COMP4161
 Advanced Topics in Software Verification

based on slides by J. Blanchette, L. Bulwahn and T. Nipkow

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison
T3/2023

Content

\rightarrow Foundations \& Principles

- Intro, Lambda calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatype induction, primitive recursion
- General recursive functions, termination proofs
- Proof automation, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep

[^0]
Overview

Automatic Proof and Disproof

\rightarrow Sledgehammer: automatic proofs
\rightarrow Quickcheck: counter example by testing
\rightarrow Nitpick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

\rightarrow First-order logic (ATP): Otter, Vampire, E, SPASS
\rightarrow Propositional logic (SAT): MiniSAT, Chaff, RSat
\rightarrow SAT modulo theory (SMT): CVC3/4/5, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

Automation in Isabelle

1980s rule applications, write ML code
1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don't trust them (ATP/SMT/SAT)

Sledgehammer

Sledgehammer:

\rightarrow Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC4, Yices, Z3
\rightarrow Simple invocation:
\rightarrow Users don't need to select or know facts
\rightarrow or ensure the problem is first-order
\rightarrow or know anything about the automated prover
\rightarrow Exploits local parallelism and remote servers

Demo: Sledgehammer

Sledgehammer Architecture

Fact Selection

Provers perform poorly if given 1000s of facts.
\rightarrow Best number of facts depends on the prover
\rightarrow Need to take care which facts we give them
\rightarrow Idea: order facts by relevance, give top n to prover ($n=$ 250, 1000, ...)
\rightarrow Meng \& Paulson method: lightweight, symbol-based filter
\rightarrow Machine learning method: look at previous proofs to get a probability of relevance

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed
\rightarrow First-order:
\rightarrow SK combinators, λ-lifting
\rightarrow Explicit function application operator
\rightarrow Encode types:
\rightarrow Monomorphise (generate multiple instances), or
\rightarrow Encode polymorphism on term level

Reconstruction

We don't want to trust the external provers.

Need to check/reconstruct proof.
\rightarrow Re-find using Metis Usually fast and reliable (sometimes too slow)
\rightarrow Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!
\rightarrow Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.
\rightarrow Recast into structured Isar proof Fast, not always readable.

Judgement Day (up to 2013)

Evaluating Sledgehammer:

$\rightarrow 1240$ goals out of 7 existing theories.
\rightarrow How many can sledgehammer solve?
\rightarrow 2010: E, SPASS, Vampire (for 5-120s). 46\% $E S V \times 5 s \approx V \times 120 s$
\rightarrow 2011: Add E-SInE, CVC2, Yices, Z3 (30s). Z3 > V
\rightarrow 2012: Better integration with SPASS. 64% SPASS best (small margin)
\rightarrow 2013: Machine learning for fact selection. 69\% Improves a few percent across provers.

Evaluation

Evaluation

Evaluation

$2010 \quad 3$ ATPs $\times 30 \mathrm{~s}$

2012 (4 ATPs +3 SMTs) $\times 30 \mathrm{~s}$
 64\%

(4 ATPs +3 SMTs) $\times 30 \mathrm{~s}$ nontrivial goals
50\%

Judgement Day (2016)

Prover	MePo	MaSh	MeSh	Any selector
CVC4 1.5pre	679	749	$\mathbf{7 8 3}$	830
E 1.8	622	601	$\mathbf{6 6 5}$	726
SPASS 3.8ds	678	684	$\mathbf{7 3 9}$	789
Vampire 3.0	703	698	$\mathbf{7 4 0}$	789
veriT 2014post	543	556	$\mathbf{5 9 0}$	655
Z3 4.3.2pre	638	668	$\mathbf{7 0 3}$	788
Any prover	801	885	$\mathbf{9 1 9}$	943

Fig. 15 Number of successful Sledgehammer invocations per prover on 1230 Judgment Day goals

$$
919 / 1230=74 \%
$$

Sledgehammer rules!

Example application:

\rightarrow Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)
\rightarrow Intricate refinement and termination theorems
\rightarrow Sledgehammer and Z3 automate algebraic proofs at textbook level.
"The integration of ATP, SMT, and Nitpick is for our purposes very very helpful." - G. Struth

Disproof

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
\rightarrow Most lemma statements are wrong the first time.
\rightarrow Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

Quickcheck

Lightweight validation by testing.

\rightarrow Motivated by Haskell's QuickCheck
\rightarrow Uses Isabelle's code generator
\rightarrow Fast
\rightarrow Runs in background, proves you wrong as you type.

Quickcheck

Covers a number of testing approaches:

\rightarrow Random and exhausting testing.
\rightarrow Smart test data generators.
\rightarrow Narrowing-based (symbolic) testing.

Creates test data generators automatically.

Demo: Quickcheck

Test generators for datatypes

Fast iteration in continuation-passing-style

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list })
$$

Test function:
$\operatorname{test}_{\alpha}$ list $\mathrm{P}=\mathrm{P}$ Nil andalso test ${ }_{\alpha}\left(\lambda \mathrm{x}\right.$. test $_{\alpha}$ list $(\lambda \mathrm{xs}$. P (Cons x $\mathrm{xs})$))

Test generators for predicates

$$
\text { distinct } x s \Longrightarrow \text { distinct (remove } 1 \times x s \text {) }
$$

Problem:

Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.
test-distinct ${ }_{\alpha}$ list $P=P$ Nil andalso
test $_{\alpha}$ (λx. test-distinct ${ }_{\alpha}$ list (if $x \notin x$ s then (λx s. P (Cons x xs)) else True))

Use data flow analysis to figure out which variables must be computed and which generated.

Symbolic execution with demand-driven refinement
\rightarrow Test cases can contain variables
\rightarrow If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded:

$$
\text { distinct (Cons } 1 \text { (Cons } 1 \text { x)) }
$$

False for any x, no further instantiations for x necessary.

Implementation:

Lazy execution with outer refinement loop.
Many re-computations, but fast.

Quickcheck Limitations

Only executable specifications!

\rightarrow No equality on functions with infinite domain
\rightarrow No axiomatic specifications

Nitpick

Nitpick

Finite model finder

\rightarrow Based on SAT via Kodkod (backend of Alloy prover)
\rightarrow Soundly approximates infinite types

Nitpick Successes

\rightarrow Algebraic methods
$\rightarrow C++$ memory model
\rightarrow Found soundness bugs in TPS and LEO-II

Fan mail:

"Last night I got stuck on a goal I was sure was a theorem. After 5-10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample-despite the mess of locales and type classes in the context!"

Demo: Nitpick

Automation Summary

\rightarrow Proof: Sledgehammer
\rightarrow Counter examples: Quickcheck
\rightarrow Counter examples: Nitpick

Isar (Part 1)

A Language for Structured Proofs

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?
YES!
apply (rule iffI)
apply (cases A)
apply (rule disjI1) apply (erule impE) apply assumption apply assumption
apply (rule disjI2) or by blast
apply assumption
apply (rule impI)
apply (erule disjE)
apply assumption
apply (erule notE)
apply assumption
done
OK it's true. But WHY?

Motivation

WHY is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

Demo
apply scripts
$\rightarrow \quad$ hard to read
\rightarrow hard to maintain

What about..
\rightarrow Elegance?
\rightarrow Explaining deeper insights?

No explicit structure.
Isar!

A typical Isar proof

$$
\begin{aligned}
& \text { proof } \\
& \text { assume formula } a_{0} \\
& \text { have formula }{ }_{1} \text { by simp } \\
& \vdots \\
& \text { have formula } a_{n} \text { by blast } \\
& \text { show formula } a_{n+1} \text { by } \ldots \\
& \text { qed } \\
& \text { proves formula }{ }_{0} \Longrightarrow \text { formula }_{n+1}
\end{aligned}
$$

(analogous to assumes/shows in lemma statements)

Isar core syntax

```
proof = proof [method] statement* qed
        by method
method =(simp ...)|(blast ...) | (rule ...) | ...
statement = fix variables
        assume proposition
        (\Longrightarrow)
        [from name }\mp@subsup{}{}{+}\mathrm{ ] (have | show) proposition proof
        next
        (separates subgoals)
proposition \(=\) [name:] formula
```


proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " proof (rule conjl)
assume A : " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof (<method $>$) applies method to the stated goal
\rightarrow proof applies a single rule that fits does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "
\rightarrow We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove] proof (rule conjl) [state]
assume A: " A " [state]
from A [chain] show " A " [prove] by assumption [state] next [state] ...

Have

Can be used to make intermediate steps.

Example:

lemma "(x :: nat $)+1=1+x$ " proof -
have A : " $x+1=$ Suc x " by simp
have B : " $1+x=$ Suc x " by simp
show " $x+1=1+x$ " by (simp only: A B)
qed

Demo

Backward and Forward

Backward reasoning: . . . have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning: . .
assume $A B$: " $A \wedge B$ "
from $A B$ have "..." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with AB
General case: from $A_{1} \ldots A_{n}$ have R proof
\rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$
\rightarrow conclusion of rule must unify with R

Fix and Obtain

$$
\text { fix } v_{1} \ldots v_{n}
$$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)
obtain $v_{1} \ldots v_{n}$ where <prop> <proof>
Introduces new variables together with property

Fancy Abbreviations

this $=$ the previous fact proved or assumed
then $=$ from this
thus $=$ then show
hence $=$ then have
with $A_{1} \ldots A_{n}=$ from $A_{1} \ldots A_{n}$ this
?thesis $=$ the last enclosing goal statement

Demo

Moreover and Ultimately

have $X_{1}: P_{1} \ldots$
have $X_{2}: P_{2} \ldots$
have $X_{n}: P_{n} \ldots$
from $X_{1} \ldots X_{n}$ show
wastes brain power
on names $X_{1} \ldots X_{n}$
have P_{1}
moreover have P_{2}
moreover have $P_{n} \ldots$
ultimately show ...

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}$ <proof> moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \} ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof ... qed
$\left\{\right.$ assume $P_{1} \ldots$ have $P<$ proof $>$ \}
stands for $P_{1} \Longrightarrow P$

Mixing proof styles

```
from ...
have...
    apply - make incoming facts assumptions
    apply (...)
    apply (...)
    done
```


Isar

(Part 2)

Datatypes in Isar

Datatype case distinction

```
proof (cases term)
    case Constructor \({ }_{1}\)
next
next
    case (Constructor \({ }_{k} \vec{x}\) )
    ... \(\vec{x}\)...
qed
```

case (Constructor $_{i} \vec{x}$) \equiv
fix \vec{x} assume Constructor ${ }_{i}$: "term $=$ Constructor $_{i} \vec{x}{ }^{\prime \prime}$

Structural induction for nat

```
show P n
proof (induct n)
    case 0
    show ?case
next
    case (Suc n) \equiv fix n assume Suc: P n
    let ?case = P (Suc n)
    \cdots n \cdots
    show ?case
qed
```


Structural induction: \Longrightarrow and \wedge

show " $\wedge x . A n \Longrightarrow P n$ "
proof (induct n)
case 0
show ?case
next
case (Suc n)
... n...
show ?case
qed
\equiv fix \times assume 0 : " A 0" let ?case $=" P 0 "$
\equiv fix n and x assume Suc: " $\wedge x . A n \Longrightarrow P n "$
" A (Suc n)"
let ?case $=" P($ Suc $n) "$

Demo: Datatypes in Isar

Calculational Reasoning

The Goal

Prove:
$x \cdot x^{-1}=1$
using: assoc: $\quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$
left_inv: $\quad x^{-1} \cdot x=1$
left_one: $1 \cdot x=x$

The Goal

Prove:

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & \left.=1 \cdot x \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

assoc: $\quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$
left_inv: $\quad x^{-1} \cdot x=1$
left_one: $1 \cdot x=x$

Can we do this in Isabelle?
\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style
\rightarrow Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$
\begin{gathered}
a=b \\
\cdots=c \\
\cdots=d \\
\text { shows } a=d \text { by }
\end{gathered}
$$

Each step usually nontrivial (requires own subproof) Solution in Isar:
\rightarrow Keywords also and finally to delimit steps
\rightarrow.... predefined schematic term variable, refers to right hand side of last expression
\rightarrow Automatic use of transitivity rules to connect steps

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
also
:
also
have " $\cdots=t_{n}$ " [proof]
finally
show P
— 'finally' pipes fact " $t_{0}=t_{n}$ " into the proof

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].
\rightarrow To view all combinations: print_trans_rules

Designing [trans] Rules

$$
\begin{aligned}
& \text { have }=" I_{1} \odot r_{1} " \text { [proof] } \\
& \text { also } \\
& \text { have } " \ldots \odot r_{2} " \text { [proof] } \\
& \text { also }
\end{aligned}
$$

Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow I_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow$ False
\rightarrow monotonicity:

$$
\llbracket a=f b ; b<c ; \bigwedge x y . x<y \Longrightarrow f x<f y \rrbracket \Longrightarrow a<f c
$$

Demo

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

