COMP4161 Advanced Topics in Software Verification Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023 #### Content | → | Foundations & Principles | | |----------|---|--------------------| | | Intro, Lambda calculus, natural deduction | [1,2] | | | Higher Order Logic, Isar (part 1) | $[2,3^a]$ | | | Term rewriting | [3,4] | | → | Proof & Specification Techniques | | | | Inductively defined sets, rule induction | [4,5] | | | Datatype induction, primitive recursion | [5,7] | | | General recursive functions, termination proofs | $[7^{b}]$ | | | Proof automation, Isar (part 2) | [8] | | | Hoare logic, proofs about programs, invariants | [8,9] | | | C verification | [9,10] | | | Practice, questions, exam prep | [10 ^c] | | | | | ^aa1 due; ^ba2 due; ^ca3 due → Conditional term rewriting - → Conditional term rewriting - → Case Splitting with the simplifier - → Conditional term rewriting - → Case Splitting with the simplifier - → Congruence rules - → Conditional term rewriting - → Case Splitting with the simplifier - → Congruence rules - → AC Rules - → Conditional term rewriting - → Case Splitting with the simplifier - → Congruence rules - → AC Rules - → Knuth-Bendix Completion (Waldmeister) - → Conditional term rewriting - → Case Splitting with the simplifier - → Congruence rules - → AC Rules - → Knuth-Bendix Completion (Waldmeister) - → Orthogonal Rewrite Systems Specification Techniques Sets Type ${\bf 'a\ set}$: sets over type ${\bf 'a\ }$ → {}, { $$e_1, ..., e_n$$ }, { $x. P x$ } - → {}, { $e_1, ..., e_n$ }, {x. P x} - $ightharpoonup e \in A$, $A \subseteq B$ - **→** {}, { $e_1, ..., e_n$ }, {x. P x} - \rightarrow $e \in A$, $A \subseteq B$ - \rightarrow $A \cup B$, $A \cap B$, A B, -A - → {}, { $e_1, ..., e_n$ }, {x. P x} - \rightarrow $e \in A$, $A \subseteq B$ - \rightarrow $A \cup B$, $A \cap B$, A B, -A - \rightarrow $\bigcup x \in A$. B x, $\bigcap x \in A$. B x, $\bigcap A$, $\bigcup A$ - → {}, { $e_1, ..., e_n$ }, {x. P x} - $ightharpoonup e \in A$, $A \subseteq B$ - \rightarrow $A \cup B$, $A \cap B$, A B, -A - \rightarrow $\bigcup x \in A$. B x, $\bigcap x \in A$. B x, $\bigcap A$, $\bigcup A$ - **→** {*i..j*} - → {}, { $e_1, ..., e_n$ }, {x. P x} - $ightharpoonup e \in A$, $A \subseteq B$ - \rightarrow $A \cup B$, $A \cap B$, A B, -A - \rightarrow $\bigcup x \in A$. B x, $\bigcap x \in A$. B x, $\bigcap A$, $\bigcup A$ - **→** {*i..j*} - \rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set - → $\{\}$, $\{e_1, \ldots, e_n\}$, $\{x. P x\}$ - \rightarrow $e \in A$, $A \subseteq B$ - \rightarrow $A \cup B$, $A \cap B$, A B, -A - \rightarrow $\bigcup x \in A$. B x, $\bigcap x \in A$. B x, $\bigcap A$, $\bigcup A$ - **→** {*i..j*} - \rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set - → ... #### **Proofs about Sets** Natural deduction proofs: \rightarrow equalityl: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$ #### **Proofs about Sets** #### Natural deduction proofs: - \rightarrow equalityl: $[\![A \subseteq B; B \subseteq A]\!] \Longrightarrow A = B$ - \rightarrow subsetI: $(\bigwedge x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$ #### **Proofs about Sets** #### Natural deduction proofs: - \rightarrow equalityl: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$ - \rightarrow subsetl: $(\bigwedge x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$ - → ... find_theorems $\rightarrow \forall x \in A. P x$ $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$ - $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$ - $\Rightarrow \exists x \in A. \ P \ x$ - $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$ - $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$ - $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$ - $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$ - \rightarrow ballI: $(\bigwedge x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$ - \rightarrow bspec: $\llbracket \forall x \in A. \ P \ x; x \in A \rrbracket \Longrightarrow P \ x$ - $\Rightarrow \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$ - $\Rightarrow \exists x \in A. \ P \ x \equiv \exists x. \ x \in A \land P \ x$ - \rightarrow ballI: $(\bigwedge x. \ x \in A \Longrightarrow P \ x) \Longrightarrow \forall x \in A. \ P \ x$ - \Rightarrow bspec: $\llbracket \forall x \in A. \ P \ x; x \in A \rrbracket \Longrightarrow P \ x$ - \rightarrow bexl: $\llbracket P \ x; x \in A \rrbracket \Longrightarrow \exists x \in A. \ P \ x$ - ightharpoonup bexE: $[\![\exists x \in A.\ P\ x; \bigwedge x.\ [\![x \in A; P\ x]\!] \Longrightarrow Q]\!] \Longrightarrow Q$ ## Demo Sets → Axioms: Example: **axiomatization where** refl: "t = t" → Axioms: Example: axiomatization where refl: "t = t" Do not use. Evil. Can make your logic inconsistent. → Axioms: Example: **axiomatization where** refl: "t = t" Do not use. Evil. Can make your logic inconsistent. → Definitions: Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " #### → Axioms: Example: **axiomatization where** refl: "t = t" Do not use. Evil. Can make your logic inconsistent. #### → Definitions: Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def. → Axioms: Example: **axiomatization where** refl: "t = t" Do not use. Evil. Can make your logic inconsistent. → Definitions: Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def. → Proofs: Example: **lemma** "inj $(\lambda x. x + 1)$ " → Axioms: Example: **axiomatization where** refl: "t = t" Do not use. Evil. Can make your logic inconsistent. → Definitions: Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def. → Proofs: Example: **lemma** "inj $(\lambda x. x + 1)$ " The harder, but safe choice. → typedecl: by name only Example: typedecl names Introduces new type names without any further assumptions → typedecl: by name only Example: **typedecl** names Introduces new type names without any further assumptions → type_synonym: by abbreviation Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally → typedecl: by name only Example: **typedecl** names Introduces new type *names* without any further assumptions → type_synonym: by abbreviation Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally → typedef: by definiton as a set Example: typedef new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty. new type $$(\alpha, \beta)$$ Prod ① Pick existing type: $$(\alpha, \beta)$$ Prod - ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow \text{bool}$ - ② Identify subset: $$(\alpha, \beta)$$ Prod - ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$ - ② Identify subset: $$(\alpha, \beta)$$ Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$ ③ We get from Isabelle: $$(\alpha, \beta)$$ Prod - ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow \mathsf{bool}$ - ② Identify subset: $$(\alpha, \beta)$$ Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$ - ③ We get from Isabelle: - functions Abs_Prod, Rep_Prod - both injective - Abs_Prod (Rep_Prod x) = x - 4 We now can: $$(\alpha, \beta)$$ Prod - ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$ - ② Identify subset: $$(\alpha, \beta)$$ Prod = $\{f. \exists a \ b. \ f = \lambda(x :: \alpha) \ (y :: \beta). \ x = a \land y = b\}$ - ③ We get from Isabelle: - functions Abs_Prod, Rep_Prod - both injective - Abs_Prod (Rep_Prod x) = x - 4 We now can: - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod - derive all characteristic theorems - forget about Rep/Abs, use characteristic theorems instead Demo **Introducing new Types** # Inductive Definitions #### Example $ightharpoonup \langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$ - $ightharpoonup \langle c, \sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c, \sigma, \sigma') \in E$ - → relations are sets: E :: (com × state × state) set - $ightharpoonup \langle c,\sigma \rangle \longrightarrow \sigma'$ fancy syntax for a relation $(c,\sigma,\sigma') \in E$ - \rightarrow relations are sets: $E :: (com \times state \times state)$ set - → the rules define a set inductively - \rightarrow relations are sets: E :: (com \times state \times state) set - → the rules define a set inductively #### But which set? $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ \rightarrow N is the set of natural numbers \mathbb{N} $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ - \rightarrow N is the set of natural numbers ${\rm I\! N}$ - ullet But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$ $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ - \rightarrow N is the set of natural numbers $\mathbb N$ - ightharpoonup But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$ - → N is the **smallest** set that is **consistent** with the rules. $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ - \rightarrow N is the set of natural numbers $\mathbb N$ - \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$ - → N is the **smallest** set that is **consistent** with the rules. #### Why the smallest set? $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ - \rightarrow N is the set of natural numbers \mathbb{N} - \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$ - → N is the **smallest** set that is **consistent** with the rules. #### Why the smallest set? \rightarrow Objective: **no junk**. Only what must be in X shall be in X. $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ - \rightarrow N is the set of natural numbers \mathbb{N} - \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$ - → N is the **smallest** set that is **consistent** with the rules. #### Why the smallest set? - \rightarrow Objective: **no junk**. Only what must be in X shall be in X. - → Gives rise to a nice proof principle (rule induction) $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ - \rightarrow N is the set of natural numbers $\mathbb N$ - \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$ - → N is the **smallest** set that is **consistent** with the rules. #### Why the smallest set? - → Objective: **no junk**. Only what must be in *X* shall be in *X*. - → Gives rise to a nice proof principle (rule induction) - → Alternative (greatest set) occasionally also useful: coinduction #### Rule Induction $$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$ induces induction principle $$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in \textit{N. } P \ x$$ ## Demo **Inductive Definitions** #### We have learned today ... → Sets #### We have learned today ... - → Sets - → Type Definitions #### We have learned today ... - → Sets - → Type Definitions - → Inductive Definitions