VVVVVV

COMP4161
Advanced Topics in Software Verification

INV & Exam Prep

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

rs
et

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

INV

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Practice with invariants!

Recall:
=» invariants are needed to automate the application of hoare rules
=» they are used by the weakest precondition calculus to deal with loops

Recall:
=» an invariant needs to be “enough” (to prove the postcondition)
=» an invariant needs to be an invariant
=» “true before the loop”

=» “if true at the start of an iteration, still true after one
iteration”

Weakest precondition - recall

= { P} doyi iy { @}

{P}
pre iy (pre ii (pre b Q)) = pre i; ip; i3; Q
Io;
pre iy (pre i Q)
;
pre i @
i2;

Invariant - recall

{P}
(“true before the loop”)
?? pre (WHILE b INV | DO ¢ OD) = |
WHILE b INV |
(“if true at the start of an iteration,")

DO (“still true after one iteration”)
c
oD
(“enough™)
{@}

5 | COMP4161 | G Klein, M aka, J Aman Pohjola

Example 1

{a>0 A b>0}
A:=0; A= 0 1 2 3 4
B :=0; B= 0 b b+b b+b+b b+b+b+b
INV{B=0b*A}
WHILE A +# a
DO
B := B+ b;
A=A+1
oD
{B=bxa}

6 | COMP4161 | G Klein, M ka, J Aman Pohjola, R Sison CC-BY-4.0 License

Example 1

{a>0 A b>0}

A:=0;

B :=0;

INV{B=0b*A}

WHILE A +# a

DO = bxA + b
B :=B+b; =B+b V
A=A+1

oD

{B=bxa}

7 | COMP4161 | G Klein, M

Example 2

{a>0Ab>0}

A:=0;

B :=0;

INV{B=b*A}

WHILE A< a

DO = bxA + b
B:= B+ b; = B+b V
A=A+1

oD

{B=bxa}

8 | COMP4161 | G

Example 2

{a>
A=
B: :
INV{B=b*AAA<a}
WHILE A< a
DO
B := B+ b;
A=A+1
oD
{B=bxa}

9 | COMP4161 | G Klein, M aka, J Aman Pohjola

Example 3

{a>0 A b>0}
A= a; A= a a1l a2 a-3
B =1, B = 1 b b*b b*b*b
— b3 — ba—A
INV { B = ba_A}
WHILE A=#£0

DO

Example 3

a; A= a a1l a2 a-3
= 1; B = 1 b b* b*b*b
— b3 _ ba—A

INV{B=b""A AA<a}
WHILE A #£ 0
DO

Example 4

{ True }

X = x; X = [xo;x1;x2...] [x1;%...] [x2...]
Y= v= 1 xo#ll xaxo#]]
INV { (rev X)QY = rev x}

WHILE X #]

DO = (rev X)QY

= (hd X#Y); = (rev ((hd X)#(tl X)))®

Example 5
Try with b =10 =2! +23 or b =12 =22 4 23 (and e.g. a=3)

{a>0Ab>0}

A:=a B:=b; C:=1;

INV { a® = C * AB}

WHILE B # 0

DO

INV { ab = C x AB}
WHILE (B mod 2 = 0)

DO
A=AxA;
B := B div 2;
oD
C:=CxA;
B=B-1

13 | COMP4161 | G Klein, M Tanaka, J Aman Po

Example 6

LEQ An=VYk. k<n— Alk < piv
GEQ An=VYk. n< k < length A— Alk > piv
EQAnm=Vk. n<k<m-— Alk = piv

{0 < length A }
|:=0;u:=lengthA—1,A:=a
INV{ LEQ AINGEQ A uAhu< length AN I < length AN A permutes a}
WHILE /| < u
DO
INV { LEQ AIANGEQ A uNu < length AN < length AN A permutes a}
WHILE | < length AN All < piv DO | := 1+ 1 OD;

INV { LEQ AINGEQ A uNnu< length AN < length AN A permutes a}
WHILE 0 < u A piv < Alu DO u:=u—10D;

IF / < uTHEN A:= A[l := Alu,u := All] ELSE SKIP FI
oD
{LEQAuUNEQAulANGEQ AlAA permutes a }

Example 7

Reminder:
datatype ref = Ref int | Null
Pointer access: p—field
Pointer update: p—field :==v
Definition:
“List nxt p Ps” is a linked list, starting at pointer p following the
next
pointer through the function nxt, and where Ps contains the list of
the pointers of the linked list.

{ List nxt p Ps A\ X € Ps }
INV { 3Qs. List nxt p Qs A X € Qs}
WHILE p # Null A p # Ref X

DO
p = p — nxt;

161 | G Klein, M Tanaka, J Aman Pc

Example 8

What is is Isabelle function doing?

fun f :: 'a list =’ a list =’ a list where
f [l ys=ysl|
f xs [| = xs|
f (x#xs) (y#ys) = x#y# f xs ys

16 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0

Example 8

What is is Isabelle function doing?

fun splice :: 'a list =’ a list =’ a list where
splice [] ys = ys|
splice xs [| = xs|
splice (x#xs) (y#ys) = x#y# f xs ys

Let's write it with linked lists!

COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0

Example 8
List nxt p Ps = Path nxt p Ps Null
Path nxt p Ps Null is a linked list from p to g following function nxt and
containing list of pointers Ps

{ List nxt p Ps A List nxt g Qs A (set Ps N set Qs) = {} Asize Qs < size Ps
pp = p;
INV { 3PPs QQs PPPs. size QQs < size PPs A

List nxt pp PPs A List nxt g QQs A Path nxt p PPPs pp

A PPPs@splice PPs QQs = splice Ps Qs A

set PPs N set QQs = {} A distinct PPPs A set PPPs N (set PPs U set QQs

WHILE g # Null
DO
qq ‘= q — nxt,q — nxt := pp — nxt, pp — nxt = q; pp := q — nxt,q :=
oD
{ List nxt p (splice Ps Qs) }

161 | G Klein, M Tanaka, J Aman Pc

Demo

VVVVVV

COMP4161
Advanced Topics in Software Verification

Exam Prep

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Last Time

=» The automated proof method wp

=» The C Parser and translating C into Simpl

=» AutoCorres and translating Simpl into monadic form
=» The option and exception monads

61 | G Klein, anaka, J Aman Poh

Exam

J

24h take-home exam (same as previous years)

Open book: can use any passive resource (books, slides, google, etc)
Not allowed to ask for help from anyone
Not allowed Al assistance for technical support (e.g. ChatGPT).

starts 8am AEST, Monday 4th Dec 2023, ends 7:59am AEST,
Tuesday 5nd Dec 2023

+4 il

J

Should be doable in about 4-6 hours.
The 24h are for flexibility not for you to stay awake actual 24 hours.

Recommend to start early, finish the easy questions first.
Take breaks. Don't forget to eat :-)
If there are clarification questions, make private threads on Ed.

44l

22 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

Content

=» Foundations & Principles

e Intro, Lambda calculus, natural deduction [1,2]
e Higher Order Logic, Isar (part 1) [2,37]
e Term rewriting (3.4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [4,5]
e Datatype induction, primitive recursion [5.7]
e General recursive functions, termination proofs [7]
e Proof automation, Isar (part 2) [8°]
e Hoare logic, proofs about programs, invariants [8.9]
e C verification [9.10]
e Practice, questions, exam prep [10]

231 due; Pa2 due; a3 due

23 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

A

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned so far...

A calculus syntax

free variables, substitution

[reduction

« and 7 conversion

3 reduction is confluent

A calculus is very expressive (turing complete)

d4ii il

A calculus results in an inconsistent logic

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned so far...

=» Simply typed lambda calculus: A~

=» Typing rules for A7, type variables, type contexts
=» [-reduction in A7 satisfies subject reduction

=» [-reduction in A7 always terminates

=» Types and terms in Isabelle

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

VVVVVV

COMP4161
Advanced Topics in Software Verification

)\%and HOL

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

What we have learned so far...

natural deduction rules for A, V, —, —, iff...
proof by assumption, by intro rule, elim rule
safe and unsafe rules

indent your proofs! (one space per subgoal)
prefer implicit backtracking (chaining) or rule_tac, instead of back
prefer and defer

L 2 I A

oops and sorry

29 | COMP4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

7 &
N
a'

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

HOL

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned so far...

Isar style proofs
proof, qed

assumes, shows

fix, obtain
moreover, ultimately
forward, backward

dii il

mixing proof styles

61 | G Klein, anaka, J Aman Poh

7 &
N
a'

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

HOL

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned today ...

=» Defining HOL

=» Higher Order Abstract Syntax
=» Deriving proof rules

=» More automation

=» Equations and Term Rewriting

4161 | G Klein, M Tanaka, J Aman Pohjola, R Sison CC-BY-4.0 License

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

—

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today...

=» Equations and Term Rewriting
=» Confluence and Termination of reduction systems
=» Term Rewriting in Isabelle

@, J Aman P

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

—

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned today ...

=» Conditional term rewriting

=» Congruence rules
=> AC rules
=» More on confluence

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

U

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned today ...

-» Sets
=» Type Definitions
=» Inductive Definitions

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

U

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have learned today ...

=» Formal background of inductive definitions
=» Definition by intersection
=» Computation by iteration
=» Formalisation in Isabelle

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

Gy

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

&y

¢

R

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today ...

=» Datatypes

=» Primitive recursion
=» Case distinction

=» Structural Induction

@, J Aman P

rs
et

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

fun

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today ...

=» General recursion with fun/function
=» Induction over recursive functions
=» How fun works

=» Termination, partial functions, congruence rules

{

C
Z
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today ...

=» sledgehammer
=» nitpick
=» quickcheck

@, J Aman P

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

{P} ... {Q}

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today ...

=» Syntax of a simple imperative language
=» Operational semantics

=» Program proof on operational semantics
=» Hoare logic rules

=» Soundness of Hoare logic

rs
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

{P} ... {Q}

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today ...

=» Weakest precondition
=» Verification conditions
=» Example program proofs
=» Arrays, pointers

61 | G Klein, anaka, J Aman Poh

Y &
el

A\
A

-
Z {
=

«»
=<
o
z
m
=<

COMP4161
Advanced Topics in Software Verification

>>=

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

We have seen today

=» Deep and shallow embeddings

=» Isabelle records

=» Nondeterministic State Monad with Failure
=» Monadic Weakest Precondition Rules

61 | G Klein, anaka, J Aman Poh

-3
S

NG

R
A%

DNEY

2

y

U

S

Z

=<

COMP4161
Advanced Topics in Software Verification

C

Gerwin Klein, Miki Tanaka, Johannes Aman Pohjola, Rob Sison

T3/2023

Today we have seen

=» The automated proof method wp

=» The C Parser and translating C into Simpl

=» AutoCorres and translating Simpl into monadic form
=» The option and exception monads

61 | G Klein, M Tanaka, J Aman Pohjola, R Sison

