rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

U

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

=» Foundations & Principles

e Intro, Lambda calculus, natural deduction [1,2]
e Higher Order Logic, Isar (part 1) [2,37]
e Term rewriting (3.4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [4,5]
e Datatype induction, primitive recursion [5.7]
e General recursive functions, termination proofs 7%
e Proof automation, Isar (part 2) [8]
e Hoare logic, proofs about programs, invariants [8.9]
e C verification [9.10]
e Practice, questions, exam prep [10]

231 due; Pa2 due; a3 due

2 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Last Time

Conditional term rewriting

Case Splitting with the simplifier
Congruence rules

AC Rules

Knuth-Bendix Completion (Waldmeister)
Orthogonal Rewrite Systems

L 2K 2% K 2 e

, J Aman Poh CC-BY-4.0 License

Specification Techniques

Sets

Sets in Isabelle

Type ’a set: sets over type 'a

{}, {e,...,en}, {x. Px}

ecA ACB

AUB, AnB, A—-B, -A

UxeA Bx, NxeA Bx, NA UA
{i-J}

Insert :: a = a set = « set
ffFA={y.Ixe A y="fx}

ddi il

5 | COMP4161 | G Klein ka, J Aman Pohjola, ison CC-BY-4.0 License

Proofs about Sets

Natural deduction proofs:
= equalityl: [ACB; BCAl=—= A=B
> subsetl: (Ax. xe A= xe€B)=—= ACB
=» ... find_theorems

6 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Bounded Quantifiers

D VxeAPx=Vx.xeA— Px

= XxeAPx=3Ix. xeAANPx

= balll: (Ax.xe A= P x)=Vxec A Px

= bspec: [Vx € A. P x;x € Al = P x

= bexl: [P x;x € A= 3x€ A. P x

D bexE: [Ix € A Px;Ax. [x€e AP Xx]= Q= @

J Aman Pohjola

Demo

Sets

The Three Basic Ways of Introducing Theorems

=> Axioms:

Example: axiomatization where refl: "t =t

Do not use. Evil. Can make your logic inconsistent.

=» Definitions:

Example: definition inj where "inj
f=Vxy. fx=Ffy—x=y"
Introduces a new lemma called inj_def.

= Proofs:
Example: lemma "inj (Ax. x +1)"

The harder, but safe choice.

9 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

The Three Basic Ways of Introducing Types

=» typedecl: by name only

Example: typedecl names
Introduces new type names without any further assumptions

=» type_synonym: by abbreviation

Example: type_synonym « rel = "a = o = bool"
Introduces abbreviation rel for existing type o = a = bool
Type abbreviations are immediately expanded internally

=» typedef: by definiton as a set

Example: typedef new_type = " {some set}" <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

10 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

How typedef works

existing type

P4161 | G Klein ca, J Aman Pohj

)
new type
Rep .
, Abs
| N —

ison CC-BY-4.0 License

How typedef works

existing type

@, J Aman P

)
new type
Rep .
) Abs
| N —

Example: Pairs

(o, B) Prod

@ Pick existing type: a = [= bool
@ Identify subset:
(o, 8) Prod ={f.Jab. f =Axua)(y:p).x=aAy=b}

® We get from Isabelle:

e functions Abs_Prod, Rep_Prod

e both injective

e Abs_Prod (Rep_Prod x) = x
@ We now can:

e define constants Pair, fst, snd in terms of Abs_Prod and
Rep_Prod

e derive all characteristic theorems

e forget about Rep/Abs, use characteristic theorems instead

3 | COMP4161 | G Klein, M Tanaka, an Pohjola, R Sison CC-BY-4.0 License

Demo

Introducing new Types

Inductive Definitions

Example

[e]le = v
(skip,0) — o (x :=e,0) — o[x > V]

(a,0) — o' (c,0") — 0"
(c1;c0,0) — o

[b]o = False
(while bdo c,0) — o

[b]o = True (c,0) — o’ (while bdo c,0’) — o”
(while b do ¢,0) — o”

16 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Siso

What does this mean?

= (c,0) — o’ fancy syntax for a relation (c,0,0’) € E
=» relations are sets: E :: (com X state X state) set
=>» the rules define a set inductively

But which set?

61 | G Klein, anaka, J Aman Poh

Simpler Example

ne N
0eN n+leN
=» N is the set of natural numbers IN
=» But why not the set of real numbers? 0 e R, ne R=n+1cR
=» IN is the smallest set that is consistent with the rules.

Why the smallest set?
=» Objective: no junk. Only what must be in X shall be in X.
=» Gives rise to a nice proof principle (rule induction)
=» Alternative (greatest set) occasionally also useful: coinduction

18 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Rule Induction

ne N
0eN n+leN

induces induction principle

[PO; An.Pn= P (n+1)]=VxeN. Px

4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Demo

Inductive Definitions

We have learned today ...

-» Sets
=» Type Definitions
=» Inductive Definitions

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

