COMP4161

Advanced Topics in Software Verification

$$
\{\mathbf{P}\} \ldots\{\mathbf{Q}\}
$$

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison
T3/2023

Last Time

\rightarrow Syntax of a simple imperative language
\rightarrow Operational semantics
\rightarrow Program proof on operational semantics
\rightarrow Hoare logic rules
\rightarrow Soundness of Hoare logic

Content

\rightarrow Foundations \& Principles

- Intro, Lambda calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatype induction, primitive recursion
- General recursive functions, termination proofs
- Proof automation, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep

[^0]
Automation?

Last time: Hoare rule application is nicer than using operational semantics.

BUT:

\rightarrow it's still kind of tedious
\rightarrow it seems boring \& mechanical

Automation?

Invariant

Invariant

Problem: While - need creativity to find right (invariant) P

Invariant

Problem: While - need creativity to find right (invariant) P
Solution:
\rightarrow annotate program with invariants

Invariant

Problem: While - need creativity to find right (invariant) P

Solution:

\rightarrow annotate program with invariants
\rightarrow then, Hoare rules can be applied automatically

Invariant

Problem: While - need creativity to find right (invariant) P

Solution:

\rightarrow annotate program with invariants
\rightarrow then, Hoare rules can be applied automatically

Example:

$$
\begin{aligned}
& \{M=0 \wedge N=0\} \\
& \text { WHILE } M \neq a \text { INV }\{N=M * b\} \text { DO } N:=N+b ; M:=M+1 \text { OD } \\
& \{N=a * b\}
\end{aligned}
$$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} \subset\{Q\}
$$

With annotated invariants, easy to get: pre SKIP Q

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} \subset\{Q\}
$$

With annotated invariants, easy to get:
$=Q$
pre $(x:=a) Q$
$=$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} \subset\{Q\}
$$

With annotated invariants, easy to get:

```
pre SKIP Q
pre (x:=a)Q
pre (c}\mp@subsup{c}{1}{};\mp@subsup{c}{2}{})
```

$=\quad Q$
$=\lambda \sigma \cdot Q(\sigma(x:=a \sigma))$
$=$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} \subset\{Q\}
$$

With annotated invariants, easy to get:
pre SKIP Q
pre $(x:=a) Q$
pre $\left(c_{1} ; c_{2}\right) Q$
pre (IF b THEN c_{1} ELSE c_{2}) Q
$=Q$
$=\lambda \sigma \cdot Q(\sigma(x:=a \sigma))$
$=\operatorname{pre} c_{1}\left(\right.$ pre $\left.c_{2} Q\right)$
$=$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} \subset\{Q\}
$$

With annotated invariants, easy to get:
pre SKIP Q
pre $(x:=a) Q$
pre $\left(c_{1} ; c_{2}\right) Q$
pre (IF b THEN c_{1} ELSE $\left.c_{2}\right) Q=\lambda \sigma .\left(b \sigma \longrightarrow \operatorname{pre} c_{1} Q \sigma\right) \wedge$

$$
\begin{aligned}
= & Q \\
= & \lambda \sigma . Q(\sigma(x:=a \sigma)) \\
= & \operatorname{pre} c_{1}\left(\operatorname{pre} c_{2} Q\right) \\
= & \lambda \sigma .\left(b \sigma \longrightarrow \operatorname{pre} c_{1} Q \sigma\right) \wedge \\
& \quad\left(\neg b \sigma \longrightarrow \operatorname{pre} c_{2} Q \sigma\right)
\end{aligned}
$$

pre (WHILE b INV I DO c OD) $Q=$

Weakest Preconditions

$$
\text { pre } c Q=\text { weakest } P \text { such that }\{P\} \subset\{Q\}
$$

With annotated invariants, easy to get:
pre SKIP Q
pre $(x:=a) Q$
pre $\left(c_{1} ; c_{2}\right) Q$
pre (IF b THEN c_{1} ELSE $\left.c_{2}\right) Q=\lambda \sigma .\left(b \sigma \longrightarrow \operatorname{pre} c_{1} Q \sigma\right) \wedge$ $\left(\neg b \sigma \longrightarrow\right.$ pre $\left.c_{2} Q \sigma\right)$
pre (WHILE b INV I DO c OD) $Q=1$

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions
These are called verification conditions vc $c Q$:
vc SKIP $Q \quad=$ True

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions
These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
$=$ True
$=$ True

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions

These are called verification conditions vc $c Q$:
vc SKIP Q
vc $(x:=a) Q$
vc $\left(c_{1} ; c_{2}\right) Q$
$=$ True
$=$ True
$=\operatorname{vc} c_{2} Q \wedge\left(\operatorname{vc} c_{1}\left(\operatorname{pre} c_{2} Q\right)\right)$

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions
These are called verification conditions vc $c Q$:

vc SKIP Q		True
vc $(x:=a) Q$	$=$ True	
vc $\left(c_{1} ; c_{2}\right) Q$		vc $c_{2} Q \wedge\left(\right.$ vc $c_{1}\left(\right.$ pre $\left.\left.c_{2} Q\right)\right)$
vc $\left(\operatorname{IF} b\right.$ THEN c_{1} ELSE $\left.c_{2}\right) Q$	$=$ vc $c_{1} Q \wedge$ vc $c_{2} Q$	

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions
These are called verification conditions vc $c Q$:

vc SKIP Q	True
vc $(x:=a) Q$	True
vc ($c_{1} ; c_{2}$) Q	$=\operatorname{vc} c_{2} Q \wedge\left(\operatorname{vc} c_{1}\left(\operatorname{pre} c_{2} Q\right)\right)$
vc (IF b THEN c_{1} ELSE c_{2}) Q	$=\mathrm{vc} c_{1} Q \wedge \mathrm{vc} c_{2} Q$
vc (WHILE b INV I DO c OD) Q	$\begin{aligned} = & (\forall \sigma . I \sigma \wedge b \sigma \longrightarrow \text { pre } c I \sigma) \wedge \\ & (\forall \sigma . I \sigma \wedge \neg b \sigma \longrightarrow Q \sigma) \wedge \\ & \mathrm{vc} c I \end{aligned}$

Verification Conditions

$\{$ pre $c Q\} \subset\{Q\}$ only true under certain conditions
These are called verification conditions vc $c Q$:

vc SKIP Q	True
vc $(x:=a) Q$	True
vc ($c_{1} ; c_{2}$) Q	$=\operatorname{vc} c_{2} Q \wedge\left(\operatorname{vc} c_{1}\left(\operatorname{pre} c_{2} Q\right)\right)$
vc (IF b THEN c_{1} ELSE c_{2}) Q	$=\mathrm{vc} c_{1} Q \wedge \mathrm{vc} c_{2} Q$
vc (WHILE b INV I DO c OD) Q	$\begin{aligned} = & (\forall \sigma . I \sigma \wedge b \sigma \longrightarrow \text { pre } c I \sigma) \wedge \\ & (\forall \sigma . I \sigma \wedge \neg b \sigma \longrightarrow Q \sigma) \wedge \\ & v c c I \end{aligned}$

$\operatorname{vc} \subset Q \wedge(P \Longrightarrow \operatorname{pre} \subset Q) \Longrightarrow\{P\} \subset\{Q\}$

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically
Choices:
\rightarrow declare program variables with each Hoare triple

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically
Choices:
\rightarrow declare program variables with each Hoare triple

- nice, usual syntax
- works well if you state full program and only use vcg

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically
Choices:
\rightarrow declare program variables with each Hoare triple

- nice, usual syntax
- works well if you state full program and only use vcg
\rightarrow separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically

Syntax Tricks

$\rightarrow x:=\lambda \sigma .1 \quad$ instead of $\quad x:=1$ sucks
$\rightarrow\{\lambda \sigma . \sigma x=n\} \quad$ instead of $\quad\{x=n\}$ sucks as well
Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

\rightarrow declare program variables with each Hoare triple

- nice, usual syntax
- works well if you state full program and only use vcg
\rightarrow separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically
- more syntactic overhead
- program pieces compose nicely

Demo

Arrays

Depending on language, model arrays as functions:
\rightarrow Array access $=$ function application:

$$
a[i]=a i
$$

\rightarrow Array update $=$ function update:

$$
a[i]:==v=a:==a(i:=v)
$$

Arrays

Depending on language, model arrays as functions:
\rightarrow Array access $=$ function application:

$$
a[i]=a i
$$

\rightarrow Array update $=$ function update:

$$
a[i]:==v=a:==a(i:=v)
$$

Use lists to express length:

\rightarrow Array access $=n$ nh:

$$
a[i]=a!i
$$

\rightarrow Array update $=$ list update:

$$
\mathrm{a}[\mathrm{i}]:=\mathrm{v}=\mathrm{a}:==\mathrm{a}[\mathrm{i}:=\mathrm{v}]
$$

\rightarrow Array length $=$ list length:
a.length $=$ length a

Pointers

Choice 1

$$
\begin{array}{lll}
\text { datatype } & \text { ref } & =\text { Ref int | Null } \\
\text { types } & \text { heap } & =\text { int } \Rightarrow \text { val } \\
\text { datatype } & \text { val } & =\text { Int int | Bool bool | Struct_x int int bool } \mid \ldots
\end{array}
$$

Pointers

Choice 1
$\begin{array}{lll}\text { datatype } & \text { ref } & =\text { Ref int | Null } \\ \text { types } & \text { heap } & =\operatorname{int} \Rightarrow \text { val } \\ \text { datatype } & \text { val } & =\text { Int int | Bool bool | Struct_x int int bool \| .. }\end{array}$
\rightarrow hp :: heap, $\mathrm{p}::$ ref
\rightarrow Pointer access: ${ }^{*} \mathrm{p}=$ the_Int (hp (the_addr p))
\rightarrow Pointer update: ${ }^{*} \mathrm{p}:==\mathrm{v}=\mathrm{hp}:==\mathrm{hp}(($ the_addr p$):=\mathrm{v})$

Pointers

Choice 1

datatype ref $=$ Ref int | Null
types heap $=$ int \Rightarrow val
datatype val $=$ Int int | Bool bool | Struct_x int int bool \| ...
\rightarrow hp :: heap, $\mathrm{p}::$ ref
\rightarrow Pointer access: ${ }^{*} \mathrm{p}=$ the_Int (hp (the_addr p))
\rightarrow Pointer update: ${ }^{*} \mathrm{p}:==\mathrm{v}=\mathrm{hp}:==\mathrm{hp}(($ the_addr p$):=\mathrm{v})$
\rightarrow a bit klunky
\rightarrow gets even worse with structs
\rightarrow lots of value extraction (the_Int) in spec and program

Pointers

Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype	ref	$=$ Ref int \mid Null
types	next_hp	$=$ int \Rightarrow ref
types	elem_hp	$=$ int \Rightarrow int

Pointers

Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

datatype	ref	$=$ Ref int \mid Null
types	next_hp	$=$ int \Rightarrow ref
types	elem_hp	$=$ int \Rightarrow int

\rightarrow next :: next_hp, elem :: elem_hp, p :: ref
\rightarrow Pointer access: $\mathrm{p} \rightarrow$ next $=$ next (the_addr p)
\rightarrow Pointer update: $\mathrm{p} \rightarrow$ next $:==\mathrm{v}=$ next $:==$ next ((the_addr p$):=\mathrm{v}$)

Pointers

Choice 2 (Burstall '72, Bornat '00)

Example: struct with next pointer and element

```
datatype ref \(=\) Ref int | Null
types \(\quad\) next_hp \(=\mathrm{int} \Rightarrow\) ref
types elem_hp \(=\) int \(\Rightarrow\) int
\(\rightarrow\) next :: next_hp, elem :: elem_hp, p :: ref
\(\rightarrow\) Pointer access: \(\mathrm{p} \rightarrow\) next \(=\) next (the_addr p )
\(\rightarrow\) Pointer update: \(\mathrm{p} \rightarrow\) next \(:==\mathrm{v}=\) next \(:==\) next ((the_addr p\():=\mathrm{v})\)
```


In general:

\rightarrow a separate heap for each struct field
\rightarrow buys you $\mathrm{p} \rightarrow$ next $\neq \mathrm{p} \rightarrow$ elem automatically (aliasing)
\rightarrow still assumes type safe language

Demo

We have seen today ...

\rightarrow Weakest precondition
\rightarrow Verification conditions
\rightarrow Example program proofs
\rightarrow Arrays, pointers

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

