COMP4161
Advanced Topics in Software Verification

fun

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison
T3/2023

Content

\rightarrow Foundations \& Principles

- Intro, Lambda calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatype induction, primitive recursion
- General recursive functions, termination proofs
- Proof automation, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep

[^0]
General Recursion

The Choice

\rightarrow Limited expressiveness, automatic termination

- primrec
\rightarrow High expressiveness, termination proof may fail
- fun
\rightarrow High expressiveness, tweakable, termination proof manual
- function

fun - examples

fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list"
where

$$
\begin{aligned}
& \text { "sep a }(x \# y \# z s)=x \# \text { a } \# \text { sep a }(\mathrm{y} \# \mathrm{zs}) \text { " } \\
& \text { "sep a } \mathrm{xs}=\mathrm{xs"}
\end{aligned}
$$

fun ack :: "nat \Rightarrow nat \Rightarrow nat" where
"ack $0 \mathrm{n}=$ Suc n"
"ack (Suc m) $0=$ ack m 1"
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

fun

\rightarrow More permissive than primrec:

- pattern matching in all parameters
- nested, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)
\rightarrow Generates more theorems than primrec
\rightarrow May fail to prove termination:
- use function (sequential) instead
- allows you to prove termination manually

Demo

fun - induction principle

\rightarrow Each fun definition induces an induction principle
\rightarrow For each equation:
show P holds for lhs, provided P holds for each recursive call on rhs
\rightarrow Example sep.induct:
【 \bigwedge a. P a [];
\aw. Pa[w]
\axyzs. $P a(y \# z s) \Longrightarrow P a(x \# y \# z s) ;$
$\rrbracket \Longrightarrow P a \times s$

Termination

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal
\rightarrow You can prove termination separately.
function (sequential) quicksort where
quicksort [] = [] |
quicksort $(x \# x s)=$ quicksort $[y \leftarrow x s . y \leq x] @[x] @$ quicksort [$y \leftarrow x s . x<y$]
by pat_completeness auto
termination
by (relation "measure length") (auto simp: less_Suc_eq_le)

Demo

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D
\rightarrow inductive definition of its graph $(x, f x) \in D_{-}$rel
\rightarrow prove totality: $\forall x . \exists y .(x, y) \in D$ rel
\rightarrow prove uniqueness: $(x, y) \in D _r e l \Rightarrow(x, z) \in D _r e l \Rightarrow y=z$
\rightarrow recursion operator for datatype D_{-}rec, defined via THE .
\rightarrow primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for fun:
\rightarrow a new inductive definition for each fun f
\rightarrow extract recursion scheme for equations in f
\rightarrow define graph $f_{\text {_rel }}$ inductively, encoding recursion scheme
\rightarrow prove totality (= termination)
\rightarrow prove uniqueness (automatic)
\rightarrow derive original equations from $f_{\text {_rel }}$
\rightarrow export induction scheme from f_{-}rel

How does fun/function work?

function can separate and defer termination proof:
\rightarrow skip proof of totality
\rightarrow instead derive equations of the form: $x \in f_{-} d o m \Rightarrow f x=\ldots$
\rightarrow similarly, conditional induction principle
$\rightarrow f_{-}$dom $=$acc $f_{-} r e l$
\rightarrow acc $=$ accessible part of f_{-}rel
\rightarrow the part that can be reached in finitely many steps
\rightarrow termination $=\forall x . x \in f_{-}$dom
\rightarrow still have conditional equations for partial functions

Demo

Proving Termination

termination fun_name sets up termination goal
$\forall x . x \in$ fun_name_dom
Three main proof methods:
\rightarrow lexicographic_order (default tried by fun)
\rightarrow size_change (automated translation to simpler size-change graph ${ }^{1}$)
\rightarrow relation \mathbf{R} (manual proof via well-founded relation)

[^1]
Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds

$$
\mathrm{wf}\left(<_{r}\right) \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)
$$

Well founded induction rule:

$$
\frac{\mathrm{wf}\left(<_{r}\right) \wedge x \cdot\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt $<_{r}$

$$
\begin{aligned}
\min \left(<_{r}\right) Q x & \equiv \forall y \in Q \cdot y \not \not_{r} x \\
\mathrm{wf}\left(<_{r}\right) & =(\forall Q \neq\{ \} . \exists m \in Q \cdot \min r Q m)
\end{aligned}
$$

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction = complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x \operatorname{dvd} y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are well founded
$\rightarrow A<_{r} B=A \subset B \wedge$ finite B is well founded
$\rightarrow \subseteq$ and \subset in general are not well founded
More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:
\rightarrow fun fib where
fib $0=1$ |
fib $($ Suc 0$)=1 \mid$
fib $($ Suc $($ Suc $n))=$ fib $n+\operatorname{fib}($ Suc $n)$
Recursion: Suc (Suc n) $\leadsto \mathrm{n}$, Suc (Suc n) \leadsto Suc n
\rightarrow fun f where $f x=\left(\right.$ if $x=0$ then 0 else $\left.f(x-1)^{*} 2\right)$
Recursion: $x \neq 0 \Longrightarrow x \leadsto x-1$

Extracting the Recursion Scheme

Higher Order:
\rightarrow datatype 'a tree $=$ Leaf 'a | Branch 'a tree list
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where
treemap fn (Leaf $n)=$ Leaf $(f n \mathrm{n}) \mid$
treemap fn (Branch I) $=$ Branch (map (treemap fn) I)
Recursion: $x \in$ set $I \Longrightarrow(f n$, Branch $I) \leadsto(f n, x)$

How does Isabelle extract context information for the call?

Extracting the Recursion Scheme

$$
\begin{aligned}
& \text { Extracting context for equations } \\
& \Rightarrow \\
& \text { Congruence Rules! }
\end{aligned}
$$

Recall rule if_cong:

$$
\begin{aligned}
& {[|\mathrm{b}=\mathrm{c} ; \mathrm{c} \Longrightarrow \mathrm{x}=\mathrm{u} ; \neg \mathrm{c} \Longrightarrow \mathrm{y}=\mathrm{v}|] \Longrightarrow} \\
& \quad(\text { if } \mathrm{b} \text { then } \mathrm{x} \text { else } \mathrm{y})=(\text { if } \mathrm{c} \text { then } \mathrm{u} \text { else } \mathrm{v})
\end{aligned}
$$

Read: for transforming x, use b as context information, for y use $\neg b$.
In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions.

> declare my_rule[fundef_cong] (if_cong already added by default)

Another example (higher-order):
$[\mid \mathrm{xs}=\mathrm{ys} ; \wedge \mathrm{x} . \mathrm{x} \in$ set $\mathrm{ys} \Longrightarrow \mathrm{fx}=\mathrm{gx} \mid] \Longrightarrow$ map $\mathrm{fxs}=$ map g ys
Read: for recursive calls in f, f is called with elements of $x s$

Demo

Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.
PhD thesis, TU Munich, 2009.
https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen today ...

\rightarrow General recursion with fun/function
\rightarrow Induction over recursive functions
\rightarrow How fun works
\rightarrow Termination, partial functions, congruence rules

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

[^1]: ${ }^{1}$ C.S. Lee, N.D. Jones, A.M. Ben-Amram, The Size-change Principle for Program Termination, POPL 2001.

