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Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep
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General Recursion

The Choice
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General Recursion

The Choice
=» Limited expressiveness, automatic termination
e primrec

=» High expressiveness, termination proof may fail

e fun

=» High expressiveness, tweakable, termination proof manual

e function




fun — examples

fun sep :: "'a = 'a list = 'a list”

where

"sepa (x#yF#zs)=x# afsepal(y#zs)

"sep a xs = xs”




fun — examples

fun sep :: "'a = 'a list = 'a list”

where

"sepa (x#yF#zs)=x# afsepal(y#zs)

"sep a xs = xs”

'nat = nat = nat”

fun ack :
where
"ack 0 n = Sucn" |
"ack (Sucm) 0 = ack m 1" |
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”
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=» More permissive than primrec:

e pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order)
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fun

=» More permissive than primrec:

e pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order)

=» Generates more theorems than primrec

=» May fail to prove termination:

e use function (sequential) instead
e allows you to prove termination manually
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fun — induction principle

=» Each fun definition induces an induction principle
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fun — induction principle

=» Each fun definition induces an induction principle
=» For each equation:

show P holds for |hs, provided P holds for each recursive call on rhs
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fun — induction principle

=» Each fun definition induces an induction principle
=» For each equation:

show P holds for |hs, provided P holds for each recursive call on rhs

=» Example sep.induct:
[Aa Pal:
Naw. Palw]
Naxyzs. Pa(y#zs) = P a (x#y#zs);
]= Paxs
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=» For most functions this works with a lexicographic termination relation.
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Termination

Isabelle tries to prove termination automatically
=» For most functions this works with a lexicographic termination relation.
=» Sometimes not = error message with unsolved subgoal
=» You can prove termination separately.
function (sequential) quicksort where
quicksort [| =[] |
quicksort (x#xs) = quicksort [y < xs.y < x]@[x]@ quicksort [y + xs.x < y]
by pat_completeness auto

termination

by (relation “measure length”) (auto simp: less_Suc_eq_le)
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=¥ defined one recursion operator per datatype D
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How does fun/function work?

Recall primrec:
=¥ defined one recursion operator per datatype D
=» inductive definition of its graph (x, f x) € D_rel
=» prove totality: Vx. Jy. (x,y) € D_rel
=» prove uniqueness: (x,y) € D_rel = (x,z) € D_rel = y =z
=» recursion operator for datatype D_rec, defined via THE.
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How does fun/function work?

Recall primrec:

ddii il

defined one recursion operator per datatype D

inductive definition of its graph (x, f x) € D_rel

prove totality: Vx. Jy. (x,y) € D_rel

prove uniqueness: (x,y) € D_rel = (x,z) € D_rel = y =z
recursion operator for datatype D_rec, defined via THE.
primrec: apply datatype recursion operator




How does fun/function work?

Similar strategy for fun:

diiIi il

a new inductive definition for each fun f

extract recursion scheme for equations in f

define graph f_rel inductively, encoding recursion scheme
prove totality (= termination)

prove uniqueness (automatic)

derive original equations from f_rel

export induction scheme from f_rel

M Tanaka, J Amar
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How does fun/function work?

function can separate and defer termination proof:

skip proof of totality

instead derive equations of the form: x € f.dom = f x = ...
similarly, conditional induction principle

f_dom = acc f_rel

acc = accessible part of f_rel

LK R R

the part that can be reached in finitely many steps
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How does fun/function work?

function can separate and defer termination proof:

dd i il

skip proof of totality

instead derive equations of the form: x € f.dom = f x = ...
similarly, conditional induction principle

f_dom = acc f _rel

acc = accessible part of f_rel
the part that can be reached in finitely many steps
termination = Vx. x € f_dom
still have conditional equations for partial functions
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termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:
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Proving Termination

termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:
=» lexicographic_order (default tried by fun)
=» size_change (automated translation to simpler size-change graph®)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.
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Proving Termination

termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:
=» lexicographic_order (default tried by fun)
=» size_change (automated translation to simpler size-change graph®)
=» relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.
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<, is well founded if well founded induction holds
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Definition
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Well founded induction rule:
wi(<,) Ax. (Vy<,x. Py)= P x
P a
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Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) =VP. (Vx. (Vy <, x.P y) — P x) — (Vx. P x)

Well founded induction rule:
wi(<,) Ax. (Vy<,x. Py)= P x
P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <,
min (<,)Q@x = VyeQ.y< x
wf (<) = (VRQ#{}.3me Q. minr Q m)

5 | COMP4161 | G Kle
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=» < on IN is well founded
well founded induction = complete induction
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well founded induction = complete induction

> and < on N are not well founded

x <,y =xdvd y Ax# 1on INis well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<ixVa=xAb<y is well founded
if <1 and < are well founded
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Well Founded Orders: Examples

=» < on IN is well founded

well founded induction = complete induction

> and < on N are not well founded

x <,y =xdvd y Ax# 1on INis well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<ixVa=xAb<y is well founded
if <1 and <, are well founded

A <, B= A C B Afinite B is well founded

C and C in general are not well founded

+ 4

4

More about well founded relations: Term Rewriting and All That
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Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
=» fun fib where
fib0=1|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~» n, Suc (Suc n) ~ Suc n
=» fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x # 0 = x~» x -1




Extracting the Recursion Scheme

Higher Order:
=» datatype 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a = 'a) = 'a tree = 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch 1) = Branch (map (treemap fn) I)
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Extracting the Recursion Scheme

Higher Order:
=» datatype 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a = 'a) = 'a tree = 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch 1) = Branch (map (treemap fn) I)

Recursion: x € set | = (fn, Branch I) ~ (fn, x)

How does Isabelle extract context information for the call?
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(if b then x else y) = (if ¢ then u else v)

Read: for transforming x, use b as context information, for y use —b.




Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!

Recall rule if_cong;:
[b=cc=x=u-c=y=v]=

(if b then x else y) = (if ¢ then u else v)

Read: for transforming x, use b as context information, for y use —b.
In fun_def: for recursion in x, use b as context, for y use —b.

OMP4161



Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
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Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
[ xs=1ys; Ax. x € setys = fx =g x || = map fxs = map g ys

Read: for recursive calls in f, f is called with elements of xs




Demo



Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.

PhD thesis, TU Munich, 2009.

https://www2l.in.tum.de/~krauss/papers/krauss-thesis.pdf



https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen today ...

=» General recursion with fun/function
=» Induction over recursive functions
=»> How fun works

=» Termination, partial functions, congruence rules




