

COMP4161 Advanced Topics in Software Verification

$$\{P\} \ldots \{Q\}$$

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

[1,2]
[2,3 ^a]
[3,4
[4,5]
[5,7]
[7 ^b]
[8]
[8,9]
[9,10
[10°

^aa1 due; ^ba2 due; ^ca3 due

A Crash Course in

Semantics

(For more, see Concrete Semantics)

IMP - a small Imperative Language

```
Commands:
datatype com

= SKIP
| Assign vname aexp (_ := _)
| Semi com com (_; _)
| Cond bexp com com (IF _ THEN _ ELSE
| While bexp com (WHILE _ DO _ OD)
```

```
type_synonym vname = string type_synonym state = vname \Rightarrow nat
```

```
\begin{array}{lll} \textbf{type\_synonym} \ \mathsf{aexp} & = & \mathsf{state} \Rightarrow \mathsf{nat} \\ \textbf{type\_synonym} \ \mathsf{bexp} & = & \mathsf{state} \Rightarrow \mathsf{bool} \end{array}
```

Example Program

Usual syntax:

$$B := 1;$$

WHILE $A \neq 0$ DO
 $B := B * A;$
 $A := A - 1$
OD

Expressions are functions from state to bool or nat:

$$B := (\lambda \sigma. \ 1);$$
WHILE $(\lambda \sigma. \ \sigma \ A \neq 0)$ DO
$$B := (\lambda \sigma. \ \sigma \ B * \sigma \ A);$$

$$A := (\lambda \sigma. \ \sigma \ A - 1)$$
OD

What does it do?

So far we have defined:

- → Syntax of commands and expressions
- → **State** of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

- → A wide field of its own
- → Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (programs as functions on states, state transformers)
 - Axiomatic (pre-/post conditions, Hoare logic)

Structural Operational Semantics

Structural Operational Semantics

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c, \sigma \rangle \to \sigma' \quad \langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma' \rangle \to \sigma''}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma''}$$

Demo: The Definitions in

Isabelle

Proofs about Programs

Now we know:

- → What programs are: Syntax
- → On what they work: State
- → How they work: Semantics
 So we can prove properties about programs

So we can prove properties about programs

Example:

Show that example program from slide 6 implements the factorial.

lemma
$$\langle \text{factorial}, \sigma \rangle \to \sigma' \Longrightarrow \sigma' B = \text{fac } (\sigma A)$$
 (where fac $0 = 1$, fac (Suc n) = (Suc n) * fac n)

Demo: Example Proof

Too tedious

Induction needed for each loop

Is there something easier?

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

{True}
$$x := 2 \quad \{x = 2\}$$

 $\{y = 2\} \quad x := 21 * y \quad \{x = 42\}$
 $\{x = n\}$ IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y \quad \{x = n - |y|\}$
 $\{A = n\}$ factorial $\{B = \text{fac } n\}$

Proofs: have rules that directly work on such triples

Meaning of a Hoare-Triple

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \to \sigma')$$

This lecture: partial correctness only (easier)

Hoare Rules

Hoare Rules

Are the Rules Correct?

Soundness:
$$\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$$

Proof: by rule induction on $\vdash \{P\}$ c $\{Q\}$

Demo: Hoare Logic in Isabelle