Gy

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

&y

¢

R

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
[7]
(8]
8.9]
[9,10]
[10°]

?al due; a2 due; a3 due

Datatypes

Example:
datatype 'a list = Nil | Cons 'a "’a list”

Properties:

Datatypes

Example:
datatype 'a list = Nil | Cons 'a "’a list”

Properties:
=» Constructors:

Nil o alist
Cons : ’'a= 'alist = 'alist

in, M Tanak

Datatypes

Example:
datatype 'a list = Nil | Cons 'a "’a list”
Properties:
=» Constructors:
Nil o alist
Cons = 'a= 'alist = 'alist

=» Distinctness: Nil # Cons x xs
=» Injectivity: (Cons x xs = Consy ys) = (x =y A xs = ys)

More Examples

Enumeration:
datatype answer = Yes | No | Maybe

n, M Tanaka, J Am

More Examples

Enumeration:
datatype answer = Yes | No | Maybe

Polymorphic:
datatype 'a option = None | Some 'a
datatype ('a,’b,’c) triple = Triple 'a 'b 'c

More Examples

Enumeration:
datatype answer = Yes | No | Maybe

Polymorphic:
datatype 'a option = None | Some 'a
datatype ('a,’b,’c) triple = Triple 'a 'b 'c

Recursion:

'a list”

datatype 'a list = Nil | Cons 'a’

More Examples

Enumeration:
datatype answer = Yes | No | Maybe

Polymorphic:
datatype 'a option = None | Some 'a
datatype ('a,’b,’c) triple = Triple 'a 'b 'c

Recursion:

datatype 'a list = Nil | Cons 'a "’a list”
datatype 'a tree = Tip | Node 'a "'a tree

"o

a tree”

More Examples

Enumeration:
datatype answer = Yes | No | Maybe

Polymorphic:
datatype 'a option = None | Some 'a
datatype ('a,’b,’c) triple = Triple 'a 'b 'c

Recursion:

datatype 'a list = Nil | Cons 'a "’a list”
datatype 'a tree = Tip | Node 'a "'a tree

"o

a tree”

Mutual Recursion:
datatype even = EvenZero | EvenSucc odd
and odd = OddSucc even

Nested

Nested recursion:

datatype 'a tree = Tip | Node 'a "’a tree list”

1 n o

datatype 'a tree = Tip | Node 'a”’

'a tree option” "'a tree option”

Nested

Nested recursion:

datatype 'a tree = Tip | Node 'a "’a tree list”

1 n o

datatype 'a tree = Tip | Node 'a "'a tree option” "'a tree option”

=» Recursive call is under a type constructor.

in, M Tanak

The General Case

datatype (al,...,a,,) T G Tl -+ Tim

Ck Tk -+ Tk,ng

The General Case

datatype (al,...,a,,) T G Tl -+ Tim

Ck Tk -+ Tk,ng

- Constructors: CiuTin = ... = T = (,...

70(,,) T

The General Case

datatype (al,...,a,,) T = (Tl -+ Tim
Ck Tk -+ Tk,ng
= Constructors: CiuTi1 = ... = Tin = (Q1,...,q0) T

=» Distinctness: Ci...#GC ... ifi#]

The General Case

datatype (al,...,a,,) T = (G Tl -+ Tim
Ck Tk -+ Tk,ng
= Constructors: CiuTi1 = ... = Tin = (Q1,...,q0) T
=» Distinctness: Ci...#GC ... ifi#]

=> Injectivity: (Cix1... X0, =Ciy1...¥n) =1 =Y1 A ... AXn; = Yn;)

n, M Tanaka, J Am

The General Case

datatype (al,...,a,,) T = (G Tl -+ Tim
Ck Tk -+ Tk,ng
= Constructors: CiuTi1 = ... = Tin = (Q1,...,q0) T
=» Distinctness: Ci...#GC ... ifi#]

=> Injectivity: (Cix1... X0, =Ciy1...¥n) =1 =Y1 A ... AXn; = Yn;)

Distinctness and Injectivity applied automatically

How is this Type Defined?

1

datatype 'a list = Nil | Cons 'a "’a list”

=¥ internally reduced to a single constructor, using product and sum

How is this Type Defined?

1

datatype 'a list = Nil | Cons 'a "’a list”

=¥ internally reduced to a single constructor, using product and sum
=» constructor defined as an inductive set (like typedef)

How is this Type Defined?

datatype 'a list = Nil | Cons 'a "’a list”
=¥ internally reduced to a single constructor, using product and sum
=» constructor defined as an inductive set (like typedef)

=» recursion: least fixpoint

How is this Type Defined?

datatype 'a list = Nil | Cons 'a "’a list”
=¥ internally reduced to a single constructor, using product and sum
=» constructor defined as an inductive set (like typedef)

=» recursion: least fixpoint

More detail: Tutorial on (Co-)datatypes Definitions at isabelle.in.tum.de

Datatype Limitations

Must be definable as a (non-empty) set.

Datatype Limitations

Must be definable as a (non-empty) set.

=» Infinitely branching ok.

Datatype Limitations

Must be definable as a (non-empty) set.

=» Infinitely branching ok.

=» Mutually recursive ok.

Datatype Limitations

Must be definable as a (non-empty) set.

=» Infinitely branching ok.
=» Mutually recursive ok.

=» Strictly positive (right of function arrow) occurrence ok.

Datatype Limitations

Must be definable as a (non-empty) set.

=» Infinitely branching ok.
=» Mutually recursive ok.
=» Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatypet = C (t = bool)

Datatype Limitations

Must be definable as a (non-empty) set.

=» Infinitely branching ok.
=» Mutually recursive ok.
=» Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatypet = (t = bool)

C
| D ((bool = t) = bool)

Datatype Limitations

Must be definable as a (non-empty) set.

=» Infinitely branching ok.
=» Mutually recursive ok.
=» Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatypet = C (t = bool)
| D ((bool = t) = bool)
| E

((t = bool) = bool)

Because: Cantor's theorem (« set is larger than «)

Datatype Limitations

Not ok (nested recursion):

datatype ('a, 'b) fun_copy = Fun "'a = 'b"

datatype 'at = F "(‘a t, 'a) fun_copy”

Datatype Limitations

Not ok (nested recursion):

datatype ('a, 'b) fun_copy = Fun "'a = 'b
datatype 'at = F "(‘a t, 'a) fun_copy”

=» recursion in (‘al, ...,’an) t is only allowed on a subset of 'al ... 'an

=¥ these arguments are called /ive arguments

Datatype Limitations

Not ok (nested recursion):

datatype ('a, 'b) fun_copy = Fun "'a = 'b
datatype 'at = F "(‘a t, 'a) fun_copy”

=» recursion in (‘al, ...,’an) t is only allowed on a subset of 'al ...

=¥ these arguments are called /ive arguments
=> Mainly: in"’'a = 'b", 'ais dead and 'b is live
=» Thus: in ('a, 'b) fun_copy, 'a is dead and 'b is live

’
an

Datatype Limitations

Not ok (nested recursion):

datatype ('a, 'b) fun_copy = Fun "'a = 'b
datatype 'at = F "(‘a t, 'a) fun_copy”

=» recursion in (‘al, ...,’an) t is only allowed on a subset of 'al ... 'an

=¥ these arguments are called /ive arguments

=> Mainly: in"’'a = 'b", 'ais dead and 'b is live

=» Thus: in ('a, 'b) fun_copy, 'a is dead and 'b is live

=» type constructors must be registered as BNFs* to have live arguments

=» BNF defines well-behaved type constructors, ie where recursion is allowed

* BNF = Bounded Natural Functors.

Datatype Limitations

Not ok (nested recursion):

datatype ('a, 'b) fun_copy = Fun "'a = 'b
datatype 'at = F "(‘a t, 'a) fun_copy”

=» recursion in (‘al, ...,’an) t is only allowed on a subset of 'al ... 'an

=¥ these arguments are called /ive arguments

=> Mainly: in"’'a = 'b", 'ais dead and 'b is live

=» Thus: in ('a, 'b) fun_copy, 'a is dead and 'b is live

=» type constructors must be registered as BNFs* to have live arguments

=» BNF defines well-behaved type constructors, ie where recursion is allowed
=» datatypes automatically are BNFs (that's how they are constructed)

* BNF = Bounded Natural Functors.

Datatype Limitations

Not ok (nested recursion):

datatype ('a, 'b) fun_copy = Fun "'a = 'b
datatype 'at = F "(‘a t, 'a) fun_copy”

recursion in ('al, ...,'an) t is only allowed on a subset of 'al ... 'an

these arguments are called live arguments

Mainly: in "'a = 'b", 'a is dead and b is live

Thus: in ('a, 'b) fun_copy, 'a is dead and 'b is live

type constructors must be registered as BNFs" to have live arguments
BNF defines well-behaved type constructors, ie where recursion is allowed
datatypes automatically are BNFs (that's how they are constructed)

can register other type constructors as BNFs — not covered here**

-
-
-
-
-
-
-
-

* BNF = Bounded Natural Functors.
** Defining (Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL

Case

Every datatype introduces a case construct, e.g.

(case xsof [|= ... |y #ys= ...y ... y5..)

Case

Every datatype introduces a case construct, e.g.

(case xsof [|= ... |y #ys= ...y ... y5..)

In general: one case per constructor

Case

Every datatype introduces a case construct, e.g.

(case xsof [|= ... |y #ys= ...y ... y5..)

In general: one case per constructor

=» Nested patterns allowed: x#y#zs

Case

Every datatype introduces a case construct, e.g.

(case xsof [|= ... |y #ys= ...y ... y5..)

In general: one case per constructor

=» Nested patterns allowed: x#y#zs
=» Dummy and default patterns with _

Case

Every datatype introduces a case construct, e.g.

(case xsof [|= ... |y #ys= ...y ... y5..)

In general: one case per constructor

=» Nested patterns allowed: x#y#zs
=» Dummy and default patterns with _
=» Binds weakly, needs () in context

M Tanaka, J Amar

Cases

apply (case_tac t)

Cases

apply (case_tac t)

creates k subgoals

[t=Cxi...x..]= ...

one for each constructor C;

Demo

Recursion

Why nontermination can be harmful

How about f x =f x + 1?7

Why nontermination can be harmful

How about f x =f x + 1?7

Subtract f x on both sides.

Why nontermination can be harmful

How about f x =f x + 1?7

Subtract f x on both sides.

Why nontermination can be harmful

How about f x =f x + 1?7

Subtract f x on both sides.

! Al functions in HOL must be total !

14 | COMP4161 5 Kle

Primitive Recursion

primrec guarantees termination structurally

Example primrec def:

Primitive Recursion

primrec guarantees termination structurally

Example primrec def:

'a list = 'a list = 'a list”

primrec app :
where

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

The General Case

If T is a datatype (with constructors Cy, ..., Cx) then f :: 7 = 7/ can be
defined by primitive recursion:

f(Giyi1 - yim) = n

f(Chkyr1 - Yiom) = Tk

The General Case

If T is a datatype (with constructors Cy, ..., Cx) then f :: 7 = 7/ can be
defined by primitive recursion:

f(Giyi1 - yim) = n

f(Ck }/k,l yk,,,k) = Ik

The recursive calls in r; must be structurally smaller
(of the form f ay ... yij ... ap)

How does this Work?

primrec just fancy syntax for a recursion operator

Example:

How does this Work?

primrec just fancy syntax for a recursion operator

Example: reclist:: "'a= (‘b= 'blist = 'a="a) = 'blist = 'a"
rec_list f; £ Nil = f
rec_list fi f» (Cons x xs) = f x xs (rec_list fi f xs)

How does this Work?

primrec just fancy syntax for a recursion operator

Example: reclist:: "'a= (b= 'blist = 'a="a) = 'blist = 'a
rec_list f; £ Nil = f
rec_list fi f» (Cons x xs) = f x xs (rec_list fi f xs)

app = rec_list (Ays. ys) (Ax xs xs’. Ays. Cons x (xs’ ys))

primrec app :: "'a list = 'a list = 'a list”
where
"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"

OMP4161

rec_list

Defined: automatically, first inductively (set), then by epsilon

rec_list

Defined: automatically, first inductively (set), then by epsilon

(xs,xs’) € list_rel f; f

(Nil, f) € list_rel A £ (Cons x xs,f, x xs xs') € list_rel f; f

rec_list

Defined: automatically, first inductively (set), then by epsilon

(xs,xs’) € list_rel f; f
(Nil, f) € list_rel A £ (Cons x xs,f, x xs xs') € list_rel f; f

rec_list fi b xs = THE y. (xs, y) € list_rel f £
Automatic proof that set def indeed is total function
(the equations for rec_list are lemmas!)

Predefined Datatypes

nat is a datatype

datatype nat = 0 | Suc nat

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec
fo = .
f(Sucn) = ..fn..

Option

datatype 'a option = None | Some 'a

Important application:

'b = 'a option ~ partial function:

Option

datatype 'a option = None | Some 'a
Important application:

'b = 'a option ~ partial function:

None ~ no result
Somea ~ resulta

Example:
primrec lookup :: 'k = ('k x 'v) list = 'v option
where

Option

datatype 'a option = None | Some 'a
Important application:

'b = 'a option ~ partial function:

None ~ no result
Somea ~ resulta

Example:

primrec lookup :: 'k = ('k x 'v) list = 'v option
where

lookup k] = None |

lookup k (x #xs)

Option

datatype 'a option = None | Some 'a
Important application:

'b = 'a option ~ partial function:

None ~ no result
Somea ~ resulta

Example:

primrec lookup :: 'k = ('k x 'v) list = 'v option
where

lookup k] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

Demo

primrec

Induction

Structural induction

P xs holds for all lists xs if
=> P Nil
=» and for arbitrary x and xs, P xs => P (x#xs)

Structural induction

P xs holds for all lists xs if
=> P Nil

=» and for arbitrary x and xs, P xs => P (x#xs)
Induction theorem list.induct:
[Pl; \alist. P list = P (a#list)] = P list

Structural induction

P xs holds for all lists xs if
=> P Nil

=» and for arbitrary x and xs, P xs => P (x#xs)
Induction theorem list.induct:
[Pl; \alist. P list = P (a#list)] = P list

=» General proof method for induction: (induct x)

e x must be a free variable in the first subgoal.
e type of x must be a datatype.

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number /

Example

A tail recursive list reverse:

primrec itrev ::
where
itrev []

'a list = 'a list = 'a list

ys= |

Example

A tail recursive list reverse:

primrec itrev :: 'a list = 'a list = 'a list
where

itrev [] ys=ys |

itrev (x#xs) ys=

Example

A tail recursive list reverse:

primrec itrev :: 'a list = 'a list = 'a list
where

itrev [] ys=ys |

itrev (x#xs) ys = itrev xs (x#ys)

Example

A tail recursive list reverse:

primrec itrev :: 'a list = 'a list = 'a list
where

itrev [] ys=ys |

itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [| = rev xs

Demo

Proof Attempt

Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V

(except the induction variable)

in, M Tanaks

Generalisation

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by V
(except the induction variable)

lemma Vys. itrev xs ys = rev xsQys

Or: apply (induct xs arbitrary: ys)

We have seen today ...

=» Datatypes

=» Primitive recursion
=» Case distinction

=» Structural Induction

Exercises

¢

define a primitive recursive function Isum :: nat list = nat
that returns the sum of the elements in a list.

show "2 x Isum [0.. < Suc n] = n* (n+1)"
show "lIsum (replicate n a) = n* a"
define a function IsumT using a tail recursive version of listsum.

LA AR AR

show that the two functions are equivalent: Isum xs = IsumT xs

COMP4161

