COMP4161
Advanced Topics in Software Verification

$$
\}
$$

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison
T3/2023

Content

\rightarrow Foundations \& Principles

- Intro, Lambda calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatype induction, primitive recursion
- General recursive functions, termination proofs
- Proof automation, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep
${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

Last Time

\rightarrow Sets
\rightarrow Type Definitions
\rightarrow Inductive Definitions

Inductive Definitions

How They Work

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.
Why the smallest set?

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

\rightarrow Objective: no junk. Only what must be in X shall be in X.

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

\rightarrow Objective: no junk. Only what must be in X shall be in X.
\rightarrow Gives rise to a nice proof principle (rule induction)

Formally

Rules $\frac{a_{1} \in X \quad \ldots \quad a_{n} \in X}{a \in X}$ with $a_{1}, \ldots, a_{n}, a \in A$
define set $X \subseteq A$

Formally:

Formally

$$
\begin{gathered}
\text { Rules } \frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X} \text { with } a_{1}, \ldots, a_{n}, a \in A \\
\text { define set } X \subseteq A
\end{gathered}
$$

Formally: set of rules $R \subseteq A$ set $\times A \quad(R, X$ possibly infinite) Applying rules R to a set B :

Formally

$$
\begin{gathered}
\text { Rules } \frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X} \text { with } a_{1}, \ldots, a_{n}, a \in A \\
\text { define set } X \subseteq A
\end{gathered}
$$

Formally: set of rules $R \subseteq A$ set $\times A \quad(R, X$ possibly infinite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$

Example:

Formally

$$
\begin{gathered}
\text { Rules } \frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X} \text { with } a_{1}, \ldots, a_{n}, a \in A \\
\text { define set } X \subseteq A
\end{gathered}
$$

Formally: set of rules $R \subseteq A$ set $\times A \quad(R, X$ possibly infinite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$
Example:

$$
\begin{array}{ll}
R & \equiv\{(\}, 0)\} \cup\{(\{n\}, n+1) \cdot n \in \mathbb{R}\} \\
\hat{R}\{3,6,10\} & =
\end{array}
$$

Formally

$$
\begin{gathered}
\text { Rules } \frac{a_{1} \in X \quad \ldots a_{n} \in X}{a \in X} \text { with } a_{1}, \ldots, a_{n}, a \in A \\
\text { define set } X \subseteq A
\end{gathered}
$$

Formally: set of rules $R \subseteq A$ set $\times A \quad(R, X$ possibly infinite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$
Example:

$$
\begin{array}{ll}
R & \equiv\{(\}, 0)\} \cup\{(\{n\}, n+1) \cdot n \in \mathbb{R}\} \\
\hat{R}\{3,6,10\} & =\{0,4,7,11\}
\end{array}
$$

The Set

Definition: $\quad B$ is R-closed iff $\hat{R} B \subseteq B$

The Set

$$
\begin{array}{ll}
\text { Definition: } & B \text { is } R \text {-closed iff } \hat{R} B \subseteq B \\
\text { Definition: } & X \text { is the least } R \text {-closed subset of } A
\end{array}
$$

This does always exist:

The Set

Definition: $\quad B$ is R-closed iff $\hat{R} \quad B \subseteq B$
 Definition: $\quad X$ is the least R-closed subset of A

This does always exist:
Fact: $\quad X=\bigcap\{B \subseteq A . B R$-closed $\}$

Generation from Above

```
A
```


Generation from Above

Generation from Above

Generation from Above

Generation from Above

Rule Induction

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

induces induction principle

$$
\llbracket P 0 ; \bigwedge n . P n \Longrightarrow P(n+1) \rrbracket \Longrightarrow \forall x \in N . P x
$$

Rule Induction

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

induces induction principle

$$
\llbracket P 0 ; \bigwedge n . P n \Longrightarrow P(n+1) \rrbracket \Longrightarrow \forall x \in N . P x
$$

In general:

$$
\frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x}
$$

Why does this work?

$$
\begin{gathered}
\frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X \cdot P x} \\
\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
\text { says }
\end{gathered}
$$

Why does this work?

$$
\begin{aligned}
& \frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X \cdot P x} \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but:

Why does this work?

$$
\begin{aligned}
& \frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x} \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \text { says } \\
& \{x . P \times\} \text { is } R \text {-closed } \\
& \text { but: } \quad X \text { is the least } R \text {-closed set } \\
& \text { hence: }
\end{aligned}
$$

Why does this work?

$$
\begin{aligned}
& \frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x} \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \quad\{x . P x\} \text { is } R \text {-closed } \\
& \text { but: } \quad X \text { is the least } R \text {-closed set } \\
& \begin{array}{l}
\text { hence: } \quad X \subseteq\{x . P x\}
\end{array}
\end{aligned}
$$

Why does this work?

$$
\begin{aligned}
& \frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x} \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \quad\{x . P x\} \text { is } R \text {-closed } \\
& \text { but: } \quad X \text { is the least } R \text {-closed set } \\
& \text { hence: } \quad X \subseteq\{x . P x\} \\
& \text { which means: } \forall x \in X . P x
\end{aligned}
$$

Why does this work?

$$
\begin{aligned}
& \frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x} \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \quad\{x . P x\} \text { is } R \text {-closed } \\
& \text { but: } \quad X \text { is the least } R \text {-closed set } \\
& \text { hence: } \quad X \subseteq\{x . P x\} \\
& \text { which means: } \forall x \in X . P x \\
&
\end{aligned}
$$

Rules with side conditions

$$
\begin{array}{llllll}
a_{1} \in X & \ldots & a_{n} \in X & C_{1} & \ldots & C_{m} \\
\hline & a \in X &
\end{array}
$$

Rules with side conditions

$$
\begin{array}{llllll}
a_{1} \in X & \ldots & a_{n} \in X & C_{1} & \ldots & C_{m} \\
\hline & a \in X &
\end{array}
$$

induction scheme:

$$
\begin{aligned}
&\left(\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R .\right. P a_{1} \wedge \ldots \wedge P a_{n} \wedge \\
& C_{1} \wedge \ldots \wedge C_{m} \wedge \\
&\left.\left\{a_{1}, \ldots, a_{n}\right\} \subseteq X \Longrightarrow P a\right) \\
& \Longrightarrow \\
& \forall x \in X . P x
\end{aligned}
$$

X as Fixpoint

How to compute X ?

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead:

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A$. $B R$ - closed $\}$ hard to work with.
Instead: view X as least fixpoint, X least set with $\hat{R} X=X$.

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A . B R$ - closed $\}$ hard to work with.
Instead: view X as least fixpoint, X least set with $\hat{R} X=X$.
Fixpoints can be approximated by iteration:

$$
X_{0}=\hat{R}^{0}\{ \}=\{ \}
$$

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A$. $B R$ - closed $\}$ hard to work with.
Instead: view X as least fixpoint, X least set with $\hat{R} X=X$.
Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0}\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1}\{ \}=\text { rules without hypotheses }
\end{aligned}
$$

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A$. $B R$ - closed $\}$ hard to work with.
Instead: view X as least fixpoint, X least set with $\hat{R} X=X$.
Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0} \quad\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1} \quad\{ \}=\text { rules without hypotheses } \\
& \vdots \\
& X_{n}=\hat{R}^{n}\{ \}
\end{aligned}
$$

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A$. $B R$ - closed $\}$ hard to work with.
Instead: view X as least fixpoint, X least set with $\hat{R} X=X$.
Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0}\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1}\{ \}=\text { rules without hypotheses } \\
& \vdots \\
& X_{n}=\hat{R}^{n}\{ \} \\
& X_{\omega}=\bigcup_{n \in \mathbb{N}}\left(\hat{R}^{n}\{ \}\right)=X
\end{aligned}
$$

Generation from Below

Generation from Below

Generation from Below

Generation from Below

Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A, \leq) be a complete lattice, and $f:: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A, \leq) be a complete lattice, and $f:: A \Rightarrow A$ a monotone function.
Then the fixpoints of f again form a complete lattice.
Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A, \leq) be a complete lattice, and $f:: A \Rightarrow A$ a monotone function.
Then the fixpoints of f again form a complete lattice.
Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Does this always work?

Knaster-Tarski Fixpoint Theorem:
Let (A, \leq) be a complete lattice, and $f:: A \Rightarrow A$ a monotone function.
Then the fixpoints of f again form a complete lattice.
Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:

\rightarrow least and greatest fixpoints exist (complete lattice always non-empty).

Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f:: A \Rightarrow A$ a monotone function.
Then the fixpoints of f again form a complete lattice.
Lattice:
Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:
All subsets have a greatest lower bound and least upper bound.

Implications:

\rightarrow least and greatest fixpoints exist (complete lattice always non-empty).
\rightarrow can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:
\rightarrow Define closed $f A::(\alpha$ set $\Rightarrow \alpha$ set $) \Rightarrow \alpha$ set \Rightarrow bool
\rightarrow Show closed $f A \wedge$ closed $f B \Longrightarrow$ closed $f(A \cap B)$ if f is monotone (mono is predefined)
\rightarrow Define Ifpt f as the intersection of all f-closed sets
\rightarrow Show that lfpt f is a fixpoint of f if f is monotone
\rightarrow Show that lfpt f is the least fixpoint of f
\rightarrow Declare a constant $R::(\alpha$ set $\times \alpha)$ set
\rightarrow Define $\hat{R}:: \alpha$ set $\Rightarrow \alpha$ set in terms of R
\rightarrow Show soundness of rule induction using R and Ifpt \hat{R}

We have learned today ...

\rightarrow Formal background of inductive definitions
\rightarrow Definition by intersection
\rightarrow Computation by iteration
\rightarrow Formalisation in Isabelle

