q \wedge \neg r) \wedge s$
\mapsto

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$
\begin{array}{rll}
\neg A & \mapsto & A=\text { False } \\
A \longrightarrow B & \mapsto & A \Longrightarrow B \\
A \wedge B & \mapsto & A, B \\
\forall x . A x & \mapsto & A ? x \\
A & \mapsto & A=\text { True }
\end{array}
$$

Example:

$$
(p \longrightarrow q \wedge \neg r) \wedge s
$$

$$
p \Longrightarrow q=\text { True } \quad p \Longrightarrow r=\text { False } \quad s=\text { True }
$$

Demo

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
(A \longrightarrow P s) \wedge(\neg A \longrightarrow P t)
\end{gathered}
$$

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
(A \longrightarrow P s) \wedge(\neg A \longrightarrow P t) \\
\text { Automatic }
\end{gathered}
$$

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
(A \longrightarrow P s) \wedge(\neg A \longrightarrow P t) \\
\text { Automatic } \\
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P a) \wedge(\forall n . e=\operatorname{Suc} n \longrightarrow P b)
\end{gathered}
$$

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
(A \longrightarrow P s) \wedge(\neg A \longrightarrow P t) \\
\text { Automatic } \\
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P \text { a) } \wedge(\forall n . e=\text { Suc } n \longrightarrow P b) \\
\text { Manually: apply (simp split: nat.split) }
\end{gathered}
$$

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
(A \longrightarrow P s) \wedge(\neg A \longrightarrow P t) \\
\text { Automatic } \\
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P \text { a) } \wedge(\forall n . e=\operatorname{Suc} n \longrightarrow P b) \\
\text { Manually: apply (simp split: nat.split) }
\end{gathered}
$$

Similar for any data type t : \mathbf{t}.split

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q
For \Longrightarrow hardwired (assumptions used in rewriting)

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

For other operators expressed with conditional rewriting.
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

For other operators expressed with conditional rewriting.
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$
\rightarrow first simplify P to P^{\prime}

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

For other operators expressed with conditional rewriting.
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$
\rightarrow first simplify P to P^{\prime}
\rightarrow then simplify Q to Q^{\prime} using P^{\prime} as assumption

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

For other operators expressed with conditional rewriting.
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$
\rightarrow first simplify P to P^{\prime}
\rightarrow then simplify Q to Q^{\prime} using P^{\prime} as assumption
\rightarrow the result is $P^{\prime} \longrightarrow Q^{\prime}$

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$ (if b then x else y) $=($ if c then u else v)

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$ (if b then x else y) $=($ if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow$ (if b then x else y) $=$ (if c then x else y)

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$ (if b then x else y) $=($ if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow$ (if b then x else y) $=($ if c then x else y)
\rightarrow declare own congruence rules with [cong] attribute

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$ (if b then x else y) $=($ if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow$ (if b then x else y) $=($ if c then x else y)
\rightarrow declare own congruence rules with [cong] attribute
\rightarrow delete with [cong del]

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$ (if b then x else y) $=($ if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow$ (if b then x else y) $=($ if c then x else y)
\rightarrow declare own congruence rules with [cong] attribute
\rightarrow delete with [cong del]
\rightarrow use locally with e.g. apply (simp cong: <rule>)

Ordered rewriting

Problem: $x+y \longrightarrow y+x$ does not terminate

Ordered rewriting

Problem: $x+y \longrightarrow y+x$ does not terminate
Solution: use permutative rules only if term becomes lexicographically smaller.

Example:

Ordered rewriting

Problem: $x+y \longrightarrow y+x$ does not terminate
Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $\quad b+a \leadsto a+b$ but not $a+b \leadsto b+a$.

Ordered rewriting

Problem: $x+y \longrightarrow y+x$ does not terminate
Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $\quad b+a \leadsto a+b$ but not $a+b \leadsto b+a$.
For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product $(*)$

Example: apply (simp add: add_ac) yields

$$
(b+c)+a \leadsto \cdots \leadsto a+(b+c)
$$

AC Rules

Example for associative-commutative rules:
Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$

AC Rules

Example for associative-commutative rules:
Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).
Example: $\quad(z \odot x) \odot(y \odot v)$

AC Rules

Example for associative-commutative rules:
Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).
Example: $\quad(z \odot x) \odot(y \odot v)$
We want: $\quad(z \odot x) \odot(y \odot v)=v \odot(x \odot(y \odot z))$

AC Rules

Example for associative-commutative rules:
Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).
Example: $\quad(z \odot x) \odot(y \odot v)$
We want: $\quad(z \odot x) \odot(y \odot v)=v \odot(x \odot(y \odot z))$
We get: $\quad(z \odot x) \odot(y \odot v)=v \odot(y \odot(x \odot z))$

AC Rules

Example for associative-commutative rules:
Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).
Example: $\quad(z \odot x) \odot(y \odot v)$
We want: $\quad(z \odot x) \odot(y \odot v)=v \odot(x \odot(y \odot z))$
We get: $\quad(z \odot x) \odot(y \odot v)=v \odot(y \odot(x \odot z))$
We need: AC rule $x \odot(y \odot z)=y \odot(x \odot z)$

AC Rules

Example for associative-commutative rules:
Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).
Example: $\quad(z \odot x) \odot(y \odot v)$
We want: $\quad(z \odot x) \odot(y \odot v)=v \odot(x \odot(y \odot z))$
We get: $\quad(z \odot x) \odot(y \odot v)=v \odot(y \odot(x \odot z))$
We need: AC rule $x \odot(y \odot z)=y \odot(x \odot z)$
If these 3 rules are present for an AC operator Isabelle will order terms correctly

Demo

Back to Confluence

Last time: confluence in general is undecidable.

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $I_{1} \longrightarrow r_{1}$ and $I_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of I_{1} unifies with I_{2}.

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $t_{1} \longrightarrow r_{1}$ and $I_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_{1} unifies with l_{2}.
Example:
Rules: (1) $f x \longrightarrow a \quad$ (2) $g y \longrightarrow b \quad$ (3) $f(g z) \longrightarrow b$
Critical pairs:

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:

Let $l_{1} \longrightarrow r_{1}$ and $l_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of I_{1} unifies with l_{2}.

Example:

Rules: (1) $f x \longrightarrow a \quad$ (2) $g y \longrightarrow b \quad$ (3) $f(g z) \longrightarrow b$
Critical pairs:

$$
\begin{array}{lllll}
(1)+(3) & \{x \mapsto g z\} & a \stackrel{(1)}{\leftrightarrows} f(g z) \xrightarrow{(3)} b \\
(3)+(2) & \{z \mapsto y\} & b \stackrel{(3)}{\leftrightarrows} f(g y) \xrightarrow{(2)} f b
\end{array}
$$

Completion

(1) $f x \longrightarrow a \quad$ (2) $g y \longrightarrow b \quad$ (3) $f(g z) \longrightarrow b$ is not confluent

Completion

is not confluent
But it can be made confluent by adding rules!

Completion

is not confluent
But it can be made confluent by adding rules! How: join all critical pairs

Completion

(1) $f x \longrightarrow a$
(2) $g y \longrightarrow b$
(3) $f(g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$
(1)+(3) \quad\{x \mapsto g z\} \quad a \stackrel{(1)}{\rightleftarrows} \quad f(g z) \xrightarrow{(3)} b
$$

shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$),

Completion

(1) $f x \longrightarrow a$
(2) $g y \longrightarrow b$
(3) $f(g z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$
(1)+(3) \quad\{x \mapsto g z\} \quad a \stackrel{(1)}{\rightleftarrows} f(g z) \xrightarrow{(3)} b
$$

shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

Completion

(1) $f x \longrightarrow a$
(2) $g y \longrightarrow b$
(3) $f(g z) \longrightarrow b$
is not confluent
But it can be made confluent by adding rules! How: join all critical pairs

Example:

$$
(1)+(3) \quad\{x \mapsto g z\} \quad a \stackrel{(1)}{\rightleftarrows} f(g z) \xrightarrow{(3)} b
$$

shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule
This is the main idea of the Knuth-Bendix completion algorithm.

Demo: Waldmeister

Orthogonal Rewriting Systems

Definitions:

Orthogonal Rewriting Systems

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I.

Orthogonal Rewriting Systems

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I. A rewrite system is left-linear if all rules are.

Orthogonal Rewriting Systems

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I. A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal Rewriting Systems

Definitions:
A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I. A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Orthogonal Rewriting Systems

Definitions:
A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I. A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

\rightarrow Conditional term rewriting

We have learned today ...

\rightarrow Conditional term rewriting
\rightarrow Congruence rules

We have learned today ...

\rightarrow Conditional term rewriting
\rightarrow Congruence rules
\rightarrow AC rules

We have learned today ...

\rightarrow Conditional term rewriting
\rightarrow Congruence rules
\rightarrow AC rules
\rightarrow More on confluence

