

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
Term rewriting	[3,4]
Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
 C verification 	[9,10
 Practice, questions, exam prep 	[10°

^aa1 due; ^ba2 due; ^ca3 due

Datatypes

Example:

datatype 'a list = Nil | Cons 'a "'a list"

Properties:

→ Constructors:

Nil :: 'a list

Cons :: 'a \Rightarrow 'a list \Rightarrow 'a list

→ Distinctness: Nil \neq Cons x xs

→ Injectivity: $(Cons \times xs = Cons y \ ys) = (x = y \land xs = ys)$

More Examples

Enumeration:

datatype answer = Yes | No | Maybe

Polymorphic:

datatype 'a option = None | Some 'a datatype ('a,'b,'c) triple = Triple 'a 'b 'c

Recursion:

 $\begin{tabular}{ll} \textbf{datatype} 'a list = Nil \mid Cons 'a "'a list" \\ \textbf{datatype} 'a tree = Tip \mid Node 'a "'a tree" "'a tree" \\ \end{tabular}$

Mutual Recursion:

datatype even = EvenZero | EvenSucc odd

Nested

Nested recursion:

```
\label{eq:datatype} \mbox{ datatype 'a tree} = \mbox{Tip} \mid \mbox{Node 'a "'a tree list"} \mbox{ datatype 'a tree} = \mbox{Tip} \mid \mbox{Node 'a "'a tree option" "'a tree option"}
```

→ Recursive call is under a type constructor.

The General Case

$$\begin{array}{lcl} \textbf{datatype} \; (\alpha_1, \ldots, \alpha_n) \; \tau & = & \mathsf{C}_1 \; \tau_{1,1} \; \ldots \; \tau_{1,n_1} \\ & & & \mathsf{C}_k \; \tau_{k,1} \; \ldots \; \tau_{k,n_k} \end{array}$$

- \rightarrow Constructors: $C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n) \tau$
- \rightarrow Distinctness: $C_i \dots \neq C_j \dots$ if $i \neq j$
- igoplus Injectivity: $(C_i \ x_1 \dots x_{n_i} = C_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity applied automatically

How is this Type Defined?

datatype 'a list = Nil | Cons 'a "'a list"

- → internally reduced to a single constructor, using product and sum
- → constructor defined as an inductive set (like typedef)
- → recursion: least fixpoint

More detail: Tutorial on (Co-)datatypes Definitions at isabelle.in.tum.de

Datatype Limitations

Must be definable as a (non-empty) set.

- → Infinitely branching ok.
- → Mutually recursive ok.
- → Strictly positive (right of function arrow) occurrence ok.

Not ok:

```
\begin{array}{rcl} \textbf{datatype t} & = & C \ (t \Rightarrow bool) \\ & | & D \ ((bool \Rightarrow \textbf{t}) \Rightarrow bool) \\ & | & E \ ((\textbf{t} \Rightarrow bool) \Rightarrow bool) \end{array}
```

Because: Cantor's theorem (α set is larger than α)

Datatype Limitations

Not ok (nested recursion):

```
datatype ('a, 'b) fun_copy = Fun "'a \Rightarrow 'b" datatype 'a t = F "('a t, 'a) fun_copy"
```

- → recursion in ('a1, ..., 'an) t is only allowed on a subset of 'a1 ... 'an
- → these arguments are called *live* arguments
- \rightarrow Mainly: in "'a \Rightarrow 'b", 'a is dead and 'b is live
- → Thus: in ('a, 'b) fun_copy, 'a is dead and 'b is live
- → type constructors must be registered as *BNFs** to have live arguments
- → BNF defines well-behaved type constructors, ie where recursion is allowed
- → datatypes automatically are BNFs (that's how they are constructed)
- → can register other type constructors as BNFs not covered here**

^{*} RNE - Rounded Natural Functors

Case

Every datatype introduces a case construct, e.g.

(case
$$xs$$
 of [] $\Rightarrow \dots \mid y \# ys \Rightarrow \dots y \dots ys \dots$)

In general: one case per constructor

- → Nested patterns allowed: x#y#zs
- → Dummy and default patterns with _
- → Binds weakly, needs () in context

Cases

creates k subgoals

$$\llbracket t = C_i \ x_1 \dots x_p; \dots \rrbracket \Longrightarrow \dots$$

one for each constructor C_i

___Demo

Recursion

Why nontermination can be harmful

How about
$$f x = f x + 1$$
?

Subtract $f \times x$ on both sides.

$$\Longrightarrow 0 = 1$$

All functions in HOL must be total

Primitive Recursion

primrec guarantees termination structurally

Example primrec def:

```
primrec app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "app Nil ys = ys" | "app (Cons x xs) ys = Cons x (app xs ys)"
```

The General Case

If τ is a datatype (with constructors C_1, \ldots, C_k) then $f :: \tau \Rightarrow \tau'$ can be defined by **primitive recursion**:

$$f(C_1 y_{1,1} \dots y_{1,n_1}) = r_1$$

 \vdots
 $f(C_k y_{k,1} \dots y_{k,n_k}) = r_k$

The recursive calls in r_i must be **structurally smaller** (of the form f a_1 ... $y_{i,j}$... a_p)

How does this Work?

primrec just fancy syntax for a recursion operator

```
Example: rec_list :: "'a \Rightarrow ('b \Rightarrow 'b list \Rightarrow 'a \Rightarrow 'a) \Rightarrow 'b list \Rightarrow 'a" rec_list f_1 f_2 Nil = f_1 rec_list f_1 f_2 (Cons x xs) = f_2 x xs (rec_list f_1 f_2 xs) app \equiv rec_list (\lambda ys. ys) (\lambda x xs xs'. \lambda ys. Cons x (xs' ys)) primrec app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "app Nil ys = ys" | "app (Cons x xs) ys = Cons x (app xs ys)"
```

rec_list

Defined: automatically, first inductively (set), then by epsilon

$$\frac{(xs,xs') \in \mathsf{list_rel}\ f_1\ f_2}{(\mathsf{Nil},f_1) \in \mathsf{list_rel}\ f_1\ f_2} \qquad \frac{(xs,xs') \in \mathsf{list_rel}\ f_1\ f_2}{(\mathsf{Cons}\ x\ xs,f_2\ x\ xs\ xs') \in \mathsf{list_rel}\ f_1\ f_2}$$

rec_list f_1 f_2 $xs \equiv \mathsf{THE}\ y$. $(xs,y) \in \mathsf{list_rel}\ f_1$ f_2 Automatic proof that set def indeed is total function (the equations for rec_list are lemmas!)

Predefined Datatypes

nat is a datatype

$$\textbf{datatype} \ \mathsf{nat} = 0 \mid \mathsf{Suc} \ \mathsf{nat}$$

Functions on nat definable by primrec!

```
\begin{array}{lll} \textbf{primrec} \\ f \ 0 & = & \dots \\ f \ (\mathsf{Suc} \ n) & = & \dots \ f \ n \dots \end{array}
```

Option

Important application:

```
'b \Rightarrow 'a option \sim partial function:
           None \sim no result
        Some a \sim \text{result } a
```

Example:

```
primrec lookup :: 'k \Rightarrow ('k \times 'v) list \Rightarrow 'v option
where
lookup k [] = None |
lookup k (x \#xs) = (if fst x = k then Some (snd x) else lookup k xs)
```

Demo

primrec

Induction

Structural induction

P xs holds for all lists xs if

- → P Nil
- → and for arbitrary x and xs, P xs ⇒ P (x#xs) Induction theorem list.induct:
 [P []; \(\) a list. P list ⇒ P (a#list) \(\] ⇒ P list
- → General proof method for induction: (induct x)
 - x must be a free variable in the first subgoal.
 - type of x must be a datatype.

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

Example

A tail recursive list reverse:

```
primrec itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where itrev [] ys = ys | itrev (x\#xs) ys = itrev xs (x\#ys)

lemma itrev xs [] = rev xs
```

Demo

Proof Attempt

Generalisation

Replace constants by variables

lemma itrev $xs \ ys = rev \ xs@ys$

Quantify free variables by ∀ (except the induction variable)

lemma $\forall ys$. itrev xs ys = rev xs@ys

Or: apply (induct xs arbitrary: ys)

We have seen today ...

- → Datatypes
- → Primitive recursion
- → Case distinction
- → Structural Induction

Exercises

- → define a primitive recursive function **Isum** :: nat list ⇒ nat that returns the sum of the elements in a list.
- → show "2 * Isum $[0.. < Suc \ n] = n * (n+1)$ "
- \rightarrow show "lsum (replicate $n \ a$) = n * a"
- → define a function **IsumT** using a tail recursive version of listsum.
- \rightarrow show that the two functions are equivalent: Isum xs = IsumT xs