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Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
(7]
(8]
8.9]
[9,10]
10]

?al due; a2 due; a3 due




Last Time

=» Sets
=» Type Definitions
=» Inductive Definitions
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Inductive Definitions
How They Work
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The Nat Example

ne N
0eN n+leN
=» N is the set of natural numbers IN
=» But why not the set of real numbers? 0 € R, ne R=n+1€ R
=» IN is the smallest set that is consistent with the rules.

Why the smallest set?

=» Objective: no junk. Only what must be in X shall be in X.
=» Gives rise to a nice proof principle (rule induction)
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Formally

aaeX ... a,eX
aeX

define set X C A

Rules with a1,...,a,,a€ A

Formally: set of rules R C Aset x A (R, X possibly infinite)
Applying rules Rtoaset B: R B={x.3H. (H,x)e RAHC B}
Example:

R
R {3,6,10}

{({} 03 u{({n},n+1). ne R}
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Formally

aaeX ... a,eX
aeX

define set X C A

Rules with a1,...,a,,a€ A

Formally: set of rules R C Aset x A (R, X possibly infinite)
Applying rules Rtoaset B: R B={x.3H. (H,x)e RAHC B}

Example:

R = {({}:0}u{({n},n+1). ne R}
R {3,6,10} = {0,4,7,11}
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The Set

Definition: B is R-closed iff R B C B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =[\{B C A. B R—closed}
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Rule Induction

ne N
0eN n+leN

induces induction principle

[PO; An.Pn= P (n+1)] = Vx€ N. P x

In general:

V({a1,...an},a) ER.PagAN...ANPa,=— P a
Vx e X. P x
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Why does this work?

V({a1,...an},a) e R.PaiAN...ANPa,=— P a
Vx e X. P x

V({a1,...an},a) ER.PayAN...ANPa,=— P a
says
{x. P x} is R-closed

but: X is the least R-closed set
hence: X C{x. P x}
which means: Vx e X. P x

ged
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Rules with side conditions

aaeX ... a,eX G ... Cy
aeX

induction scheme:

(V({a1,-..an},a) ER. ParA...AP a, A
CGAN...NCy A
{a1,...,a,} C X = P a)

_—
Vx e X. P x
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X as Fixpoint

How to compute X?
X =B C A B R—closed} hard to work with.

Instead: view X as least fixpoint, X least set with RX=X.

Fixpoints can be approximated by iteration:

Xo=FR{}={}

X; = R {} = rules without hypotheses

X, = R {}
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How to compute X?
X =B C A B R—closed} hard to work with.

Instead: view X as least fixpoint, X least set with RX=X.

Fixpoints can be approximated by iteration:

Xo=FR{}={}

X; = R {} = rules without hypotheses
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Generation from Below

RO {}
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ROQJUR' {JUR {}U...
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Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A, <) be a complete lattice, and f :: A= A a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound
(join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:
=» least and greatest fixpoints exist (complete lattice always non-empty).
=» can be reached by (possibly infinite) iteration. (Why?)
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Exercise

Formalize this lecture in Isabelle:

-
-

LK R R

Define closed f A :: (a set = «a set) = « set = bool

Show closed f A A closed f B = closed f (AN B) if f is monotone
(mono is predefined)

Define Ifpt f as the intersection of all f-closed sets

Show that Ifpt f is a fixpoint of f if f is monotone

Show that Ifpt f is the least fixpoint of f

Declare a constant R :: (« set X «) set

Define R :: a set = « set in terms of R

Show soundness of rule induction using R and Ifpt R

OMP4161



We have learned today ...

=» Formal background of inductive definitions
=» Definition by intersection
=» Computation by iteration

=>» Formalisation in Isabelle




