

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

→	Foundations	&	Principles
---	-------------	---	------------

 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[2,3 ^a]
Term rewriting	[3,4]
➔ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7 ^b]
 Proof automation, Isar (part 2) 	[8]
• Hoare logic, proofs about programs, invariants	[8,9]
C verification	[9,10]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Sets
- → Type Definitions
- ➔ Inductive Definitions

Inductive Definitions How They Work

The Nat Example

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \implies n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the smallest set that is consistent with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite)

Applying rules *R* to a set *B*: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$\begin{array}{lll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in {\rm I\!R}\} \\ \hat{R} \ \{3,6,10\} & = & \{0,4,7,11\} \end{array}$$

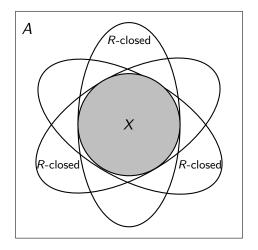
The Set

Definition: *B* is *R*-closed iff $\hat{R} \ B \subseteq B$ **Definition:** *X* is the least *R*-closed subset of *A*

This does always exist:

Fact: $X = \bigcap \{ B \subseteq A. \ B \ R-closed \}$

Generation from Above



Rule Induction

$$\frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in N. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

Why does this work?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$
$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed set}$$
$$\mathbf{but:} \qquad X \text{ is the least } R\text{-closed set}$$

hence: $X \subseteq \{x. P x\}$ which means: $\forall x \in X. P x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. P a_1 \land \dots \land P a_n \land \\ \begin{array}{c} C_1 \land \dots \land C_m \land \\ \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P a) \\ \end{array} \\ \end{array} \\ \forall x \in X. P x$$

X as Fixpoint

How to compute X? $X = \bigcap \{ B \subseteq A. \ B \ R - \text{closed} \}$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$X_{0} = \hat{R}^{0} \{\} = \{\}$$

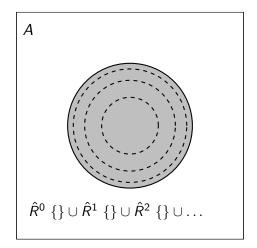
$$X_{1} = \hat{R}^{1} \{\} = \text{rules without hypotheses}$$

$$\vdots$$

$$X_{n} = \hat{R}^{n} \{\}$$

$$X_{\omega} = \bigcup_{n \in \mathbb{N}} (\hat{R}^n \{\}) = X$$

Generation from Below



Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function.

Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- \rightarrow can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:

- → Define closed $f A :: (\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- → Show closed $f A \land$ closed $f B \implies$ closed $f (A \cap B)$ if f is monotone (mono is predefined)
- → Define **lfpt** *f* as the intersection of all *f*-closed sets
- → Show that lfpt f is a fixpoint of f if f is monotone
- \rightarrow Show that lfpt f is the least fixpoint of f
- → Declare a constant $R :: (\alpha \text{ set } \times \alpha)$ set
- → Define $\hat{R} :: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- → Show soundness of rule induction using R and lfpt \hat{R}

We have learned today ...

- ➔ Formal background of inductive definitions
- \rightarrow Definition by intersection
- \rightarrow Computation by iteration
- → Formalisation in Isabelle