7 &
N
a'

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

{P}...{Q}

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Last Time

=» Syntax of a simple imperative language
=» Operational semantics
=» Program proof on operational semantics

=» Hoare logic rules
=» Soundness of Hoare logic

Content

=» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

e Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)
Hoare logic, proofs about programs, invariants
C verification
Practice, questions, exam prep

(1.2]
[2.37]
(3.4]

4.5]
[5.7]
[7°]
(8]
(8.9]
[9,10]
[10]

?al due; °a2 due; a3 due

Automation?

Last time: Hoare rule application is nicer than using operational
semantics.

BUT:

=¥ it's still kind of tedious
=¥ it seems boring & mechanical

Automation?

in, M Tanak

Invariant

Invariant

Problem: While — need creativity to find right (invariant) P

n, M Tanaka, J Am

Invariant

Problem: While — need creativity to find right (invariant) P

Solution:

=» annotate program with invariants

in, M Tanak

Invariant

Problem: While — need creativity to find right (invariant) P

Solution:
=» annotate program with invariants
=» then, Hoare rules can be applied automatically

in, M Tanak

Invariant

Problem: While — need creativity to find right (invariant) P

Solution:
=» annotate program with invariants
=» then, Hoare rules can be applied automatically

Example:

{M=0AN=0}
WHILE Mié INV {N =Mxb} DO N:=N+b;M:=M+1 0D

{N=axb

Weakest Preconditions

pre ¢ Q@ = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:
pre SKIP @ =

Weakest Preconditions

pre ¢ Q@ = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:

pre SKIP @ = Q@
pre (x :=a) Q =

Weakest Preconditions

pre ¢ Q@ = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:

pre SKIP @ = Q

pre (x :==a) Q = Ao. Q(o(x := ao))
pre (c1; @) @ =

Weakest Preconditions

pre ¢ Q@ = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x :==a) Q = Ao. Q(o(x := ao))
pre (a; @) Q = precq (pre o Q)

pre (IF b THEN ¢; ELSE) Q =

6 | COMP4161 | G Kle

Weakest Preconditions

pre ¢ Q@ = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:
pre SKIP @ =
pre (x :=a) Q =
pre (c1; 2) Q =
pre (IF b THEN ¢; ELSE) Q =

pre (WHILE b INV / DO c OD) Q =

Q

Ao. Q(o(x := ao))

pre c1 (pre & Q)

Ao. (bo — pre a1 Q o) A
(mbo — pre c; Q o)

6 | COMP4161 | G Kle

Weakest Preconditions

pre ¢ Q@ = weakest P such that {P} ¢ {Q}

With annotated invariants, easy to get:
pre SKIP @ =
pre (x :=a) Q =
pre (c1; 2) Q =
pre (IF b THEN ¢; ELSE) Q =

pre (WHILE b INV / DO c OD) Q =

Q

Ao. Q(o(x := ao))

pre c1 (pre & Q)

Ao. (bo — pre a1 Q o) A
(mbo — pre c; Q o)

/

6 | COMP4161 | G Kle

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vec SKIP @ = True

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vc SKIP @ = True
ve (x:=a) Q = True

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vec SKIP @ = True
ve (x:=a) Q = True
ve (615 0) Q = vceo QA (vec (pre e Q))

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vec SKIP @ = True
ve (x:=a) Q True
ve (615 0) Q ve & Q A (ve ¢ (pre ¢ Q))

vc (IF b THEN ¢; ELSE) Q = vce QAvce Q

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vc SKIP @ =
ve (x =a)Q =
ve (aie) Q =
(IF b THEN ¢; ELSE) Q =
vc (WHILE bINV I DO ¢ OD) @ =

True

True

ve & Q A (ve ¢ (pre ¢ Q))
vee QAve o Q

Vo. lo A bo — pre ¢ | o)A
Vo. lo A—bo — Q o)A
vc c /

7 | COMP4161

Verification Conditions

{pre ¢ Q} ¢ {Q} only true under certain conditions

These are called verification conditions vc ¢ Q:

vc SKIP @ =
ve (x =a)Q =
ve (aie) Q =
(IF b THEN ¢; ELSE) Q =
vc (WHILE bINV I DO ¢ OD) @ =

True

True

ve & Q A (ve ¢ (pre ¢ Q))
vee QAve o Q

Vo. lo A bo — pre ¢ | o)A
Vo. lo A—bo — Q o)A
vc c /

vc c QA (P = pre c Q) = {P} c {Q}

7 | COMP4161

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

n, M Tanaka, J Am

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

in, M Tanak

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

n, M Tanaka, J Am

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

=» declare program variables with each Hoare triple

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

=» declare program variables with each Hoare triple
e nice, usual syntax
e works well if you state full program and only use vcg

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

=» declare program variables with each Hoare triple
e nice, usual syntax
e works well if you state full program and only use vcg

-» separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

OMP4161

Syntax Tricks

=* x:=Xo.1 instead of x:=1 sucks
=» {M\o. o x=n} instead of {x = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

=» declare program variables with each Hoare triple
e nice, usual syntax
e works well if you state full program and only use vcg

-» separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
e more syntactic overhead
e program pieces compose nicely

OMP4161

Demo

Arrays

Depending on language, model arrays as functions:

=» Array access = function application:
alil = ai

=» Array update = function update:
afil :==v = a:==a(i=v)

Arrays

Depending on language, model arrays as functions:

=» Array access = function application:
alil = ai

=» Array update = function update:
afil :==v = a:==a(i=v)

Use lists to express length:
=» Array access = nth:
alif = ali
=» Array update = list update:
afil :==v = a:==afi=Vv]

=» Array length = list length:
a.length = length a

Pointers

Choice 1

datatype ref Ref int | Null

types heap = int = val
datatype val = Int int | Bool bool | Structx int int bool | ...

Pointers

Choice 1
datatype ref = Ref int | Null
types heap = int = val
datatype val = Int int | Bool bool | Structx int int bool | ...

=» hp :: heap, p :: ref
=» Pointer access: *p = the_Int (hp (the_addr p))
=» Pointer update: *p :==v = hp :== hp ((the_addr p) :=v)

11 | COMP4161

Pointers

Choice 1
datatype ref = Ref int | Null
types heap = int = val
datatype val = Int int | Bool bool | Structx int int bool | ...
=» hp :: heap, p :: ref
=» Pointer access: *p = the_Int (hp (the_addr p))
=» Pointer update: *p :==v = hp :== hp ((the_addr p) :=v)

a bit klunky
gets even worse with structs

+ il

lots of value extraction (the_Int) in spec and program

11 | COMP4161

Pointers

Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next_hp = int = ref
types elem_hp =int = int

Pointers

Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next_hp = int = ref
types elem_hp =int = int

=» next :: next_hp, elem :: elem_hp, p :: ref
=» Pointer access: p—next = next (the_addr p)
=» Pointer update: p—next :==v = next :== next ((the_addr p) :=v)

Pointers

Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next_hp = int = ref
types elem_hp =int = int

=» next :: next_hp, elem :: elem_hp, p :: ref

=» Pointer access: p—next = next (the_addr p)
=» Pointer update: p—next :==v = next :== next ((the_addr p) :=v)
In general:

=» a separate heap for each struct field
=» buys you p—next # p—elem automatically (aliasing)
=¥ still assumes type safe language

OMP4161

Demo

We have seen today ...

=» Weakest precondition
=» Verification conditions
=» Example program proofs

=» Arrays, pointers

