

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

Foundations & Principles	
 Intro, Lambda calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	$[2,3^a]$
Term rewriting	[3,4]
Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[4,5]
 Datatype induction, primitive recursion 	[5,7]
 General recursive functions, termination proofs 	[7]
 Proof automation, Isar (part 2) 	[8 ^b]
 Hoare logic, proofs about programs, invariants 	[8,9]
 C verification 	[9,10
 Practice, questions, exam prep 	[10°

^aa1 due; ^ba2 due; ^ca3 due

Deep Embeddings

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a deep embedding:

→ separate representation of language terms and their semantics.

Advantages:

- → Prove general theorems about the **language**, not just of programs.
- → e.g. expressiveness, correct compilation, inference completeness ...
- → usually by induction over the syntax or semantics.

Disadvantages:

- → Semantically equivalent programs are not obviously equal.
- → e.g. "IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.
- → Many concepts already present in the logic must be reinvented.

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

 ${\sf SKIP} \equiv \quad \lambda {\sf s.~s}$ IF b THEN c ELSE d $\equiv \quad \lambda {\sf s.}$ if b s then c s else d s

- → "IF True THEN SKIP ELSE SKIP = SKIP" is now a true statement.
- → can use the simplifier to do semantics-preserving program rewriting.

Today: a shallow embedding for (interesting parts of) C semantics

Records in Isabelle

Records are *n*-tuples with named components

Example:

- → Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0
- → Constructors: (| a = Suc 0, b = -1 |)
- → Update: r(|a| = Suc 0 |), $b_update (\lambda b. b + 1) r$

Records are extensible:

record
$$B = A + c :: nat list$$
 () $a = Suc 0$, $b = -1$, $c = [0, 0]$ ()

___Demo

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: **Nondeterminism**
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

AutoCorres: verified translation from deeply embedded C to monadic representation

→ Specifically designed for humans to do proofs over.

State Monad: Motivation

Model the **semantics** of a (deterministic) computation as a function

$$s \Rightarrow (a \times s)$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a return value of type 'a:

→ models e.g. exit status and return values

return – the computation that leaves the state unchanged and returns its argument:

return
$$x \equiv \lambda s$$
. (x,s)

State Monad: Basic Operations

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets - returns a projection of the state; leaves state unchanged:

gets
$$f \equiv \text{get} \gg = (\lambda s. \text{ return } (f s))$$

modify – applies its argument to modify the state; returns ():

modify
$$f \equiv \text{get} \gg = (\lambda s. \text{ put } (f s))$$

Monads, Laws

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; b \ x \}$

Monad Laws:

return-left:
$$(\text{return } x >>= f) = f x$$

return-right:
$$(m \gg = \text{return}) = m$$

bind-assoc:
$$((a \gg = b) \gg = c) = (a \gg = (\lambda x. \ b \ x \gg = c))$$

State Monad: Example

```
record state =
                                hp :: int ptr \Rightarrow int
A fragment of C:
                          f :: "int ptr \Rightarrow (state \Rightarrow (unit, state))"
void f(int *p) {
                         f p \equiv
    int x = *p;
                           do {
    if (x < 10)
                             x \leftarrow gets (\lambda s. hp s p);
                             if x < 10 then
                                modify (hp_update (\lambdah. (h(p := x + 1))))
                             else
                                return ()
```

State Monad with Failure

guard $P \equiv get \gg = (\lambda s. assert (P s))$

Guards

Used to assert the absence of undefined behaviour in C

→ pointer validity, absence of divide by zero, signed overflow, etc.

```
\begin{array}{l} \text{f $p$} \equiv \\ \textbf{do } \{ \\ & \text{y} \leftarrow \text{guard } (\lambda \text{s. valid s p}); \\ & \text{x} \leftarrow \text{ gets } (\lambda \text{s. hp s p}); \\ & \textbf{if } \text{x} < 10 \textbf{ then} \\ & \text{modify } (\text{hp\_update } (\lambda \text{h. } (\text{h(p}:=\text{x}+1)))) \\ & \textbf{else} \\ & \text{return } () \\ \} \end{array}
```

Nondeterministic State Monad with Failure

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \text{ set} \times bool)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind – runs 2nd computation for all results returned by the first:

bind
$$a b \equiv \lambda s.$$
 ($\{(r'',s''). \exists (r',s') \in fst (a s). (r'',s'') \in fst (b r' s')\}, snd $(a s) \lor (\exists (r',s') \in fst (a s). snd (b r' s'))$)$

All non-failing computations so far are **deterministic**:

- \rightarrow e.g. return $x \equiv \lambda s.$ ({(x,s)},False)
- → Others are similar.

select – nondeterministic selection from a set:

select
$$A \equiv \lambda s$$
. $((A \times \{s\}), False)$

___Demo

While Loops

Monadic while loop, defined inductively.

whileLoop ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$

 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool))$

whileLoop C B

- → condition C: takes loop parameter and state as arguments, returns bool
- → monadic body *B*: takes loop parameter as argument, return-value is the updated loop parameter
- → fails if the loop body ever fails or if the loop never terminates

Example: whileLoop (λp s. hp s p=0) (λ p. return (ptrAdd p 1)) p

Defining While Loops Inductively

Two-part definition: results and termination

Results: while_results ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $((('a \times 's) \text{ option}) \times (('a \times 's) \text{ option})) \text{ set}$

$$\frac{\neg C r s}{(\text{Some } (r,s), \text{ Some } (r,s)) \in \text{ while_results } C B} \text{ (terminate)}$$

$$\frac{\textit{C r s} \quad \mathsf{snd} \; (\textit{B r s})}{(\mathsf{Some} \; (\textit{r,s}), \; \mathsf{None}) \in \mathsf{while_results} \; \textit{C B}} \; (\mathsf{fail})$$

$$\frac{\textit{C r s} \quad (\textit{r'},\textit{s'}) \in \mathsf{fst} \; (\textit{B r s}) \quad (\mathsf{Some} \; (\textit{r'},\; \textit{s'}),\; \textit{z}) \in \mathsf{while_results} \; \textit{C B}}{(\mathsf{Some} \; (\textit{r,s}),\; \textit{z}) \in \mathsf{while_results} \; \textit{C B}} \; (\mathsf{loop})$$

Defining While Loops Inductively

Termination:

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $'a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg C r s}{\text{while_terminates } C B r s} \text{ (terminate)}$$

$$\frac{C r s \quad \forall (r',s') \in \text{fst } (B r s). \text{ while_terminates } C B r' s'}{\text{while_terminates } C B r s} \text{ (loop)}$$
while_terminates $C B r s$

$$(\lambda r s. (\{(r',s'). \text{ (Some } (r, s), \text{ Some } (r', s')) \in \text{ while_results } C B\}, \text{ (Some } (r, s), \text{ None)} \in \text{ while_results } \vee$$

$$\neg \text{while_terminates } C B r s)$$

Hoare Logic over Nondeterministic State Monads

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in \mathsf{fst}\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

$$\{\lambda s.\ P \times s\}$$
 return \times $\{\lambda r s.\ P r s\}$ $\{\lambda s.\ P s s\}$ get $\{P\}$ $\{\lambda s.\ P\ () \times\}$ put \times $\{P\}$ $\{\lambda s.\ P\ (f s) s\}$ gets $\{P\}$ $\{\lambda s.\ P\ () (f s)\}$ modify $\{P\}$

More Hoare Logic Rules

$$\begin{array}{c} P \implies \{Q\} \ f \{S\} \quad \neg P \implies \{R\} \ g \{S\} \\ \hline \{\lambda s.(P \longrightarrow Q \ s) \ \land \ (\neg P \longrightarrow R \ s)\} \ \ \textbf{if} \ P \ \textbf{then} \ f \ \textbf{else} \ g \ \{S\} \\ \hline \frac{\bigwedge x. \ \{B \ x\} \ g \ x \ \{C\} \quad \{A\} \ f \ \{B\} \}}{\{A\} \ \textbf{do} \{\ x \leftarrow f, \ g \ x \} \ \{C\} } \\ \hline \frac{\{R\} \ m \ \{Q\} \quad \bigwedge s. \ P \ s \implies R \ s}{\{P\} \ m \ \{Q\}} \end{array}$$

$$\frac{\bigwedge r. \ \{ \lambda s. \ Irs \land Crs \} \ B \ \{ I \} \ \bigwedge rs. \ [Irs; \neg Crs] \implies Qrs}{\{ Ir \} \ \text{whileLoop} \ CBr \ \{ Q \}}$$

___ Demo

We have seen today

- → Deep and shallow embeddings
- → Isabelle records
- → Nondeterministic State Monad with Failure
- → Monadic Weakest Precondition Rules