Y &
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

{P} ... {Q}

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

=» Foundations & Principles

e Intro, Lambda calculus, natural deduction [1,2]
e Higher Order Logic, Isar (part 1) (2,37
e Term rewriting [3.4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [4,5]
e Datatype induction, primitive recursion [5,7]
e General recursive functions, termination proofs 7%
e Proof automation, Isar (part 2) [8]
e Hoare logic, proofs about programs, invariants [8,9]
e C verification [9,10]
e Practice, questions, exam prep [109]

231 due; Pa2 due; a3 due

2 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

A Crash Course in
Semantics

(For more,
see Concrete Semantics)

5|

IMP - a small Imperative Language

Commands:
datatype com = SKIP

| Assign vname aexp

| Semi com com

| Cond bexp com com
|

While bexp com

string
vname = nat

type_synonym vname
type_synonym state

state = nat
state = bool

type_synonym aexp
type_synonym bexp

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 Lic

_i=)

(IF _THEN _ ELSE
(WHILE _ DO _ OD!

Example Program

Usual syntax:

Expressions are functions from state to bool or nat:

B:=(Xo. 1);

WHILE (Xo. 0 A# 0) DO
B:=(Xo.0 Bxo A);

A=(MNo.c A-1)

oD

6 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

What does it do?

So far we have defined:

=» Syntax of commands and expressions
=» State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?
=> A wide field of its own
=» Some choices:

e Operational (inductive relations, big step, small step)

e Denotational (programs as functions on states, state
transformers)

e Axiomatic (pre-/post conditions, Hoare logic)

Structural Operational Semantics

(SKIP,0) = ¢

eoc=v
(x:=e,0) = o[x V]

(cr,0) =0 (c,0) = "
<C1; C2,0'> — 0’”

bo="True {c,0)—0c
(IF b THEN ¢ ELSE c5,0) — o’

bo=False (c,0)— 0o
(IF b THEN ¢; ELSE ¢,0) — o’

8 | COMP4161 | G Klein, M ka, J Aman Pohjola, R Sison CC-BY-4.0 Lic

Structural Operational Semantics

b o = False
(WHILE b DO ¢ OD,0) — o

bo=True (c,0)— 0o’ (WHILE b DO ¢ OD,o’) — o”
<WH|LE b DO ¢ OD,U) — o

9 | COMP4161 | G Klein, M aka, J Aman Pohjola

Demo: The Definitions in
Isabelle

Proofs about Programs

Now we know:
=» What programs are: Syntax
=» On what they work: State
=» How they work: Semantics

So we can prove properties about programs
Example:

Show that example program from slide 6 implements the factorial.

lemma (factorial, o) — ¢/ = o’B = fac (cA)
(where fac0=1, fac (Suc n) = (Suc n) xfac n)

11 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Demo: Example Proof

Too tedious

Induction needed for each loop

Is there something easier?

Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:
{True} x:=2 {x=2}
{y=2} x:=21xy {x=42}

{x=n} IFy<OTHEN x:=x+y ELSEx:=x—y {x=
n—|yl}

{A=n} factorial {B = fac n}

Proofs: have rules that directly work on such triples

14 | COMP4161 | G Klein, M Tanaka,

Meaning of a Hoare-Triple

{P} ¢ {@}

What are the assertions P and Q7

=» Here: again functions from state to bool
(shallow embedding of assertions)

=» Other choice: syntax and semantics for assertions (deep embedding)

What does {P} ¢ {Q} mean?

Partial Correctness:

E{P}c{Q} = Voo .Por(c,o)—d — Q7
Total Correctness:
E{P}c{Q} = (Moo .PoA{co)—d — Qo)A

(Vo. P o — 30’. (c,0) — o)

This lecture: partial correctness only (easier)

15 | COMP4161 | G Klein, M ka, J Aman Pohjola, R Sison CC-BY-4.0 License

Hoare Rules

{P} SKIP {P} {P[x —¢€]} x:=e {P}

{P} aa {R} {R} 2 {Q}
{P} cai {Q}

{PAb}a {Q} {PA-b}c{Q}
{P} IF bTHEN ¢; ELSE o {Q}

{PAb} c{P} PA-b=Q
{P} WHILE bDO c OD {Q}
P=F {P}c{Q} ¢=Q
Py ¢ {Q}

16 | COMP4161 | G Klei

Hoare Rules

F{P} SKIP {P} F{lo. P (c(x:=e0))} x:=e {P}
F{P}a {R} F{R} & {Q}
F{P} c; {Q}

F{do. PoAnbo}a{Q} F{Ao. PoA-bo} o {Q}
F{P} IF b THEN ¢ ELSE o {Q}

F{Xo. PoAbo}c{P} No.PoA-bo= Qo
- {P} WHILE bDO c OD {Q}
No.Po=P o F{P}c{Q} No.Qo= Qo
F{P} ¢ {Q}

17 | COMP4161 | G Klei

Are the Rules Correct?

Soundness: - {P} ¢ {Q} =F {P} c {Q}
Proof: by rule induction on - {P} ¢ {Q}

Demo: Hoare Logic in Isabelle

MP4161 | G Klein, M Tanaka, J Aman Pohjola, R Siso

