

COMP4161 Advanced Topics in Software Verification

$$\{P\} \ldots \{Q\}$$

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

→	Foundations & Principles	
	 Intro, Lambda calculus, natural deduction 	[1,2]
	 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
	Term rewriting	[3,4]
→	Proof & Specification Techniques	
	 Inductively defined sets, rule induction 	[4,5]
	 Datatype induction, primitive recursion 	[5,7]
	 General recursive functions, termination proofs 	[7 ^b]
	 Proof automation, Isar (part 2) 	[8]
	 Hoare logic, proofs about programs, invariants 	[8,9]
	C verification	[9,10]
	 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

A Crash Course in

Semantics

(For more, see Concrete Semantics)

IMP - a small Imperative Language

Commands: datatype com

```
SKIP
Assign vname aexp
Semi com com
Cond bexp com com
While bexp com
(- := -)
(-; -)
(IF _ THEN _ ELSE _ )
(WHILE _ DO _ OD)
```

IMP - a small Imperative Language

```
\begin{tabular}{lll} \textbf{Commands:} \\ \textbf{datatype} \ com & = & SKIP \\ & Assign \ vname \ aexp & (\_ := \_) \\ & Semi \ com \ com & (\_; \_) \\ & Cond \ bexp \ com \ com \\ & While \ bexp \ com & (WHILE \_ DO \_ OD) \\ \end{tabular}
```

```
type_synonym vname = string type_synonym state = vname \Rightarrow nat
```

IMP - a small Imperative Language

```
Commands:
                              SKIP
datatype com
                                                      (_ := _)
(_; _)
(IF _ THEN _ ELSE _)
(WHILE _ DO _ OD)
                              Assign vname aexp
                              Semi com com
                              Cond bexp com com
                              While bexp com
                         = string
type_synonym vname
type_synonym state
                              vname \Rightarrow nat
type_synonym aexp
                         = state \Rightarrow nat
type_synonym bexp
                              state \Rightarrow bool
```

Example Program

Usual syntax:

$$\begin{array}{l} B:=1;\\ \text{WHILE } A\neq 0 \text{ DO}\\ B:=B*A;\\ A:=A-1 \\ \text{OD} \end{array}$$

Example Program

Usual syntax:

$$B := 1;$$

WHILE $A \neq 0$ DO
 $B := B * A;$
 $A := A - 1$
OD

Expressions are functions from state to bool or nat:

$$\begin{array}{l} B := (\lambda \sigma. \ 1); \\ \text{WHILE } (\lambda \sigma. \ \sigma \ A \neq 0) \ \text{DO} \\ B := (\lambda \sigma. \ \sigma \ B * \sigma \ A); \\ A := (\lambda \sigma. \ \sigma \ A - 1) \\ \text{OD} \end{array}$$

So far we have defined:

So far we have defined:

→ Syntax of commands and expressions

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need:

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

→ A wide field of its own

So far we have defined:

- → Syntax of commands and expressions
- → State of programs (function from variables to values)

Now we need: the meaning (semantics) of programs

How to define execution of a program?

- → A wide field of its own
- → Some choices:
 - Operational (inductive relations, big step, small step)
 - Denotational (programs as functions on states, state transformers)
 - Axiomatic (pre-/post conditions, Hoare logic)

 $\overline{\langle \mathsf{SKIP}, \sigma \rangle \to \sigma}$

$$\overline{\langle \mathsf{SKIP}, \sigma \rangle \to \sigma}$$

$$\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to$$

$$\langle \mathsf{SKIP}, \sigma \rangle \to \sigma$$

$$\frac{e \ \sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma [\mathsf{x} \mapsto v]}$$

$$\frac{e \ \sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma}$$

$$\frac{e \ \sigma = v}{\langle \mathsf{x} := \mathsf{e}, \sigma \rangle \to \sigma[\mathsf{x} \mapsto v]}$$

$$\frac{\langle \mathsf{c}_1; \mathsf{c}_2, \sigma \rangle \to \sigma''}{\langle \mathsf{c}_1; \mathsf{c}_2, \sigma \rangle \to \sigma''}$$

$$\begin{split} & \overline{\left\langle \mathsf{SKIP}, \sigma \right\rangle \to \sigma} \\ & \frac{e \ \sigma = v}{\left\langle \mathsf{x} := \mathsf{e}, \sigma \right\rangle \to \sigma[\mathsf{x} \mapsto v]} \\ & \frac{\left\langle c_1, \sigma \right\rangle \to \sigma' \quad \left\langle c_2, \sigma' \right\rangle \to \sigma''}{\left\langle c_1; c_2, \sigma \right\rangle \to \sigma''} \end{split}$$

 $\overline{\langle \mathsf{WHILE}\ b\ \mathsf{DO}\ c\ \mathsf{OD}, \sigma \rangle o}$

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{\textit{b}\ \sigma = \mathsf{True}}{\langle \mathsf{WHILE}\ \textit{b}\ \mathsf{DO}\ \textit{c}\ \mathsf{OD}, \sigma \rangle \to}$$

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{b \ \sigma = \mathsf{True} \quad \langle c, \sigma \rangle \to \sigma'}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to}$$

$$\frac{b \ \sigma = \mathsf{False}}{\langle \mathsf{WHILE} \ b \ \mathsf{DO} \ c \ \mathsf{OD}, \sigma \rangle \to \sigma}$$

$$\frac{\textit{b}\ \sigma = \mathsf{True}\quad \langle \textit{c}, \sigma \rangle \rightarrow \sigma' \quad \langle \mathsf{WHILE}\ \textit{b}\ \mathsf{DO}\ \textit{c}\ \mathsf{OD}, \sigma' \rangle \rightarrow \sigma''}{\langle \mathsf{WHILE}\ \textit{b}\ \mathsf{DO}\ \textit{c}\ \mathsf{OD}, \sigma \rangle \rightarrow \sigma''}$$

Demo: The Definitions in

Isabelle

Proofs about Programs

Now we know:

→ What programs are: Syntax

→ On what they work: State

→ How they work: Semantics

Proofs about Programs

Now we know:

→ What programs are: Syntax

→ On what they work: State

→ How they work: Semantics

So we can prove properties about programs

Proofs about Programs

Now we know:

- → What programs are: Syntax
- → On what they work: State
- → How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from slide 6 implements the factorial.

lemma
$$\langle \text{factorial}, \sigma \rangle \rightarrow \sigma' \Longrightarrow \sigma' B = \text{fac } (\sigma A)$$
 (where fac $0 = 1$, fac (Suc n) = (Suc n) * fac n)

Demo: Example Proof

Too tedious

Induction needed for each loop

Too tedious

Induction needed for each loop

Is there something easier?

Idea: describe meaning of program by pre/post conditions

Idea: describe meaning of program by pre/post conditions

$$\{True\}$$
 $x := 2$ $\{x = 2\}$

Idea: describe meaning of program by pre/post conditions

Idea: describe meaning of program by pre/post conditions

$$\begin{aligned} & \{\mathsf{True}\} \quad x := 2 \quad \{x = 2\} \\ & \{y = 2\} \quad x := 21 * y \quad \{x = 42\} \end{aligned} \\ & \{x = n\} \quad \mathsf{IF} \ y < 0 \ \mathsf{THEN} \ x := x + y \ \mathsf{ELSE} \ x := x - y \quad \{x = n - |y|\}$$

Idea: describe meaning of program by pre/post conditions

{True}
$$x := 2 \quad \{x = 2\}$$

 $\{y = 2\} \quad x := 21 * y \quad \{x = 42\}$
 $\{x = n\}$ IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y \quad \{x = n - |y|\}$
 $\{A = n\}$ factorial $\{B = \text{fac } n\}$

Idea: describe meaning of program by pre/post conditions

Examples:

{True}
$$x := 2 \quad \{x = 2\}$$

 $\{y = 2\} \quad x := 21 * y \quad \{x = 42\}$
 $\{x = n\}$ IF $y < 0$ THEN $x := x + y$ ELSE $x := x - y \quad \{x = n - |y|\}$
 $\{A = n\}$ factorial $\{B = \text{fac } n\}$

Proofs: have rules that directly work on such triples

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

→ Here: again functions from state to bool (shallow embedding of assertions)

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \to \sigma')$$

$$\{P\}$$
 c $\{Q\}$

What are the assertions P and Q?

- → Here: again functions from state to bool (shallow embedding of assertions)
- → Other choice: syntax and semantics for assertions (deep embedding)

What does $\{P\}$ c $\{Q\}$ mean?

Partial Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad \forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \rightarrow \sigma' \longrightarrow Q \ \sigma'$$

Total Correctness:

$$\models \{P\} \ c \ \{Q\} \quad \equiv \quad (\forall \sigma \ \sigma'. \ P \ \sigma \land \langle c, \sigma \rangle \to \sigma' \longrightarrow Q \ \sigma') \land (\forall \sigma. \ P \ \sigma \longrightarrow \exists \sigma'. \ \langle c, \sigma \rangle \to \sigma')$$

This lecture: partial correctness only (easier)

$$\overline{\{P\}}$$
 SKIP $\{P\}$

$$\overline{\{P\} \quad \mathsf{SKIP} \quad \{P\}} \qquad \overline{\{P[x \mapsto e]\} \quad x := e \quad \{P\}}$$

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\}$ c $\{Q\}$

Are the Rules Correct?

Soundness: $\vdash \{P\} \ c \ \{Q\} \Longrightarrow \models \{P\} \ c \ \{Q\}$

Proof: by rule induction on $\vdash \{P\}$ c $\{Q\}$

Demo: Hoare Logic in Isabelle