

COMP4161 Advanced Topics in Software Verification

fun

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
Term rewriting	[3,4]
Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
 C verification 	[9,10
 Practice, questions, exam prep 	[10°

^aa1 due; ^ba2 due; ^ca3 due

General Recursion

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - fun
- → High expressiveness, tweakable, termination proof manual
 - function

fun — examples

```
fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list"
where
    "sep a (x \# y \# zs) = x \# a \# sep a (y \# zs)"
    "sep a xs = xs"
fun ack :: "nat \Rightarrow nat \Rightarrow nat"
where
    "ack 0 \text{ n} = \text{Suc n}"
    "ack (Suc m) 0 = ack m 1"
    "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

fun

- → More permissive than **primrec**:
 - pattern matching in all parameters
 - nested, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- → Generates more theorems than **primrec**
- → May fail to prove termination:
 - use function (sequential) instead
 - allows you to prove termination manually

___Demo

fun — induction principle

- → Each **fun** definition induces an induction principle
- → For each equation: show P holds for lhs, provided P holds for each recursive call on rhs
- **→** Example **sep.induct**:

Termination

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- ightharpoonup Sometimes not \Rightarrow error message with unsolved subgoal
- → You can prove termination separately.

```
function (sequential) quicksort where quicksort [] = [] | quicksort (x \# xs) = quicksort [y \leftarrow xs.y \le x]@[x]@ quicksort [y \leftarrow xs.x \le y] by pat_completeness auto
```

termination

```
by (relation "measure length") (auto simp: less_Suc_eq_le)
```

___Demo

How does fun/function work?

Recall **primrec**:

- → defined one recursion operator per datatype D
- → inductive definition of its graph $(x, f \ x) \in D_{-rel}$
- **→** prove totality: $\forall x$. $\exists y$. $(x, y) \in D$ _rel
- \rightarrow prove uniqueness: $(x, y) \in D_rel \Rightarrow (x, z) \in D_rel \Rightarrow y = z$
- \rightarrow recursion operator for datatype D_rec , defined via THE.
- → primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for **fun**:

- \rightarrow a new inductive definition for each **fun** f
- \rightarrow extract *recursion scheme* for equations in f
- \rightarrow define graph f_{-rel} inductively, encoding recursion scheme
- → prove totality (= termination)
- → prove uniqueness (automatic)
- → derive original equations from *f_rel*
- → export induction scheme from f_rel

How does fun/function work?

function can separate and defer termination proof:

- → skip proof of totality
- \rightarrow instead derive equations of the form: $x \in f_dom \Rightarrow f \ x = \dots$
- → similarly, conditional induction principle
- \rightarrow f_dom = acc f_rel
- \rightarrow acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- → termination = $\forall x. \ x \in f_dom$
- → still have conditional equations for partial functions

___Demo

Proving Termination

termination fun_name sets up termination goal

 $\forall x. \ x \in fun_name_dom$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (automated translation to simpler size-change graph¹)
- → relation R (manual proof via well-founded relation)

¹C.S. Lee, N.D. Jones, A.M. Ben-Amram,

The Size-change Principle for Program Termination, POPL 2001.

Well Founded Orders

Definition

$$<_r$$
 is well founded if well founded induction holds wf($<_r$) $\equiv \forall P$. ($\forall x$. ($\forall y <_r x.P y$) $\longrightarrow P x$) \longrightarrow ($\forall x$. $P x$)

Well founded induction rule:

$$\frac{\operatorname{wf}(<_r) \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$ min $(<_r)$ Q x \equiv $\forall y \in Q$. $y \not<_r x$ wf $(<_r)$ = $(\forall Q \neq \{\}. \exists m \in Q. \min r Q m)$

Well Founded Orders: Examples

- ightharpoonup < on ${\mathbb N}$ is well founded well founded induction = complete induction
- \Rightarrow > and < on \mathbb{N} are **not** well founded
- → $x <_r y = x$ dvd $y \land x \neq 1$ on $\mathbb N$ is well founded the minimal elements are the prime numbers
- \Rightarrow $(a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_2 y$ is well founded if $<_1$ and $<_2$ are well founded
- $A <_r B = A \subset B \land \text{ finite } B \text{ is well founded}$
- \rightarrow \subseteq and \subset in general are **not** well founded

More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

→ fun fib where

```
fib 0 = 1 | fib (Suc \ 0) = 1 | fib (Suc \ (Suc \ n)) = fib \ n + fib \ (Suc \ n)
```

Recursion: Suc (Suc n) \sim n, Suc (Suc n) \sim Suc n

 \rightarrow fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \leadsto x - 1$

Extracting the Recursion Scheme

Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list fun treemap :: ('a ⇒ 'a) ⇒ 'a tree ⇒ 'a tree where treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)

Recursion: $x \in \text{set } I \Longrightarrow (\text{fn, Branch } I) \leadsto (\text{fn, } x)$

How does Isabelle extract context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

Congruence Rules!

Recall rule **if_cong**:

[| b = c; c
$$\Longrightarrow$$
 x = u; \neg c \Longrightarrow y = v |] \Longrightarrow (if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$.

In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):

$$[\mid \mathsf{x}\mathsf{s} = \mathsf{y}\mathsf{s}; \ \bigwedge \mathsf{x}. \ \mathsf{x} \in \mathsf{set} \ \mathsf{y}\mathsf{s} \Longrightarrow \mathsf{f} \ \mathsf{x} = \mathsf{g} \ \mathsf{x} \mid] \Longrightarrow \mathsf{map} \ \mathsf{f} \ \mathsf{x}\mathsf{s} = \mathsf{map} \ \mathsf{g} \ \mathsf{y}\mathsf{s}$$

Read: for recursive calls in f, f is called with elements of xs

___ Demo

Further Reading

Alexander Krauss, Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen today ...

- → General recursion with fun/function
- → Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules