

COMP4161 Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Åman Pohjola, Rob Sison T3/2023

Content

→ Foundations & Principles Intro. Lambda calculus, natural deduction [1,2]• Higher Order Logic, Isar (part 1) $[2,3^{a}]$ Term rewriting [3,4] → Proof & Specification Techniques Inductively defined sets, rule induction [4,5] Datatype induction, primitive recursion [5,7] General recursive functions, termination proofs [7] Proof automation, Isar (part 2) [8^b] Hoare logic, proofs about programs, invariants [8,9] C verification [9,10] Practice, questions, exam prep $[10^{c}]$

^aa1 due: ^ba2 due: ^ca3 due

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a deep embedding:

→ separate representation of language terms and their semantics.

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a **deep embedding**:

→ separate representation of language terms and their semantics.

Advantages:

- → Prove general theorems about the **language**, not just of programs.
- $\ \, \ \, \ \, \ \,$ e.g. expressiveness, correct compilation, inference completeness ...
- → usually by induction over the syntax or semantics.

We used a **datatype** *com* to represent the **syntax** of IMP.

→ We then defined semantics over this datatype.

This is called a **deep embedding**:

→ separate representation of language terms and their semantics.

Advantages:

- → Prove general theorems about the **language**, not just of programs.
- → e.g. expressiveness, correct compilation, inference completeness ...
- → usually by induction over the syntax or semantics.

Disadvantages:

- → Semantically equivalent programs are not obviously equal.
- \rightarrow e.g. "IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.
- → Many concepts already present in the logic must be reinvented.

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

SKIP ≡

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

$$SKIP \equiv \lambda s. s$$

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

 $SKIP \equiv \lambda s. s$

IF b THEN c ELSE d \equiv

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

 $SKIP \equiv \lambda s. s$

IF b THEN c ELSE d $\equiv \lambda$ s. if b s then c s else d s

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

 ${\rm SKIP} \equiv \quad \lambda {\rm s.~s}$ IF b THEN c ELSE d $\equiv \quad \lambda {\rm s.~if~b~s~then~c~s~else~d~s}$

- → "IF True THEN SKIP ELSE SKIP = SKIP" is now a true statement.
- → can use the simplifier to do semantics-preserving program rewriting.

Shallow Embedding: represent only the semantics, directly in the logic.

- → A definition for each language construct, giving its **semantics**.
- → Programs are represented as instances of these definitions.

Example: program semantics as functions $state \Rightarrow state$

 ${\rm SKIP} \equiv \quad \lambda {\rm s.~s}$ IF b THEN c ELSE d $\equiv \quad \lambda {\rm s.~if~b~s~then~c~s~else~d~s}$

- → "IF True THEN SKIP ELSE SKIP = SKIP" is now a true statement.
- → can use the simplifier to do semantics-preserving program rewriting.

Today: a shallow embedding for (interesting parts of) C semantics

Records are *n*-tuples with named components

Records are *n*-tuples with named components

Example:

 $\textbf{record} \ \mathsf{A} = \quad \mathsf{a} :: \ \mathsf{nat}$

b :: int

Records are *n*-tuples with named components

Example:

$$\begin{array}{lll} \textbf{record} \ \mathsf{A} = & \mathsf{a} :: \ \mathsf{nat} \\ & \mathsf{b} :: \ \mathsf{int} \end{array}$$

→ Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0

Records are *n*-tuples with named components

Example:

record A = a :: nat
b :: int
A
$$\Rightarrow$$
 nat, b :: A \Rightarrow int, a $r = Suc 0$

- → Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0
- → Constructors: (| a = Suc 0, b = -1 |)

Records are *n*-tuples with named components

Example:

```
record A = a :: nat b :: int

Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0

Constructors: (| a = Suc 0, b = -1 |)

Update: r(| a := Suc 0 |), b_update (\lambda b. \ b+1) r
```

Records are *n*-tuples with named components

Example:

- → Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0
- \rightarrow Constructors: (| a = Suc 0, b = -1 |)
- → Update: r(|a| = Suc 0 |), $b_update (\lambda b. b + 1) r$

Records are extensible:

Records are *n*-tuples with named components

Example:

- → Selectors: a :: A \Rightarrow nat, b :: A \Rightarrow int, a r = Suc 0
- → Constructors: (| a = Suc 0, b = -1 |)
- → Update: r(a := Suc 0), $b_update(\lambda b. b + 1) r$

Records are extensible:

record B = A +
$$c:: \mbox{ nat list}$$
 (| a = Suc 0, b = -1, c = [0,0] |)

___Demo

Shallow embedding suitable for (a useful fragment of) C.

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:

- → Access to volatile variables, external APIs: Nondeterminism
- → Undefined behaviour: Failure
- → Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

AutoCorres: verified translation from deeply embedded C to monadic representation

→ Specifically designed for humans to do proofs over.

Model the semantics of a (deterministic) computation as a function

$$s \Rightarrow (a \times s)$$

Model the **semantics** of a (deterministic) computation as a function

$$s \Rightarrow (a \times s)$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

Model the **semantics** of a (deterministic) computation as a function

$$s \Rightarrow (a \times s)$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values

Model the **semantics** of a (deterministic) computation as a function

$$s \Rightarrow (a \times s)$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values

return – the computation that leaves the state unchanged and returns its argument:

return
$$x \equiv \lambda s$$
.

Model the semantics of a (deterministic) computation as a function

$$s \Rightarrow (a \times s)$$

The computation operates over a **state** of type 's:

→ Includes all global variables, external devices, etc.

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values

return – the computation that leaves the state unchanged and returns its argument:

$$return x \equiv \lambda s. \quad (x,s)$$

 ${f get}$ — returns the entire state without modifying it:

get $\equiv \lambda s$.

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

get – returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv$$

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c >>= d \equiv$$

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind – sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((), s)

bind - sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets – returns a projection of the state; leaves state unchanged:

gets
$$f \equiv$$

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
 ((), s)

bind - sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets – returns a projection of the state; leaves state unchanged:

gets
$$f \equiv \text{get} \gg = (\lambda s. \text{ return } (f s))$$

get - returns the entire state without modifying it:

get
$$\equiv \lambda s. (s,s)$$

put - replaces the state and returns the unit value ():

put
$$s \equiv \lambda_{-}$$
 ((), s)

bind - sequences two computations; 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

gets – returns a projection of the state; leaves state unchanged:

gets
$$f \equiv \text{get} \gg = (\lambda s. \text{ return } (f s))$$

modify – applies its argument to modify the state; returns ():

modify
$$f \equiv \text{get} \gg = (\lambda s. \text{ put } (f s))$$

Formally: a monad **M** is a type constructor with two operations.

return :: $\alpha \Rightarrow \mathbf{M} \ \alpha$ bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Formally: a monad ${\bf M}$ is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; \ b \ x \}$

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; \ b \ x \}$

Formally: a monad M is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; \ b \ x \}$

return-left:
$$(\text{return } x > > = f) = f x$$

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \alpha$$
 bind :: $\mathbf{M} \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \beta) \Rightarrow \mathbf{M} \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; \ b \ x \}$

return-left:
$$(return x > = f) = f x$$

return-right:
$$(m \gg = \text{return}) = m$$

Formally: a monad **M** is a type constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M} \ \alpha$$
 bind :: $\mathbf{M} \ \alpha \Rightarrow (\alpha \Rightarrow \mathbf{M} \ \beta) \Rightarrow \mathbf{M} \ \beta$

Infix Notation: $a \gg = b$ is infix notation for bind a b

Do-Notation: $a \gg = (\lambda x. \ b \ x)$ is often written as **do** $\{ x \leftarrow a; \ b \ x \}$

return-left:
$$(\text{return } x >>= f) = f x$$

return-right:
$$(m \gg = \text{return}) = m$$

bind-assoc:
$$((a >>= b) >>= c) = (a >>= (\lambda x. \ b \ x >>= c))$$

State Monad: Example

```
A fragment of C:

void f(int *p) {

   int x = *p;

   if (x < 10) {

      *p = x+1;

   }

}
```

State Monad: Example

```
record state =
                                   hp :: int ptr \Rightarrow int
A fragment of C:
                             f :: "int ptr \Rightarrow (state \Rightarrow (unit, state))"
void f(int *p) {
                             f p \equiv
    int x = *p;
                             do {
    if (x < 10) {
                                x \leftarrow gets (\lambda s. hp s p);
       *p = x+1;
                                if x < 10 then
                                   modify (hp_update (\lambdah. (h(p := x + 1))))
                                else
                                   return ()
```

Computations can **fail**: $s \Rightarrow ((a \times bool)$

Computations can **fail**: $s \Rightarrow ((a \times bool)$

bind – fails when either computation fails bind $a b \equiv \mathbf{let} ((r,s'),f) = a s; ((r'',s''),f') = b r s' \mathbf{in} ((r'',s''), f \lor f')$

Computations can **fail**:
$$s \Rightarrow ((a \times b) \times bool)$$

bind – fails when either computation fails
bind $ab \equiv \text{let}((r,s'),f) = as; ((r'',s''),f') = brs' in ((r'',s''), f \vee f')$
fail – the computation that always fails:

$$fail \equiv \lambda s. \text{ (undefined, True)}$$

```
Computations can fail: s \Rightarrow ((a \times b) \times bool)

bind – fails when either computation fails

bind ab \equiv \mathbf{let}((r,s'),f) = as; ((r'',s''),f') = brs'\mathbf{in}((r'',s''),f\vee f')

fail – the computation that always fails:

fail \equiv \lambda s. (undefined, True)

assert – fails when given condition is False:

assert P \equiv \mathbf{if} P \mathbf{then} return() \mathbf{else} fail
```

Computations can **fail**:
$$s \Rightarrow ((a \times b) \times bool)$$

bind – fails when either computation fails
bind $ab \equiv let((r,s'),f) = as; ((r'',s''),f') = brs' in ((r'',s''), f \lor f')$
fail – the computation that always fails:
 $fail \equiv \lambda s.$ (undefined, True)
assert – fails when given condition is False:
 $assert P \equiv if P then return() else fail$
guard – fails when given condition applied to the state is False:
 $assert P \equiv get \gg (\lambda s. assert(P s))$

Guards

Used to assert the absence of undefined behaviour in C

Guards

Used to assert the absence of undefined behaviour in C

→ pointer validity, absence of divide by zero, signed overflow, etc.

Guards

Used to assert the absence of undefined behaviour in C

→ pointer validity, absence of divide by zero, signed overflow, etc.

```
\begin{array}{l} \text{f } p \equiv \\ \textbf{do } \{ \\ & \text{y} \leftarrow \text{guard } (\lambda \text{s. valid s p}); \\ & \text{x} \leftarrow \text{gets } (\lambda \text{s. hp s p}); \\ & \textbf{if } \text{x} < 10 \textbf{ then} \\ & \text{modify } (\text{hp\_update } (\lambda \text{h. } (\text{h(p := x + 1)))}) \\ & \textbf{else} \\ & \text{return } () \\ & \} \end{array}
```

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \underline{\text{set}} \times b)$

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \underline{\text{set}} \times b)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \underline{\text{set}} \times bool)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind – runs 2nd computation for all results returned by the first:

bind
$$a \ b \equiv \lambda s. \ (\{(r'',s''). \ \exists \ (r',s') \in \mathsf{fst} \ (a \ s). \ (r'',s'') \in \mathsf{fst} \ (b \ r' \ s')\}, \\ \mathsf{snd} \ (a \ s) \ \lor \ (\exists \ (r',\ s') \in \mathsf{fst} \ (a \ s). \ \mathsf{snd} \ (b \ r' \ s')))$$

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \underline{\text{set}} \times b)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind - runs 2nd computation for all results returned by the first:

bind
$$a \ b \equiv \lambda s. \ (\{(r'',s''). \ \exists \ (r',s') \in \mathsf{fst} \ (a \ s). \ (r'',s'') \in \mathsf{fst} \ (b \ r' \ s')\}, \\ \mathsf{snd} \ (a \ s) \ \lor \ (\exists \ (r',\ s') \in \mathsf{fst} \ (a \ s). \ \mathsf{snd} \ (b \ r' \ s')))$$

All non-failing computations so far are **deterministic**:

- \rightarrow e.g. return $x \equiv \lambda s.$ ({(x,s)},False)
- → Others are similar.

Computations can be **nondeterministic:** $s \Rightarrow ((a \times b) \underline{\text{set}} \times bool)$

Nondeterminism: computations return a set of possible results.

→ Allows underspecification: e.g. malloc, external devices, etc.

bind - runs 2nd computation for all results returned by the first:

bind
$$a \ b \equiv \lambda s. \ (\{(r'',s''). \ \exists \ (r',s') \in \mathsf{fst} \ (a \ s). \ (r'',s'') \in \mathsf{fst} \ (b \ r' \ s')\}, \\ \mathsf{snd} \ (a \ s) \ \lor \ (\exists \ (r',\ s') \in \mathsf{fst} \ (a \ s). \ \mathsf{snd} \ (b \ r' \ s')))$$

All non-failing computations so far are **deterministic**:

- \rightarrow e.g. return $x \equiv \lambda s.$ ({(x,s)},False)
- → Others are similar.

select – nondeterministic selection from a set:

select
$$A \equiv \lambda s$$
. $((A \times \{s\}), False)$

___ Demo

Monadic while loop, defined inductively.

Monadic while loop, defined inductively.

whileLoop ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$

 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool))$

Monadic while loop, defined inductively.

whileLoop ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$

 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times \text{ bool})) \Rightarrow$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times \text{ bool}))$

whileLoop C B

- → condition *C*: takes loop parameter and state as arguments, returns bool
- → monadic body B: takes loop parameter as argument, return-value is the updated loop parameter
- → fails if the loop body ever fails or if the loop never terminates

Monadic while loop, defined **inductively**.

whileLoop ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$

 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool))$

whileLoop CB

- → condition C: takes loop parameter and state as arguments, returns bool
- → monadic body B: takes loop parameter as argument, return-value is the updated loop parameter
- → fails if the loop body ever fails or if the loop never terminates

Example: whileLoop $(\lambda p \ s. \ hp \ s \ p = 0) \ (\lambda p. \ return \ (ptrAdd \ p \ 1)) \ p$

```
Results: while_results :: ('a \Rightarrow 's \Rightarrow bool) \Rightarrow
('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow
((('a \times 's) \text{ option}) \times (('a \times 's) \text{ option})) \text{ set}
```

Results: while_results ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $((('a \times 's) \text{ option}) \times (('a \times 's) \text{ option})) \text{ set}$

$$\frac{\neg C r s}{(\text{Some } (r,s), \text{ Some } (r,s)) \in \text{ while_results } C B} \text{ (terminate)}$$

Results: while_results ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$

 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $((('a \times 's) \text{ option}) \times (('a \times 's) \text{ option})) \text{ set}$

$$\frac{\neg C r s}{(\mathsf{Some} (r,s), \mathsf{Some} (r,s)) \in \mathsf{while_results} C B} \text{ (terminate)}$$

$$\frac{\textit{C r s} \quad \mathsf{snd} \; (\textit{B r s})}{(\mathsf{Some} \; (\textit{r,s}), \; \mathsf{None}) \in \mathsf{while_results} \; \textit{C B}} \; (\mathsf{fail})$$

Results: while_results ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $((('a \times 's) \text{ option}) \times (('a \times 's) \text{ option})) \text{ set}$

$$\frac{\neg C r s}{(\text{Some } (r,s), \text{ Some } (r,s)) \in \text{ while_results } C B} \text{ (terminate)}$$

$$\frac{C r s \text{ snd } (B r s)}{(\text{Some } (r,s), \text{ None}) \in \text{ while_results } C B} \text{ (fail)}$$

$$\frac{C r s \text{ } (r',s') \in \text{fst } (B r s) \text{ } (\text{Some } (r',s'), z) \in \text{ while_results } C B} {(\text{Some } (r,s), z) \in \text{ while_results } C B} \text{ (loop)}$$

```
while_terminates :: ('a \Rightarrow 's \Rightarrow bool) \Rightarrow

('a \Rightarrow ('s \Rightarrow ('a \times 's) set \times bool)) \Rightarrow

'a \Rightarrow 's \Rightarrow bool
```

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $'a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg Crs}{\text{while_terminates } CBrs} \text{ (terminate)}$$

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $'a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg Crs}{\text{while_terminates } CBrs} \text{ (terminate)}$$

$$\frac{Crs}{\text{while_terminates } CBrs} \text{ (loop)}$$

$$\frac{Crs}{\text{while_terminates } CBrs} \text{ (loop)}$$

while_terminates ::
$$('a \Rightarrow 's \Rightarrow bool) \Rightarrow$$
 $('a \Rightarrow ('s \Rightarrow ('a \times 's) \text{ set } \times bool)) \Rightarrow$
 $'a \Rightarrow 's \Rightarrow bool$

$$\frac{\neg C r s}{\text{while_terminates } C B r s} \text{ (terminate)}$$

$$\frac{C r s \quad \forall (r',s') \in \text{fst } (B r s). \text{ while_terminates } C B r' s'}{\text{while_terminates } C B r s} \text{ (loop)}$$
whileLoop $C B \equiv$
 $(\lambda r s. (\{(r',s'). (Some (r, s), Some (r', s')) \in \text{while_results } C B \}, (Some (r, s), None) \in \text{while_results } \vee$
 $\neg \text{while_terminates } C B r s))$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in \mathsf{fst}\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

$$\{ \} \text{ return } x \{ \} A r s. P r s \}$$
 $\{ \} \text{ get } \{ P \}$ $\{ \} \text{ modify } f \{ P \} \}$

$$\{ \} \text{ assert } P \{ Q \}$$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in fst\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in \mathsf{fst}\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in \mathsf{fst}\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in fst\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in fst\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in fst\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

$$\{\lambda s.\ P \times s\}$$
 return X $\{\lambda r s.\ P r s\}$ $\{\lambda s.\ P s s\}$ get $\{P\}$ $\{\lambda s.\ P () \times \}$ put X $\{P\}$ $\{\lambda s.\ P (f s) s\}$ gets $\{P\}$ $\{\lambda s.\ P () (f s)\}$ modify $\{P\}$ $\{\lambda s.\ P \longrightarrow Q () s\}$ assert $\{P\}$

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.\ P\ s \longrightarrow \forall (r,s') \in \mathsf{fst}\ (m\ s).\ Q\ r\ s'$$

 \rightarrow Post-condition Q is a predicate of return-value and result state.

 $\{$ | $\}$ if P then f else g $\{S\}$

$$\frac{P \implies \{Q\} \ f \, \{S\} \quad \neg \ P \implies \{R\} \ g \, \{S\}}{\{\lambda s. (P \longrightarrow Q \ s) \ \land \ (\neg P \longrightarrow R \ s)\} \ \text{if} \ P \ \text{then} \ f \ \text{else} \ g \ \{S\}}$$

$$P \Longrightarrow \{Q\} \ f \{S\} \quad \neg P \Longrightarrow \{R\} \ g \{S\}$$

$$\{\lambda s.(P \longrightarrow Q s) \land (\neg P \longrightarrow R s)\} \ \text{if } P \text{ then } f \text{ else } g \{S\}$$

$$\frac{\bigwedge x. \{B x\} \ g \times \{C\} \quad \{A\} \ f \{B\}}{\{A\} \ \text{do}\{x \leftarrow f, g x\} \} \{C\}}$$

$$\frac{P \Longrightarrow \{Q\} f \{S\} \neg P \Longrightarrow \{R\} g \{S\}}{\{\lambda s.(P \longrightarrow Q s) \land (\neg P \longrightarrow R s)\} \text{ if } P \text{ then } f \text{ else } g \{S\}}$$

$$\frac{\bigwedge x. \{B x\} g x \{C\} \quad \{A\} f \{B\}}{\{A\} \text{ do}\{x \leftarrow f, g x\} \{C\}}$$

$$\frac{\{R\} m \{Q\} \quad \bigwedge s. P s \Longrightarrow R s}{\{P\} m \{Q\}}$$

$$\frac{P \implies \{Q\} \ f \{S\} \quad \neg P \implies \{R\} \ g \{S\}}{\{\lambda s.(P \longrightarrow Q \ s) \land (\neg P \longrightarrow R \ s)\} \ \text{if } P \ \text{then } f \ \text{else} \ g \{S\}}$$

$$\frac{\bigwedge x. \ \{B \ x\} \ g \ x \{C\} \quad \{A\} \ f \{B\}}{\{A\} \ \text{do}\{\ x \leftarrow f, \ g \ x\} \ \{C\}}$$

$$\frac{\{R\} \ m \{Q\} \quad \bigwedge s. \ P \ s \implies R \ s}{\{P\} \ m \ \{Q\}}$$

$$\frac{\bigwedge r. \; \{\!\!\{ \lambda s. \; I \; r \; s \; \land \; C \; r \; s \!\!\} \; B \; \{\!\!\{ J \!\!\} \; \; \bigwedge r \; s. \; [\![I \; r \; s; \; \neg \; C \; r \; s \!\!] \; \Longrightarrow \; Q \; r \; s}{\{\!\!\{ J \; r \!\!\} \; \text{whileLoop} \; C \; B \; r \; \{\!\!\{ Q \!\!\} \!\!\}}$$

___ Demo

We have seen today

- → Deep and shallow embeddings
- → Isabelle records
- → Nondeterministic State Monad with Failure
- → Monadic Weakest Precondition Rules