sy
>

y
—~

SW

DNEY

NG

2

y

U

S

Z

=<

COMP4161
Advanced Topics in Software Verification

fun

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
[7]
(8]
8.9]
[9,10]
[10°]

?al due; a2 due; a3 due

General Recursion

The Choice

n, M Tanaka, J Am

General Recursion

The Choice
=» Limited expressiveness, automatic termination
e primrec

=» High expressiveness, termination proof may fail

e fun

=» High expressiveness, tweakable, termination proof manual

e function

fun — examples

fun sep :: "'a = 'a list = 'a list”

where

"sepa (x#yF#zs)=x# afsepal(y#zs)

"sep a xs = xs”

fun — examples

fun sep :: "'a = 'a list = 'a list”

where

"sepa (x#yF#zs)=x# afsepal(y#zs)

"sep a xs = xs”

'nat = nat = nat”

fun ack :
where
"ack 0 n = Sucn" |
"ack (Sucm) 0 = ack m 1" |
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

fun

=» More permissive than primrec:

e pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order)

fun

=» More permissive than primrec:

e pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order)

=» Generates more theorems than primrec

fun

=» More permissive than primrec:

e pattern matching in all parameters

nested, linear constructor patterns

reads equations sequentially like in Haskell (top to bottom)
proves termination automatically in many cases

(tries lexicographic order)

=» Generates more theorems than primrec

=» May fail to prove termination:

e use function (sequential) instead
e allows you to prove termination manually

Demo

fun — induction principle

=» Each fun definition induces an induction principle

n, M Tanaka, J Am

fun — induction principle

=» Each fun definition induces an induction principle
=» For each equation:

show P holds for |hs, provided P holds for each recursive call on rhs

n, M Tanaka, J Am

fun — induction principle

=» Each fun definition induces an induction principle
=» For each equation:

show P holds for |hs, provided P holds for each recursive call on rhs

=» Example sep.induct:
[Aa Pal:
Naw. Palw]
Naxyzs. Pa(y#zs) = P a (x#y#zs);
]= Paxs

Termination

Isabelle tries to prove termination automatically

=» For most functions this works with a lexicographic termination relation.

Termination

Isabelle tries to prove termination automatically

=» For most functions this works with a lexicographic termination relation.

=» Sometimes not

Termination

Isabelle tries to prove termination automatically

=» For most functions this works with a lexicographic termination relation.

=» Sometimes not = error message with unsolved subgoal

Termination

Isabelle tries to prove termination automatically
=» For most functions this works with a lexicographic termination relation.
=» Sometimes not = error message with unsolved subgoal
=» You can prove termination separately.
function (sequential) quicksort where
quicksort [| =[] |
quicksort (x#xs) = quicksort [y < xs.y < x]@[x]@ quicksort [y + xs.x < y]
by pat_completeness auto

termination

by (relation “measure length”) (auto simp: less_Suc_eq_le)

Demo

How does fun/function work?

Recall primrec:

=¥ defined one recursion operator per datatype D

How does fun/function work?

Recall primrec:

=¥ defined one recursion operator per datatype D
=» inductive definition of its graph (x, f x) € D_rel

How does fun/function work?

Recall primrec:

=¥ defined one recursion operator per datatype D
=» inductive definition of its graph (x, f x) € D_rel
=» prove totality: Vx. Jy. (x,y) € D_rel

How does fun/function work?

Recall primrec:

=¥ defined one recursion operator per datatype D

=» inductive definition of its graph (x, f x) € D_rel

=» prove totality: Vx. Jy. (x,y) € D_rel

=» prove uniqueness: (x,y) € D_rel = (x,z) € D_rel = y =z

How does fun/function work?

Recall primrec:
=¥ defined one recursion operator per datatype D
=» inductive definition of its graph (x, f x) € D_rel
=» prove totality: Vx. Jy. (x,y) € D_rel
=» prove uniqueness: (x,y) € D_rel = (x,z) € D_rel = y =z
=» recursion operator for datatype D_rec, defined via THE.

10 | COMP4161

How does fun/function work?

Recall primrec:

ddii il

defined one recursion operator per datatype D

inductive definition of its graph (x, f x) € D_rel

prove totality: Vx. Jy. (x,y) € D_rel

prove uniqueness: (x,y) € D_rel = (x,z) € D_rel = y =z
recursion operator for datatype D_rec, defined via THE.
primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for fun:

diiIi il

a new inductive definition for each fun f

extract recursion scheme for equations in f

define graph f_rel inductively, encoding recursion scheme
prove totality (= termination)

prove uniqueness (automatic)

derive original equations from f_rel

export induction scheme from f_rel

M Tanaka, J Amar

How does fun/function work?

function can separate and defer termination proof:

=» skip proof of totality

How does fun/function work?

function can separate and defer termination proof:

=» skip proof of totality
=» instead derive equations of the form: x € f_.dom = f x=...
=¥ similarly, conditional induction principle

How does fun/function work?

function can separate and defer termination proof:

skip proof of totality

instead derive equations of the form: x € f.dom = f x = ...
similarly, conditional induction principle

f_dom = acc f_rel

acc = accessible part of f_rel

LK R R

the part that can be reached in finitely many steps

OMP4161

How does fun/function work?

function can separate and defer termination proof:

dd i il

skip proof of totality

instead derive equations of the form: x € f.dom = f x = ...
similarly, conditional induction principle

f_dom = acc f _rel

acc = accessible part of f_rel
the part that can be reached in finitely many steps
termination = Vx. x € f_dom
still have conditional equations for partial functions

Demo

Proving Termination

termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:

Proving Termination

termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:
=» lexicographic_order (default tried by fun)

M Tanaka, J Amar

Proving Termination

termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:
=» lexicographic_order (default tried by fun)
=» size_change (automated translation to simpler size-change graph®)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

M Tanaka, J Amar

Proving Termination

termination fun_name sets up termination goal Vx. x € fun_name_dom

Three main proof methods:
=» lexicographic_order (default tried by fun)
=» size_change (automated translation to simpler size-change graph®)
=» relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) =VP. (Vx. (Vy <, x.P y) — P x) — (Vx. P x)

Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) =VP. (Vx. (Vy <, x.P y) — P x) — (Vx. P x)

Well founded induction rule:
wi(<,) Ax. (Vy<,x. Py)= P x
P a

5 | COMP4161 | G Kle

Well Founded Orders

Definition
<, is well founded if well founded induction holds
wf(<,) =VP. (Vx. (Vy <, x.P y) — P x) — (Vx. P x)

Well founded induction rule:
wi(<,) Ax. (Vy<,x. Py)= P x
P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <,
min (<,)Q@x = VyeQ.y< x
wf (<) = (VRQ#{}.3me Q. minr Q m)

5 | COMP4161 | G Kle

Well Founded Orders: Examples

=» < on IN is well founded
well founded induction = complete induction

Well Founded Orders: Examples

=>»> < on N is well founded
well founded induction = complete induction
=»> > and < on N are not well founded

Well Founded Orders: Examples

=» < on IN is well founded
well founded induction = complete induction

=»> > and < on N are not well founded
= x<,y=xdvd y Ax#1onIN is well founded
the minimal elements are the prime numbers

Well Founded Orders: Examples

=» < on IN is well founded

well founded induction = complete induction

> and < on N are not well founded

x <,y =xdvd y Ax# 1on INis well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<ixVa=xAb<y is well founded
if <1 and < are well founded

+ 4

OMP4161

Well Founded Orders: Examples

=» < on IN is well founded

well founded induction = complete induction

> and < on N are not well founded

x <,y =xdvd y Ax# 1on INis well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<ixVa=xAb<y is well founded
if <1 and < are well founded

= A<, B=AC B Afinite B is well founded

+ 4

OMP4161

Well Founded Orders: Examples

=» < on IN is well founded

well founded induction = complete induction

> and < on N are not well founded

x <,y =xdvd y Ax# 1on INis well founded

the minimal elements are the prime numbers

= (a,b) <r (x,y)=a<ixVa=xAb<y is well founded
if <1 and <, are well founded

A <, B= A C B Afinite B is well founded

C and C in general are not well founded

+ 4

4

More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

=» fun fib where
fib0=1|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

=» fun fib where
fib0=1|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~» n, Suc (Suc n) ~ Suc n

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

=» fun fib where
fib0=1|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~» n, Suc (Suc n) ~ Suc n
=» fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:
=» fun fib where
fib0=1|
fib (Suc 0) =1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ~» n, Suc (Suc n) ~ Suc n
=» fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x # 0 = x~» x -1

Extracting the Recursion Scheme

Higher Order:
=» datatype 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a = 'a) = 'a tree = 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch 1) = Branch (map (treemap fn) I)

Extracting the Recursion Scheme

Higher Order:
=» datatype 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a = 'a) = 'a tree = 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch 1) = Branch (map (treemap fn) I)

Recursion: x € set | = (fn, Branch I) ~ (fn, x)

Extracting the Recursion Scheme

Higher Order:
=» datatype 'a tree = Leaf 'a | Branch 'a tree list

fun treemap :: ('a = 'a) = 'a tree = 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch 1) = Branch (map (treemap fn) I)

Recursion: x € set | = (fn, Branch I) ~ (fn, x)

How does Isabelle extract context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!

Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!

Recall rule if_cong;:

[b=cc=x=u-c=y=v]=
(if b then x else y) = (if ¢ then u else v)

Read: for transforming x, use b as context information, for y use —b.

Extracting the Recursion Scheme

Extracting context for equations
=
Congruence Rules!

Recall rule if_cong;:
[b=cc=x=u-c=y=v]=

(if b then x else y) = (if ¢ then u else v)

Read: for transforming x, use b as context information, for y use —b.
In fun_def: for recursion in x, use b as context, for y use —b.

OMP4161

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
[xs=1ys; Ax. x € setys = fx =g x || = map fxs = map g ys

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
[xs=1ys; Ax. x € setys = fx =g x || = map fxs = map g ys

Read: for recursive calls in f, f is called with elements of xs

Demo

Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.

PhD thesis, TU Munich, 2009.

https://www2l.in.tum.de/~krauss/papers/krauss-thesis.pdf

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen today ...

=» General recursion with fun/function
=» Induction over recursive functions
=»> How fun works

=» Termination, partial functions, congruence rules

