sy
>

y
—~

SW

DNEY

NG

2

y

U

S

Z

=<

COMP4161
Advanced Topics in Software Verification

>>=

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023



Content

-» Foundations & Principles
e Intro, Lambda calculus, natural deduction
e Higher Order Logic, Isar (part 1)
e Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction
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Deep Embeddings

We used a datatype com to represent the syntax of IMP.
=» We then defined semantics over this datatype.

This is called a deep embedding:

=¥ separate representation of language terms and their semantics.

Advantages:

=» Prove general theorems about the language, not just of programs.
=¥ e.g. expressiveness, correct compilation, inference completeness ...
=» usually by induction over the syntax or semantics.

Disadvantages:

=» Semantically equivalent programs are not obviously equal.
=» e.g. “IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.
=» Many concepts already present in the logic must be reinvented.
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Shallow Embeddings

Shallow Embedding: represent only the semantics, directly in the logic.
=» A definition for each language construct, giving its semantics.
=» Programs are represented as instances of these definitions.

Example: program semantics as functions state = state

SKIP= JXs. s
IFbTHEN c ELSEd = JXs. if bsthencselseds

=> “IF True THEN SKIP ELSE SKIP = SKIP” is now a true statement.
=¥ can use the simplifier to do semantics-preserving program rewriting.

Today: a shallow embedding for (interesting parts of) C semantics
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Records in Isabelle

Records are n-tuples with named components

Example:
record A = a: nat
b::int
=» Selectors: a: A= nat, b:: A=int, ar=SucO
=» Constructors: (a=Suc0, b=-1))
=» Update: r(a:=SucO0], b_update (Ab. b+1)r

Records are extensible:

record B = A +
c :: nat list

(a=Suc0, b=-1, ¢c=10,0] )




Demo
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Nondeterministic State Monad with Failure

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C ideas:
=» Access to volatile variables, external APls: Nondeterminism
=» Undefined behaviour: Failure
=» Early exit (return, break, continue): Exceptional control flow

Relatively straightforward Hoare logic

Used extensively in the seL4 microkernel verification work.

AutoCorres: verified translation from deeply embedded C to monadic
representation

=» Specifically designed for humans to do proofs over.
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Model the semantics of a (deterministic) computation as a function
's=('ax’s)
The computation operates over a state of type 's:
=*» Includes all global variables, external devices, etc.

The computation also yields a return value of type ‘a:

= models e.g. exit status and return values

return — the computation that leaves the state unchanged and returns
its argument:

return x = As.  (x,9)
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State Monad: Basic Operations

get — returns the entire state without modifying it:
get = s (s9)

put — replaces the state and returns the unit value ():
put s= A ((),9)

bind — sequences two computations; 2nd takes the first's result:
c>=d = MXs.let (rs)=csindrs’

gets — returns a projection of the state; leaves state unchanged:
gets f = get >>= (As. return (f's))

modify — applies its argument to modify the state; returns ():
modify f = get >>= (As. put (fs))
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Monads, Laws

Formally: a monad M is a type constructor with two operations.
return :: o = M « bind: Ma=(a=Mpg)=Mg

Infix Notation: a >>= b is infix notation for bind a b
Do-Notation: a >>= (Ax. b x) is often written as do { x < a; b x }

Monad Laws:
return-left: (return x >=1f) = fx
return-right: (m>>=return) = m

bind-assoc:  ((a >=b) >=c) = (a>= (Ax bx>=¢))

10 | COMP4161



State Monad: Example

A fragment of C:
void f(int *p) {

int x = *p;
if (x < 10) {
*p = x+1;

}

11 | COMP4




State Monad: Example

record state =
hp :: int ptr = int

“int ptr = (state = (unit,state))"

A fragment of C: £
void f(int *p) { fp =
int x = *p; do {_
if (x f 10) { x < gets (Xs. hp s p);
*p = X+l if x < 10 then
} modify (hp_update (Ah. (h(p := x + 1))))
} else

return ()
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State Monad with Failure

Computations can fail: s = (('a x 's) x _bool)

bind — fails when either computation fails
bind a b=let ((r,s),) =as;, ((r',s").f)=brs'in((r's"), fV )

fail — the computation that always fails:
fail = As. (undefined, True)

assert — fails when given condition is False:
assert P = if P then return () else fail

guard — fails when given condition applied to the state is False:
guard P = get >>= (Js. assert (P s))
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Guards

Used to assert the absence of undefined behaviour in C

=» pointer validity, absence of divide by zero, signed overflow, etc.

fp =
do
y <guard (Xs. valid s p);
x < gets (As. hp s p);
if x < 10 then
modify (hp_update (Ah. (h(p :=x + 1))))
else
return ()
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Computations can be nondeterministic: 's = (('a x 's) set x bool)

Nondeterminism: computations return a set of possible results.

=» Allows underspecification: e.g. malloc, external devices, etc.

bind — runs 2nd computation for all results returned by the first:

bindab= Xs. ({(r",s”). 3(r,s) efst (as). (r's") efst (br's)},
snd (as) vV (3(r,s) efst(as). snd (br's’)))

All non-failing computations so far are deterministic:

= e.g. return x = As. ({(x,s)},False)
=» Others are similar.

select — nondeterministic selection from a set:
select A= Xs. ((A x{s}),False)
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While Loops

Monadic while loop, defined inductively.

whileLoop :: ('a = s = bool) =
('a = (s = ('a x ’s) set x bool)) =
('a = ('s = ('a x 's) set x bool))

whileLoop C B

=» condition C: takes loop parameter and state as arguments, returns bool

=» monadic body B: takes loop parameter as argument, return-value is the
updated loop parameter

=» fails if the loop body ever fails or if the loop never terminates

Example: whileLoop (Ap s. hp s p = 0) (Ap. return (ptrAdd p 1)) p
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('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

- Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

17 | COMP4161 | G Kle



Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = 's = bool) =
('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

- Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

Crs snd (Brs)
(Some (r,s), None) € while_results C B

(fail)

17 | COMP4161 | G Kle



Defining While Loops Inductively

Two-part definition: results and termination
Results: while_results :: ('a = 's = bool) =
('a = (s = ('a x 's) set X bool)) =
((("a x 's) option) x (('a x 's) option)) set

- Crs
(Some (r,s), Some (r,s)) € while_results C B

(terminate)

Crs snd (Brs)
(Some (r,s), None) € while_results C B

(fail)

Crs (r,s’) efst(Brs) (Some (r',s’), z) € while_results C B
(Some (r,s), z) € while_results C B

(loop)
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’
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(‘a = ('s = ('a x 's) set x bool)) =

’

'a = 's = bool

- Crs
while_terminates C B r s

(terminate)
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Defining While Loops Inductively

Termination:

’

while_terminates :: ('a = 's = bool) =
(‘a = ('s = ('a x 's) set x bool)) =

’

'a = 's = bool

- Crs
while_terminates C B r s

(terminate)

Crs V(rs’) € fst (Brs). while_terminates C B r's’
while_terminates C B r s

(loop)

whileLoop C B =
(Ars. ({(rs"). (Some (r, s), Some (r’, s)) € while_results C B},
(Some (r, s), None) € while_results V
—while_terminates C B r s))




Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{ } return x {Ars. Prs}p | b get {P} | } put x {P}
{ I gets f {P} { } modify f{P}

i I assert P {QJ} { I fail {Q}
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Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}
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Hoare Logic over Nondeterministic State Monads

Partial correctness:
{P} m{Q} =Vs. Ps—V(rs)efst(ms). Qrs’

=» Post-condition Q is a predicate of return-value and result state.

Weakest Precondition Rules

{Xs. P x s} return x {Ars. Prs} {Xs. Pssl} get {P} {Xs. P () x} put x {P}
{Xs. P (fs) s} gets f {P} {Xs. P () (fs)} modify f {P[}

{Xs. P —Q () s} assert P {Q]} {A-. True} fail {Q}
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More Hoare Logic Rules

{ | if P then felse g {S]}




More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh

{As (P — @5s) A (=P — R )} if P then felse g {S]}




More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh
{As. (P — Qs) A (P — R )} if Pthen felse g {S]}

Ax B xt g x{C} {A} F{B}

{Al do{ x « £ gx} {C}




More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh
{As. (P — Qs) A (P — R )} if Pthen felse g {S]}

Ax B xt g x{C} {A} F{B}
{Al do{ x « £ gx} {C}

{R} m{Q} As.Ps = Rs
P m QL
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More Hoare Logic Rules

P = {Q} F{S} - P = {R}g{Sh
{As. (P — Qs) A (P — R )} if Pthen felse g {S]}

Ax B xt g x{C} {A} F{B}
{Al do{ x « £ gx} {C}

{R} m{Q} As.Ps = Rs
P m QL

ANr.{xs.lrs A Crsp B{lI} Ars[lrss - Crs] = Qrs
{! r} whileLoop C B r {Q}
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Demo



We have seen today

=¥ Deep and shallow embeddings

=» Isabelle records
=» Nondeterministic State Monad with Failure
=» Monadic Weakest Precondition Rules




