sy
>

y
—~

SW

DNEY

NG

2

y

U

S

Z

=<

COMP4161
Advanced Topics in Software Verification

>>=

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
Datatype induction, primitive recursion
General recursive functions, termination proofs
Proof automation, Isar (part 2)

Hoare logic, proofs about programs, invariants
C verification

Practice, questions, exam prep

(1.2]
[2.37]
3.4]

[4.5]
[5.7]
[7]
(8]
8.9]
[9,10]
[10°]

?al due; a2 due; a3 due

Deep Embeddings

We used a datatype com to represent the syntax of IMP.

=» We then defined semantics over this datatype.

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=» We then defined semantics over this datatype.

This is called a deep embedding:

=¥ separate representation of language terms and their semantics.

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=» We then defined semantics over this datatype.

This is called a deep embedding:

=¥ separate representation of language terms and their semantics.

Advantages:
=» Prove general theorems about the language, not just of programs.
=¥ e.g. expressiveness, correct compilation, inference completeness ...
=» usually by induction over the syntax or semantics.

OMP4161

Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=» We then defined semantics over this datatype.

This is called a deep embedding:

=¥ separate representation of language terms and their semantics.

Advantages:

=» Prove general theorems about the language, not just of programs.
=¥ e.g. expressiveness, correct compilation, inference completeness ...
=» usually by induction over the syntax or semantics.

Disadvantages:

=» Semantically equivalent programs are not obviously equal.
=» e.g. “IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.
=» Many concepts already present in the logic must be reinvented.

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.

=» A definition for each language construct, giving its semantics.

=» Programs are represented as instances of these definitions.

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state
SKIP =

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state
SKIP =)s. s

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state

SKIP= JXs. s
IF b THEN c ELSE d =

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state

SKIP= JXs. s
IFbTHEN c ELSEd = JXs. if bsthencselseds

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state

SKIP= JXs. s
IFbTHEN c ELSEd = JXs. if bsthencselseds

=> “IF True THEN SKIP ELSE SKIP = SKIP” is now a true statement.
=¥ can use the simplifier to do semantics-preserving program rewriting.

Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state

SKIP= JXs. s
IFbTHEN c ELSEd = JXs. if bsthencselseds

=> “IF True THEN SKIP ELSE SKIP = SKIP” is now a true statement.
=¥ can use the simplifier to do semantics-preserving program rewriting.

Today: a shallow embedding for (interesting parts of) C semantics

Records in Isabelle

Records are n-tuples with named components

Records in Isabelle

Records are n-tuples with named components

Example:
record A = a:: nat
b:int

n, M Tanaka, J Am

Records in Isabelle

Records are n-tuples with named components

Example:

record A = a:: nat
b:int
=» Selectors: a:: A= nat, b:: A=int, ar=SucO

Records in Isabelle

Records are n-tuples with named components

Example:

record A = a:: nat
b: int
-» Selectors: a: A= nat, b:: A=int, ar=SucO
=» Constructors: (a=Suc0, b=-1))

Records in Isabelle

Records are n-tuples with named components

Example:

record A = a: nat
b:int
=» Selectors: a: A= nat, b:: A=int, ar=SucO
=» Constructors: (a=Suc0, b=-1))
=» Update: r(a:=SucO0], b_update (Ab. b+1)r

Records in Isabelle

Records are n-tuples with named components
Example:
record A = a: nat
b::int
=» Selectors: a: A= nat, b:: A=int, ar=SucO
=» Constructors: (a=Suc0, b=-1))
=» Update: r(a:=SucO0], b_update (Ab. b+1)r

Records are extensible:

record B = A +
c :: nat list

Records in Isabelle

Records are n-tuples with named components

Example:
record A = a: nat
b::int
=» Selectors: a: A= nat, b:: A=int, ar=SucO
=» Constructors: (a=Suc0, b=-1))
=» Update: r(a:=SucO0], b_update (Ab. b+1)r

Records are extensible:

record B = A +
c :: nat list

(a=Suc0, b=-1, ¢c=10,0])

Demo

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

=» Access to volatile variables, external APls: Nondeterminism
=» Undefined behaviour: Failure

=» Early exit (return, break, continue): Exceptional control flow

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

=» Access to volatile variables, external APls: Nondeterminism
=» Undefined behaviour: Failure

=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

=» Access to volatile variables, external APls: Nondeterminism
=» Undefined behaviour: Failure

=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:
=» Access to volatile variables, external APls: Nondeterminism
=» Undefined behaviour: Failure
=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

AutoCorres: verified translation from deeply embedded C to monadic
representation

=» Specifically designed for humans to do proofs over.

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function

s= ('ax's)

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
s= ('ax's)

The computation operates over a state of type 's:

=*» Includes all global variables, external devices, etc.

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
s= ('ax's)

The computation operates over a state of type 's:

=*» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:

= models e.g. exit status and return values

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
's=('ax’s)
The computation operates over a state of type 's:
=*» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:

= models e.g. exit status and return values

return — the computation that leaves the state unchanged and returns
its argument:

return x = \s.

State Monad: Motivation

Model the semantics of a (deterministic) computation as a function
's=('ax’s)
The computation operates over a state of type 's:
=*» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:

= models e.g. exit status and return values

return — the computation that leaves the state unchanged and returns
its argument:

return x = As. (x,9)

State Monad: Basic Operations

get — returns the entire state without modifying it:

get = s,

State Monad: Basic Operations

get — returns the entire state without modifying it:

get = s (s9)

State Monad: Basic Operations

get — returns the entire state without modifying it:

get = s (s9)

put — replaces the state and returns the unit value ():

put s =

State Monad: Basic Operations

get — returns the entire state without modifying it:

get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

bind — sequences two computations; 2nd takes the first's result:

c>=d =

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

bind — sequences two computations; 2nd takes the first's result:

c>=d = MXs.let (rs)=csindrs’

State Monad: Basic Operations
get — returns the entire state without modifying it:
get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

bind — sequences two computations; 2nd takes the first's result:
c>=d = MXs.let (rs)=csindrs’

gets — returns a projection of the state; leaves state unchanged:

gets f =

State Monad: Basic Operations

get — returns the entire state without modifying it:

get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

bind — sequences two computations; 2nd takes the first's result:

c>=d = MXs.let (rs)=csindrs’

gets — returns a projection of the state; leaves state unchanged:

gets f = get >>= (As. return (f's))

State Monad: Basic Operations

get — returns the entire state without modifying it:
get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

bind — sequences two computations; 2nd takes the first's result:
c>=d = MXs.let (rs)=csindrs’

gets — returns a projection of the state; leaves state unchanged:
gets f = get >>= (As. return (f's))

modify — applies its argument to modify the state; returns ():
modify f = get >>= (As. put (fs))

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (Ax. b x) is often written as do { x < a; b x }

10 | COMP4161

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (Ax. b x) is often written as do { x < a; b x }

Monad Laws:

10 | COMP4161

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (Ax. b x) is often written as do { x < a; b x }

Monad Laws:

return-left: (return x >=1f) = fx

10 | COMP4161

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (Ax. b x) is often written as do { x < a; b x }

Monad Laws:
return-left: (return x >=1f) = fx

return-right: (m>>=return) = m

10 | COMP4161

Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (Ax. b x) is often written as do { x < a; b x }

Monad Laws:
return-left: (return x >=1f) = fx
return-right: (m>>=return) = m

bind-assoc: ((a >=b) >=c) = (a>= (Ax bx>=¢))

10 | COMP4161

State Monad: Example

A fragment of C:
void f(int *p) {

int x = *p;
if (x < 10) {
*p = x+1;

}

11 | COMP4

State Monad: Example

record state =
hp :: int ptr = int

“int ptr = (state = (unit,state))"

A fragment of C: £
void f(int *p) { fp =
int x = *p; do {_
if (x f 10) { x < gets (Xs. hp s p);
*p = X+l if x < 10 then
} modify (hp_update (Ah. (h(p := x + 1))))
} else

return ()

11 | COMP4161 | G Kle

State Monad with Failure

Computations can fail: s = (('a x 's) x _bool)

State Monad with Failure

Computations can fail: s = (('a x 's) x _bool)

bind — fails when either computation fails
bind a b=let ((r,s),) =as;, ((r',s").f)=brs'in((r's"), fV)

State Monad with Failure

Computations can fail: s = (('a x 's) x _bool)

bind — fails when either computation fails
bind a b=let ((r,s),) =as;, ((r',s").f)=brs'in((r's"), fV)

fail — the computation that always fails:
fail = As. (undefined, True)

State Monad with Failure

Computations can fail: s = (('a x 's) x _bool)

bind — fails when either computation fails
bind a b=let ((r,s),) =as;, ((r',s").f)=brs'in((r's"), fV)

fail — the computation that always fails:
fail = As. (undefined, True)

assert — fails when given condition is False:
assert P = if P then return () else fail

State Monad with Failure

Computations can fail: s = (('a x 's) x _bool)

bind — fails when either computation fails
bind a b=let ((r,s),) =as;, ((r',s").f)=brs'in((r's"), fV)

fail — the computation that always fails:
fail = As. (undefined, True)

assert — fails when given condition is False:
assert P = if P then return () else fail

guard — fails when given condition applied to the state is False:
guard P = get >>= (Js. assert (P s))

Guards

Used to assert the absence of undefined behaviour in C

Guards

Used to assert the absence of undefined behaviour in C

=» pointer validity, absence of divide by zero, signed overflow, etc.

Guards

Used to assert the absence of undefined behaviour in C

=» pointer validity, absence of divide by zero, signed overflow, etc.

fp =
do
y <guard (Xs. valid s p);
x < gets (As. hp s p);
if x < 10 then
modify (hp_update (Ah. (h(p :=x + 1))))
else
return ()

Nondeterministic State Monad with Failure

Computations can be nondeterministic: 's = (('a x 's) set x bool)

Nondeterministic State Monad with Failure

Computations can be nondeterministic: 's = (('a x 's) set x bool)

Nondeterminism: computations return a set of possible results.

=» Allows underspecification: e.g. malloc, external devices, etc.

14 | COMP4161

Nondeterministic State Monad with Failure

Computations can be nondeterministic: 's = (('a x 's) set x bool)
Nondeterminism: computations return a set of possible results.
=» Allows underspecification: e.g. malloc, external devices, etc.

bind — runs 2nd computation for all results returned by the first:

bindab= Xs. ({(r",s”). 3(r,s) efst (as). (r's") efst (br's)},
snd (as) vV (3(r,s) efst(as). snd (br's’)))

14 | COMP4161

Nondeterministic State Monad with Failure

Computations can be nondeterministic: 's = (('a x 's) set x bool)
Nondeterminism: computations return a set of possible results.
=» Allows underspecification: e.g. malloc, external devices, etc.

bind — runs 2nd computation for all results returned by the first:

bindab= Xs. ({(r",s”). 3(r,s) efst (as). (r's") efst (br's)},
snd (as) vV (3(r,s) efst(as). snd (br's’)))

All non-failing computations so far are deterministic:

= e.g. return x = As. ({(x,s)},False)
=» Others are similar.

Nondeterministic State Monad with Failure

Computations can be nondeterministic: 's = (('a x 's) set x bool)

Nondeterminism: computations return a set of possible results.

=» Allows underspecification: e.g. malloc, external devices, etc.

bind — runs 2nd computation for all results returned by the first:

bindab= Xs. ({(r",s”). 3(r,s) efst (as). (r's") efst (br's)},
snd (as) vV (3(r,s) efst(as). snd (br's’)))

All non-failing computations so far are deterministic:

= e.g. return x = As. ({(x,s)},False)
=» Others are similar.

select — nondeterministic selection from a set:
select A= Xs. ((A x{s}),False)

Demo

While Loops

Monadic while loop, defined inductively.

While Loops

Monadic while loop, defined inductively.

whileLoop :: ('a = s = bool) =
('a = (s = ('a x ’s) set x bool)) =
('a = ('s = ('a x 's) set x bool))

While Loops

Monadic while loop, defined inductively.

whileLoop :: ('a = s = bool) =
('a = (s = ('a x ’s) set x bool)) =
('a = ('s = ('a x 's) set x bool))

whileLoop C B

=» condition C: takes loop parameter and state as arguments, returns bool

=» monadic body B: takes loop parameter as argument, return-value is the
updated loop parameter

=» fails if the loop body ever fails or if the loop never terminates

While Loops

Monadic while loop, defined inductively.

whileLoop :: ('a = s = bool) =
('a = (s = ('a x ’s) set x bool)) =
('a = ('s = ('a x 's) set x bool))

whileLoop C B

=» condition C: takes loop parameter and state as arguments, returns bool

=» monadic body B: takes loop parameter as argument, return-value is the
updated loop parameter

=» fails if the loop body ever fails or if the loop never terminates

Example: whileLoop (Ap s. hp s p = 0) (Ap. return (ptrAdd p 1)) p

Defining While Loops Inductively

Two-part definition: results and termination

Defining While Loops Inductively

Two-part definition: results and termination

Results: while_results :: ('a = 's = bool) =
('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = 's = bool) =
('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

- Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

17 | COMP4161 | G Kle

Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = 's = bool) =
('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

- Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

Crs snd (Brs)
(Some (r,s), None) € while_results C B

(fail)

17 | COMP4161 | G Kle

Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = 's = bool) =
('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

- Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

Crs snd (Brs)
(Some (r,s), None) € while_results C B

(fail)

Crs (r,s’) efst(Brs) (Some (r',s’), z) € while_results C B
(Some (r,s), z) € while_results C B

(loop)

17 | COMP4161 | G Kle

Defining While Loops Inductively

Termination:

’

while_terminates :: ('a = 's = bool) =
(‘a = ('s = ('a x 's) set x bool)) =

’

'a = 's = bool

Defining While Loops Inductively

Termination:

’

while_terminates :: ('a = 's = bool) =
(‘a = ('s = ('a x 's) set x bool)) =

’

'a = 's = bool

- Crs

(terminate)

while_terminates C B r s

Defining While Loops Inductively

Termination:

’

while_terminates :: ('a = 's = bool) =
(‘a = ('s = ('a x 's) set x bool)) =

’

'a = 's = bool

- Crs
while_terminates C B r s

(terminate)

Crs V(rs’) € fst (Brs). while_terminates C B r's’

(loop)

while_terminates C B r s

Defining While Loops Inductively

Termination:

’

while_terminates :: ('a = 's = bool) =
(‘a = ('s = ('a x 's) set x bool)) =

’

'a = 's = bool

- Crs
while_terminates C B r s

(terminate)

Crs V(rs’) € fst (Brs). while_terminates C B r's’
while_terminates C B r s

(loop)

whileLoop C B =
(Ars. ({(rs"). (Some (r, s), Some (r’, s)) € while_results C B},
(Some (r, s), None) € while_results V
—while_terminates C B r s))

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{ } return x {Ars. Prs}p | b get {P} | } put x {P}
{ I gets f {P} { } modify f{P}

i I assert P {QJ} { I fail {Q}

9 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} b get {P} | } put x {P}
{ I gets f {P} { } modify f{P}

i I assert P {QJ} { I fail {Q}

9 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssf} get {P} { } put x {P}
{ } gets f {P} { } modify f{P}

i I assert P {QJ} { I fail {Q}

9 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}
{ } gets f {P} { } modify f{P}

i I assert P {QJ} { I fail {Q}

9 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}

{Xs. P (fs) s} gets f {P} { } modify f{P}

i I assert P {QJ} { I fail {Q}

9 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}

{Xs. P (fs) s} gets f {P} {Xs. P () (fs)} modify f {P[}

i I assert P {QJ} { I fail {Q}

9 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}

{Xs. P (fs) s} gets f {P} {Xs. P () (fs)} modify f {P[}

{Xs. P —Q () s} assert P {Q]} { } fail {Q}

19 | COMP4161

Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}
{Xs. P (fs) s} gets f {P} {Xs. P () (fs)} modify f {P[}

{Xs. P —Q () s} assert P {Q]} {A-. True} fail {Q}

9 | COMP4161

More Hoare Logic Rules

{ | if P then felse g {S]}

More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh

{As (P — @5s) A (=P — R)} if P then felse g {S]}

More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh
{As. (P — Qs) A (P — R)} if Pthen felse g {S]}

Ax B xt g x{C} {A} F{B}

{Al do{ x « £ gx} {C}

More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh
{As. (P — Qs) A (P — R)} if Pthen felse g {S]}

Ax B xt g x{C} {A} F{B}
{Al do{ x « £ gx} {C}

{R} m{Q} As.Ps = Rs
P m QL

20 | COMP4161

More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh
{As. (P — Qs) A (P — R)} if Pthen felse g {S]}

Ax B xt g x{C} {A} F{B}
{Al do{ x « £ gx} {C}

{R} m{Q} As.Ps = Rs
P m QL

ANr.{xs.lrs A Crsp B{lI} Ars[lrss - Crs] = Qrs
{! r} whileLoop C B r {Q}

20 | COMP4161

Demo

We have seen today

=¥ Deep and shallow embeddings

=» Isabelle records
=» Nondeterministic State Monad with Failure
=» Monadic Weakest Precondition Rules

