
Tool Support for Just-in-Time Architecture
Reconstruction and Evaluation: An Experience Report

Ian Gorton
Empirical Software Engineering Group, National

ICT Australia

School of Computer Science and Engineering,
University of New South Wales

Ian.Gorton@nicta.com.au

Liming Zhu
Empirical Software Engineering Group, National

ICT Australia

School of Computer Science and Engineering,
University of New South Wales

Liming.Zhu@nicta.com.au

ABSTRACT
The need for software architecture evaluation has drawn
considerable attention in recent years. In practice, this is a
challenging exercise for two main reasons. First, in deployed
projects, software architecture documentation is often not readily
available, and may not be a correct representation of the as built
architecture. Second, large software systems have numerous
potential views of the various architecturally significant structures
in the system. In this paper we assess the capabilities of software
reverse engineering and architecture reconstruction tools to
support just-in-time architecture reconstruction. If an application’s
architecture can be reconstructed efficiently, this could promote
more effective architecture reviews and evaluations. We describe
our experiences in leveraging multiple reconstruction tools and
how these guided the choice of design artifacts to construct. We
discovered that the tools complemented each other in identifying
reconstruction scope, critical architectural elements, potential
design irregularities and creating useful architectural views for
different evaluation tasks. With the help of these tools, the
reconstruction and evaluation effort was significantly streamlined
and productive. Finally, we also report some potential
improvements these tools could make.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.10 [Software]:
Software Engineering – Design; D.2.11 [Software]: Software
Engineering – Software Architectures; D.2.2 [Software]: Software
Engineering – Design Tools and Techniques

General Terms
Documentation, Design, Theory

Keywords
Software Architecture, Architecture Evaluation, Reverse
Engineering, Reverse Architecting, Automated Software

Engineering, CASE Tools

1. INTRODUCTION
Software architecture (SA) evaluation has emerged as an
important software quality assurance technique [7]. Architecture
evaluation has been used as a way to prevent architecture erosion,
prepare for re-engineering and ensure implementations are in
alignment with the intended application architecture.

To perform an effective architecture evaluation, a suitable set of
architecture documentation is required [11]. Ideally, the
architecture documentation needs to be concise but effective,
flexible, interactive and dynamic. However in many deployed
applications, having high quality architecture documentation
available and synchronized with the application implementation is
difficult and costly [23]. This is especially true for large
applications with many potential views for different subsystems or
aspects of the system.

Software reverse engineering technologies can help with just-in-
time reconstruction of the architecture documentation when a
review is scheduled. Generating current architecture
documentation precisely when it is required for review ensures the
evaluation team has an accurate representation of the application
architecture. In such circumstances, architecture reconstruction
becomes an integrated activity for performing architecture
evaluations. However, reverse engineering remains a human-
intensive activity that requires knowledge from software engineers
and domain experts in addition to automated tool guidance. [25].

In this paper, we exercise five different tools to conduct an
architecture reconstruction and evaluation on a major subsystem
of a commercial application. Our aim was to assess if architecture
reconstruction and evaluation can be streamlined with appropriate
tools support. This would make just-in-time reconstruction a
potentially attractive strategy in the many projects that do not
maintain current architecture documentation, and promote more
frequent reviews due to the reduced overhead of generating the
architecture documentation. The overall process followed was
based on Quality Attribute Driven Software Architecture
Reconstruction (QADSAR) [29] which integrates the spirit of
scenario-based architecture evaluation [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2004 ACM 1-58113-963-2/05/0005...$5.00.

We begin by discussing background work on architecture
evaluation, reverse engineering and architecture reconstruction
tools. We then explain our selection of tools along with the
introduction of the software we evaluated. We report our
experience in section five by demonstrating the reconstruction and
evaluation process. We then present our findings in section six.

2. RELATED WORK
2.1 Software Architecture Evaluation and
Modifiability
It has been shown that SA constrains the achievement of various
quality attributes (such as performance, maintainability and
usability) in a software intensive system [7]. One of the most
important quality attributes is modifiability. Architecting
applications in the face of uncertain requirements and creating
flexible, modifiable architectures has drawn substantial attention
from both industry [16] and academia [9]. Models for predicting
modifiability at the architectural level have been proposed and
validated in industrial settings [24]. However, these methods have
not focused on reconstructing an architecture from an existing
code base and evaluating its modifiability.

2.2 Software Architecture Reconstruction
Software architecture reconstruction has its root in traditional
software reverse engineering. Software reverse engineering has
focused on program understanding and visualizing code structure
and behavior (e.g. call graphs, data flow diagrams) at different
abstraction levels [25].

Architecture reconstruction requires more than program
comprehension and code level analysis. This is because software
architecture affects quality attributes, and these are mostly not
directly expressed in an application’s source code. Architecture
evaluations have the goal of evaluating important quality
attributes. Quality attribute driven architecture evaluation
complements various architecture reconstruction methods [15, 19,
20, 30, 32] to address this issue [29].

Consequently, architecture reconstruction requires the
reconstructed model to incorporate architecturally significant
concepts. These include architectural level components and
connectors including COTS technologies, design patterns,
component distribution information and architectural decisions as
first class elements [10]. These typically cannot be directly
extracted from source code without input from software
engineers/architects. This additional information must be
constructed and expressed during the reconstruction process [20]
by producing models at different abstraction levels. Importantly,
the mapping between levels must be retained and available during
the architecture evaluation [25]. However, the precise nature of
the architectural level concepts that need to be constructed depend
on the goals of the evaluation being undertaken - they can not in
the general case be pre-determined.

2.3 Reconstruction Tools and Design Metrics
There is a range of existing tools that can contribute to an
architecture reconstruction exercise. Substantial effort has also
been made in developing reconstruction tool frameworks to
facilitate tool interoperability [28, 31]. Comparison studies have
been performed to evaluate reverse engineering tools for program
understanding [8] and architectural recovery [6]. These
comparisons address the usability of the tools, the common views

the tools can generate and the accuracy of their extraction and
abstraction.

In contrast, little has been reported on how these tools support a
selective architectural reconstruction and evaluation process.
Architecture reconstruction is inherently an exploratory activity
[25, 29]. An architect must determine the architecturally
significant abstractions and choose suitable views to depict their
relationships.

Many of the tools reviewed in the literature have been superseded
or are only research prototypes. Therefore, in order to undertake
the reconstruction project, we selected state of the arts tools from
industry and the open source and research communities. As far as
we could ascertain, there is no single silver bullet tool that can
solve all the needs of an architecture reconstruction effort. It was
hence necessary to use several tools in a complementary fashion,
exploiting the strengths of each to provide architecture insights,
metrics and views.

3. The PROJECT
A NICTA industrial collaborator was interested in assessing a
core Java subsystem of one of their commercial products as a
candidate for porting to a new component architecture.
Consequently, they were interested in the compatibility of their
existing architecture with the target component architecture, and
how much effort would be required to modify the code.

The code base is an integral part of a series of financial products
that are written in Java. The system generates interesting financial
data which can be accessed by subscribers to the service. The
financial data produced by the application needs to be generated in
an extremely flexible manner so that it can be easily tailored to
each subscriber’s needs. The content delivery mechanism exploits
XML formats and XSLT transformations to render tailored views.
In addition to the main business logic packages, there are several
utility packages for handling view generation, XML serialization
and subscriber request handling.

The code base was first developed in 1999. It has since been used
in multiple projects, and has been refactored on several occasions
to progressively improve the design quality and functionality. The
code is well documented using Javadoc. It has 50k lines of code
with 296 classes/interfaces in 27 packages.

4. SELECTION OF TOOLS
Five tools were selected in this study. These were:

1. Understand for Java (UFJ) [4]

2. JDepend [3]

3. Structural Analysis for Java (SA4J) [1]

4. ARMIN (Architecture Reconstruction and MINing)

5. Enterprise Architect (EA) [2]

The following is a summary of the each tool’s capabilities for
architecture reconstruction and evaluation.

4.1 Understand for Java (UFJ)
One of the first steps in an architecture reconstruction is to extract
information from the source code. Several source code extraction
tools exist for Java, such as UFJ and jfx [18]. The tools vary in
their level of functionality and output formats. In terms of output,

some tools generate Rigi Standard Format (RSF) or extensions of
RSF, while others generate proprietary formats.

UFJ is a high quality commercial tool for reverse engineering Java
code. We selected UFJ for the following reasons:

1) UFJ provides more than simple source information extraction.
It also generates several comprehensive cross-reference data
dictionaries supported by both web-based and desktop-based code
navigation environments. These navigation tools are useful in
helping the reconstruction team explore the code and understand
the relationships between architecturally significant elements.

2) UFJ also provides object-oriented code metrics and other
standard metrics, including LCOM (Percent Lack of Cohesion)
DIT (Max Inheritance Tree) and CBO (Count of Coupled
Classes). These metrics help give an overall measure of the code
quality.

3) UFJ has an integrated static call graph viewer that depicts call
dependencies between classes.

4) The output format of the source information is a proprietary
text format. The format is well structured and amenable to Perl
script manipulation into RSF.

4.2 JDepend
UFJ provided standard class level OO metrics, which were useful
but not necessarily architecturally significant. Producing package
level metrics with UFJ is possible but required additional effort.
We selected JDepend because it is an open source tool which
provides design metrics beyond traditional OO metrics at the
package level. Among the many metrics supported, the following
proved to be particularly useful for architecture reconstruction and
evaluation:

Afferent Couplings (Ca) of Package A: The number of other
packages that depend upon classes within package A. This is an
indicator of package A’s responsibility.

Efferent Couplings (Ce) of Package A: The number of other
packages that the classes in package A depend upon. This is an
indicator of package A’s independence.

Abstractness (A) of Package A: The ratio of the number of
abstract classes and interfaces in package A to the total number of
classes and interfaces in package A.

Instability (I) of Package A: I = Ce/(Ce+Ca). This is an indicator
of package A’s relative resilience to change.

Distance from the Main Sequence (D): the perpendicular
distance of a package from the idealized line A+I = 1. This is an
indicator of the package’s balance between abstractness and
stability. In an ideal situation, if the package is almost completely
abstract (A->1), it should be very stable (I -> 0). On the other
hand, if the package is almost completely concrete (A->0), its
instability (I->1) could be justified.

The use of these metrics in the reconstruction project is
demonstrated in the section 5.

4.3 Structural Analysis For Java (SA4J)
SA4J is IBM’s latest project for analysing Java dependencies. It
analyses structural dependencies between java packages and
measures the stability of both individual objects (classes,
interfaces and packages) and the overall system. It helps to

identify potential design problems as anti-patterns. SA4J
reconstructs a series of architecturally significant diagrams
automatically, for example, package dependency diagrams and
class/interface dependencies diagrams.

SA4J calculates the overall stability of the system by first
determining the potential average transitive impact AI (Average
Impact) of each component on the rest of the system. The overall
AI is then the average impact of each component.

Transitive impact analysis is different from the standard coupling
measurement and appears to be more useful in architecture
evaluation. This is because standard coupling metrics only capture
the impact of changes to adjacent architectural elements.
However, whether the impacts of a change have the potential to be
contained or propagated can not be seen directly.

Based on the transitive change impacts, SA4J also provides the
following design metrics and anti-patterns:

Global Butterfly: If the component is changed, it may affect
many other components.

Global Breakable: The component is often affected if anything in
the system is changed.

Global Hub: The component is both a global butterfly and a
global breakable.

Skeleton: This layered view of the system is constructed by
putting objects (class/interface/package) that do not depend on
anything at the bottom of the visualization. The objects that are
dependent on the lowest layer appear in the above layer, and so
on. In this view, a stable system should have a normal pyramid
shape. An unstable system may look like an upside down pyramid
shape. The skeleton can be cross-referenced with other artifacts,
like packages or inheritance trees.

We selected SA4J because it provides a unique set of useful
design diagrams and metrics which are not available in any other
tools.

4.4 ARMIN
ARMIN (Architecture Reconstruction and MINing) is a tool
developed by the Software Engineering Institute and Robert
Bosch Corporation. Use of ARMIN in architecture reconstruction
has been reported in [26, 27] It is a highly configurable modeling
and visualization tool, recognizing inputs in RSF, based on an
element and relationship schema.

After data is imported, a scripting engine provides capabilities for
further elements/relationships manipulation, such as grouping,
sorting, collapsing and so on. The resulting views can be
visualized in an aggregator window.

We selected ARMIN for the following reasons:

1) ARMIN can import any source information in RSF format, the
de facto standard for source information extraction.

2) ARMIN is highly configurable in terms of manipulating
elements and relationships. Its scripting engine can be
programmed to produce any desired relationships and visualize
them. Using this capability, ARMIN can produce unique
architectural views which other tools are not capable of.

3) During data model abstraction, the mapping between levels can
be retained in two ways:

• The logic of the mapping is reflected in the scripts which
incorporate knowledge from software engineers and domain
experts.

• The mapping can also be inspected in the visualized graph
using a drill down feature.

4) ARMIN can incorporate architectural specific elements and
concepts into the model, and is not bound by the information in
the source code. The tool does not prevent the introduction of any
new elements or relationships that can be potentially helpful in
reconstruction and evaluation. These capabilities are demonstrated
in section 5.

4.5 Enterprise Architect
Enterprise Architect (EA) is a widely used commercial UML
modelling tool. It has useful features for capturing certain
architectural views in UML notation. However, UML is somewhat
limited when it comes to expressing architecturally significant
information [14].

EA’s current reverse engineering capabilities can only reverse
engineer UML semantics such as class diagrams and associations
[22]. Class diagrams are reverse engineered only within the
context of their containing package. This means that constructing
diagrams across multiple packages requires extra effort.
Nevertheless, EA provides UML notation support and the
capability to manually configure UML-based architectural views.

5. THE RECONSTRUCTION AND
EVALUATION PROCESS
Initially, the reconstruction and evaluation were first performed by
the authors based only on the source code and existing
documentation. Then the findings were confirmed and clarified
with the client. We expect this sequence of activities to be
representative of many architecture reconstruction projects where
the code base has been acquired, or in which the original architect
may no longer be available.

We have loosely followed the QADSAR approach in conducting
the architecture reconstruction by applying the approach
iteratively. An iterative approach was more suitable given the
exploratory nature of the project. QADSAR has the following five
steps:

1) Scope Identification

2) Source Model Extraction

3) Source Model Abstraction and Visualization

4) Element and Property Instantiation

5) Quality Attribute Evaluation

1) Scope Identification:

The quality attributes of interest in the project were modifiability
and reusability (which is sometimes considered as a special case
of modifiability). To this end, metrics produced by JDepend and
SA4J were used to identify the architectural subsystems and
relationships which impacted on modifiability. As an example, an
extract of the JDepend output is shown in Table 1:

Table 1. Top 5 and bottom 5 JDepend outputs (sorted by D
column)

Package Name Ca Ce A I D

au.com.xfinancial.database 14 4 0 0.2 0.78

au.com.xfinancial.product 5 7 1 0.6 0.51

au.com.xfinancial.sql.expr 5 5 0 0.5 0.5

au.com.xfinancial.company 6 7 0 0.5 0.46

au.com.xfinancial.sql 8 4 0 0.3 0.44

…… … … … … …

au.com.xfinancial.product.impl 2 10 0 0.8 0.06

au.com.xfinancial.tools.company 2 20 0 0.9 0.06

au.com.xfinancial.tools.report 1 19 0 1 0.05

au.com.xfinancial.structure 1 23 0 1 0.04

au.com.xfinancial.content 1 23 0 1 0.01

Ca: Afferent Coupling Ce: Efferent Coupling

A: Abstractness I: Instability

D: Distance from Main Sequence

These metrics show that certain packages (e.g. the tools related
packages) are deemed unstable. However, as they contain concrete
implementation classes, the instability may be justified. We
discussed most of the high instability packages with the
development team, and they confirmed that most were not
intended for reuse. Consequently, these were not deemed
problematic from a modifiability perspective.

The D metric indicates possible problems balancing instability and
abstractness (potential reuse). For example, the product package is
relatively unstable, but is highly abstracted, which means it may
be heavily reused in the future.

In order to explore this measure, we constructed a set of views
around this package and presented them to the development team.
The package turned out to be undergoing extensive migration
from a previous design. In order to accommodate compatibilities
with existing packages, the product package had to maintain a
high level of dependencies with other packages. When the
migration is complete in near future, the package will be
refactored into several components to improve its modifiability
and reusability. Hence, deeper analysis showed that the product
package is in its present state problematic from a modifiability and
reusability perspective.

Another useful output for scoping is from the SA4J report, shown
below in Table 2. The top global breakables, global butterflies and
global hubs are presented along with other useful architectural
level design metrics.

“The overall stability of the system is 91%. Highly stable systems
are typically above 90%.”

Table 2. SA4J output excerpts

Global Breakable

Object Number of Times
Affected

Percent of Times
Affected

Content.ViewPortfolio 146 50%

Content.ViewPortfolioProfile 146 50%

Content.ReportResult 139 48%

… … …

Global Butterfly

Object Affected
objects Affected Percent of the System

XMLUtils 126 43%

Debuggable 125 43%

XMLSerializable 114 39%

… … …

Global Hub

Object
Number of
Times
Affected

Percent of
Times
Affected

Affected
objects

Affected
Percent of the
System

HomeFactory 65 22% 40 13%

LicenceHome 65 22% 40 13%

HomeManufacturable 65 22% 40 13%

… … … … …

In summary, the design metrics and anti-patterns produced by
both JDepend and SA4J led us to focus our attention on certain
components in the architecture. However, these tools could not
help us with further reconstruction and deeper analysis of these
components with the customizable capabilities we need.
Consequently, it was necessary to utilize more flexible tools like
ARMIN to reconstruct the areas of interest.

2) Source Model Extraction:

Source model extraction was performed by using UFJ and Perl
scripts. The elements/relationships we extracted and relationships
with UFJ files are presented in Table 3.

The SEI has developed a collection of extensible scripts for
converting UFJ formats to RSF, which can be input in to the
ARMIN tool. In the original scripts, the depends_on relationship
is used to represent all dependency relationships including
imports, uses, cast, and so one. This seemed too coarse grain for
our needs, so we modified the scripts to discern individual
dependency relationships for use in separate views.

SA4J does not require a separate source model extraction step. It
can take compiled class files in archives (.jar, .war, .zip and .ear)
directly.

Table 3. Relationships between RSF information and UFJ files

Relationships/elements UFJ files

defines_fn, class, function .cmx, .dct

defines, file, class .cmx
contains, file, function .dct, .pux
has_member, class, member_variable .dic
defines_var, function, local_variable .obx
defines_global, file, global_variable .obx
calls, function, function .pux
depends_on, file, file .tyx
defines_class, package, class .dct

3) Source model abstraction and visualization:

Both EA and SA4J can depict package dependency diagrams
(Figure 1) and class/interface dependency diagrams automatically.
SA4J in particular has an excellent GUI and intelligent graphic
layout.

This visualization depicts useful information on package
dependencies. However, the package diagram is inflexible in two
ways:

1) All packages are on the same level. Dependencies between
package and sub-packages are not presented, (e.g. the tools
package has several sub-packages which are depended on by other
packages). By navigating and drilling down through the packages,
these dependencies can be visualized, but the resulting views are
less useful in a lower level context. Ideally, we would like to have
had customized depictions that present dependencies across
different abstraction levels in a single diagram.

Figure 1. SA4J package dependency diagram

2) The precise nature of the dependencies can not be analyzed. A
weight indicator represents the heaviness of the dependency. This

provides some insights in to the dependency, but it takes effort to
manually navigate through diagrams to perform a deeper analysis.

It is clear that SA4J is limited in terms of customizing dependency
diagrams to show grouping, and removing hand-picked elements
that are not wanted by the architect in the view. Hence SA4J
outputs become cluttered for visualizations with a large number of
elements in certain diagrams. Because of this limitation, ARMIN
was used to reconstruct customized views that contained only the
packages and components that we were interested in from a
modifiability perspective. Figure 2 shows ARMIN’s dependency
depiction after importing the RSF data produced from the raw UFJ
information.

Here, different levels of packages are presented in the same
diagram and dependencies are aggregated. For any aggregated
relationships between two packages, we can drill down to see the
detailed dependency listed along with the diagram, as shown in
Figure 3.

As indicated in [25], one of the most important features of reverse
engineering tools is to maintain the mappings between abstraction
levels and to make them explicitly available to the user. For SA4J,
although the mapping information is not lost, it is implicit in the
program itself and can not be easily viewed and utilized.

Figure 2. ARMIN package dependency diagram

Figure 3. Drill down into an aggregated dependency

Next, we constructed views based upon one of the global
breakable components (ViewPortfolioProfile). Initially, we used
SA4J (Figure 4), as this view could be constructed by the tool
with no additional effort on our behalf.

Figure 4. Dependency diagram for ViewPortfolioProfile (two

degrees of separation of concern)

The SA4J diagram gives a clear view of the dependencies on
closely related classes and interfaces. In Figure 4, the two degrees
of separation option for ViewPortfolioProfile is enabled. This
shows both the direct and indirect class and interface
dependencies. Again however, the inability to customize this view
and omit classes and interfaces that are not of interest
architecturally diminishes its usefulness.

Another view for ViewPortfolioProfile can be easily generated
using the call graph feature in UFJ (see Figure 5).

Figure 5. UFJ Call Graph for ViewPortfolioProfile

While these views are useful in code understanding, they are
limited in expressing architecturally significant information. For
example, in addition to the class dependencies and call graphs, we
would like to see this class in the context of its enclosing package,
along with dependencies on other packages. This would require
the construction of an architectural view that spans different level
of abstractions and includes manually selected design elements.
Unfortunately, SA4J can not handle this kind of customization.

It is possible however to construct this view using ARMIN. By
executing a script that selects only the classes and packages
related to ViewPortfolioProfile. we are able to collapse the
packages in the view, while still including dependent classes and
interfaces in the same visualization (see Figure 6).

Figure 6. Class dependencies with packages

Again, the detailed relationships between design elements can be
examined by drilling down on the dependency relationship.

Figure 7. Drill down into an aggregated dependency

We also found the skeleton diagram from SAJ4 to produce
interesting architectural information. Figure 8 shows a skeleton
diagram that depicts the dependencies of the the util package.

Figure 8. Skeleton diagram cross-referencing util package

The grey squares represent the classes and interfaces in the whole
system. The red (black)1 squares represent the classes/interfaces
in the util package. The orange (light grey) squares represent the
classes/interfaces that depend on the util (red) package.

Typically, more domain specific packages reside in the upper
layers in the skeleton. As can be seen, two red (black) blocks
(classes in the util package) do in fact reside in the upper layers.
Closer inspection deteremined that these two classes are indeed
domain specific. Discussion with the development team revealed
that they reside in the same utility package for purely historic
reasons. In future, they may be moved to other more domain
specific packages.

Hence, by utilizing this view, we identified some interesting
design irregularities without actually looking at the code.
Traditionally, architecture reconstruction is based on recovering
common architecture views [11]. In this case, novel visualizations
beyond common architecture views have brought new insights to
the understanding and evaluation of the system.

4) Element and Property Instantiation

The initial views we generated were closely related to Java
language elements such as packages, classes, inter-object calls,
and so on. This is mainly because these are the easiest for a tool to
produce, since they are simply visualizations of the source code
structure.

One of the important and difficult activities in architecture
reconstruction and evaluation is to discover more abstract
elements and properties in the architecture – ones which are not
directly expressed in the source code of the application. Typical
examples would be patterns utilized in the design or logically

1 Colors in braces are for black and white prints of this document.

related components spanning across multiple implementation
packages.

During the reconstruction, we noticed some design patterns, which
had been unconsciously incorporated in to the application by the
development team. The successful identification of these patterns
can expedite architecture evaluation by leveraging reusable pattern
information on possible positive and negative consequences [33].
The use of the patterns was subsequently confirmed in discussions
with the development team.

We then used ARMIN to construct views that explicitly
incorporated the pattern information into the architecture model.
The identified patterns are Abstract Factory [13], Intercepting
Filter [5] and View Helper [5].

Figure 9. Class diagram for ViewPortfolioProfile

To achieve this, we had to introduce new architectural elements
that do not explicitly exist in the extracted source information.
ARMIN’s extensible scripting facilities made this possible. The
ARMIN script we used is shown below:

Constructing design patterns

$factory={"PortfolioHome", "UserQueryListHome", "HomeFactory"};

collapse ($factory,/name="AbstractFactory",/graph="pattern");

$viewhelper = {"PortfolioViewEngine", "PortfolioViewManager"};

collapse ($viewhelper,/name="ViewHelper",/graph="pattern");

rename("Intercepting Filter:RequestTranslator","RequestTranslator");

$pattern.show()

The original view is presented in Figure 9. The new view with
pattern information is shown in Figure 10.

Figure 10. A diagram representing three design patterns

5) Quality Attribute Evaluation

By applying QADSAR approach iteratively and interactively, we
conducted modifiability evaluations and constructed useful
architectural views as the reconstruction progressed. In the
process, we also collected specific modifiability and reusability
scenarios from the client. These scenarios concern modifiability of
particular packages and possible business requirement changes.
Some of these scenarios inspired our preliminary findings. These
new scenarios have been subsequently evaluated using the
existing diagrams and as well as some newly generated ones.

6. SPECIFIC FINDINGS
Conducting this architecture reconstruction and evaluation has
given us considerable insights in to various facets of the available
tools and how they tackle the essential problems that must be dealt
with during a reconstruction effort. The following discusses these
insights.

1) Abstraction and visualization tools should provide high levels
of flexibility, while at the same time routinely-supporting
commonly used architectural views.

At one extreme, SA4J provides an excellent set of useful
visualizations for assessing modifiability and reusability.
However, these are not easy to customize. At the other extreme,
ARMIN provides extremely flexible abstraction and visualization
models, but does not support out of the box visualizations.
ARMIN’s scripting language is powerful enough to produce
virtually any required views, but it takes additional effort to create
the scripts. Although this may not be a problem for research
purposes, it is likely to be an inhibiting factor for wider industrial
use. A suggestion would be to pre-package useful scripts or even
replace certain scripts with custom GUIs for generating common
architectural views.

2) Maintaining mapping information between abstraction levels is
important.

This has been considered one of the most important features of
any reverse engineering tools [25]. Mapping between abstraction
levels incorporates knowledge and design rationales that should be
able to be inspected at any time. SA4J maintains these mappings
implicitly. ARMIN, on the other hand, makes these mappings
explicit and accessible to the user.

3) Architectural level design metrics should be used to guide both
reconstruction and evaluation.

Architecture reconstruction and evaluation should be iterative and
interactive. Scoping should go hand in hand with the inspection of
high level design metrics and identification of anti-patterns. SA4J
and JDepend provide an excellent range of metrics to guide this
exploration. Many reverse engineering tools focus on increasing
understanding of the system based on standard views of the
software architecture. Without additional metrics, these views
only provide limited visual cues on where to look for potential
problems.

4) UML is not sufficient for architecture reconstruction and
evaluation.

UML-based reconstruction is still immature [22]. But it has the
potential to capture much architecturally significant information.
We found EA’s UML views useful initially, but the other tools
provided much better capabilities for reconstruction. With profile
extensions and dedicated tools, we envision that architecture
reconstruction could eventually be conducted using solely UML
notations.

5) The tool environment needs XML-based self describing data.

RSF has become the de facto standard for representing source
information. It however needs a separate file to describe its data -
this is known as a schema file in ARMIN. Even though the
schema file can be reused, the linkage between a data file and a
schema file and also the meaning of the schema file are not easy
to maintain in a reconstruction environment. XML could provide a
mechanism for self-describing RSF relationships. In addition, an
XML-based graph exchange format called GXL has been
proposed [17]. Only ARMIN of the tools in our review supports
GXL. This lack of data exchange capability between tools has
resulted in the additional effort of writing and extending ad hoc
scripts to transform one tool's output to another tool's input. For
example, ready-to-use views from SA4J can not be exported in
such a format and be further customized in other tools.

6) More work needs to be done on capturing dynamic information.

Although research has been done in fusing dynamic views
generated from profile tools with static views, they have not been
successfully integrated into popular toolsets [19]. This remains a
challenging and potentially highly productive area of research.

7) Information representing middleware characteristics should be
integrated into the reverse architecting tools.

With more and more enterprise level software utilizing COTS
middleware technologies and application frameworks, architecture
views should capture middleware dependencies [12]. Making
middleware/framework specific components explicit in a
reconstruction environment gives a complete and rich view of an
architecture. Pioneering work has been done to address this
problem [21]. However, it has not been integrated into flexible
environments like ARMIN to benefit from the other features in a
unified fashion.

7. CONCLUSION AND FUTURE WORK
This project has successfully utilized a number of reverse
engineering and architecture reconstruction tools to evaluate the
modifiability of commercial product subsystem. By judiciously
exploiting the metrics generation and visualization capabilities of

these tools, we were able to construct numerous architectural
views and identify problematic components from a modifiability
perspective.

Our ultimate aim is assess technology support for just-in-time
reconstruction. While we do not feel we are in a situation at this
stage to make a definitive call, the findings from this project are
encouraging, namely:

• Many tools automatically produce useful architectural
metrics and views. These help guide the reconstruction scope
by highlighting potentially problematic areas that require
deeper analysis and richer architectural views.

• The scripting capabilities of ARMIN incur one-time setup
costs, but once established, can be used in subsequent
reconstructions with no additional effort

In total, after tool familiarization, we estimate this reconstruction
effort took approximately 3 person days effort. This is reasonably
efficient, and could no doubt be reduced on subsequent iterations.
Of course, the code base we used was only of moderate size,
homogenous in terms of programming language and was
fundamentally well designed.

We therefore intend to further investigate the feasibility of this
approach on larger, more complex code bases. This will give
greater insights in to the scalability of the available tools to
reconstruct complex software architectures in an efficient and
effective manner.

8. ACKNOWLEDGMENTS
The authors are employed by National ICT Australia, which is
funded through the Australian Government's Backing Australia's
Ability initiative, in part through the Australian Research Council.

9. REFERENCES
[1] alphaWorks: Structural Analysis for Java (Updated

31/03/2004, fix pack 1), 2004.
[2] Enterprise Architect (V4.1).
[3] JDepend (V2.7), 2004.
[4] STI: Understand for Java (V1.4), 2004.
[5] Alur, D., Crupi, J. and Malks, D. Core J2EE patterns : best

practices and design strategies. Prentice Hall PTR, Upper
Saddle River, NJ, 2003.

[6] Armstrong, M.N. and Trudeau, C., Evaluating architectural
extractors. in Fifth Working Conference on Reverse
Engineering (WCRE), (1998), 30-39.

[7] Bass, L., Clements, P. and Kazman, R. Software Architecture
in Practice. Addison-Wesley, 2003.

[8] Bellay, B. and Gall, H., A comparison of four reverse
engineering tools. in Fourth Working Conference on Reverse
Engineering (WCRE), (1997), 2-11.

[9] Bengtsson, P., Lassing, N., Bosch, J. and Vliet, H.v.
Architecture-level modifiability analysis (ALMA). Journal of
Systems and Software, 69(1-2). 129-147.

[10] Bosch, J., Software architecture: the next step. in First
European Workshop on Software Architecture (EWSA),
(2004), Springer.

[11] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R. and Stafford, J. Documenting Software
Architectures : Views and Beyond. Addison-Wesley, 2003.

[12] Emmerich, W., Software engineering and middleware: a
roadmap. in 22nd International Conference on on Software

Engineering (ICSE), Future of Software Engineering Track,
(2000).

[13] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
patterns : elements of reusable object-oriented software.
Addison-Wesley, 1995.

[14] Garlan, D. and Kompanek, A., Reconciling the Needs of
Architectural Description with Object-Modeling Notations. in
Unified Modelling Language (UML), (2000).

[15] Girard, J.-F. and Koschke, R., Finding components in a
hierarchy of modules: a step towards architectural
understanding. in International Conference on Software
Maintenance (ICSM), (1997), 58-65.

[16] Gorton, I. and Haack, J., Architecting in the Face of
Uncertainty: An Experience Report. in 26th International
Conference on Software Engineering (ICSE), (Edinburgh,
United Kingdom, 2004), IEEE, 543-551.

[17] Holt, R.C., Winter, A. and Schurr, A., GXL: toward a
standard exchange format. in Seventh Working Conference on
Reverse Engineering (WCRE), (2000), 162-171.

[18] Kaastra, M.D. and Kapser, C.J. Toward a semantically
complete Java fact extractor, Department of Computer
Science, University of Waterloo, 2003.

[19] Kazman, R. and Carriere, S.J., View Extraction and View
Fusion in Architectural Understanding. in Fifth International
Conference on Software Reuse (ICSR), (1998).

[20] Kazman, R., O'Brien, L. and Verhoef, C. Architecture
Reconstruction Guidelines, Third Edition, Software
Engineering Institute, Carnegie Mellon University, 2003.

[21] Knodel, J. and Pinzger, M., Improving fact extraction of
framework-based software systems. in 10th Working
Conference on Reverse Engineering (WCRE), (2003), 186-
195.

[22] Kollmann, R., Selonen, P., Stroulia, E., Systa, T. and
Zundorf, A., A study on the current state of the art in tool-
supported UML-based static reverse engineering. in Ninth
Working Conference on Reverse Engineering (WCRE),
(2002), 22-32.

[23] Kruchten, P., Hilliard, R., Kazman, R., Kozaczynski, W.,
Obbink, H. and Ran, A. The SARA report (Software
Architecture Review and Assessment), 2002.

[24] Lassing, N., Bengtsson, P., Bosch, J. and Vliet, H.V.
Experience with ALMA: Architecture-Level Modifiability
Analysis. Journal of Systems and Software, 61 (1). 47-57.

[25] Müller, H.A., Jahnke, J.H., Smith, D.B., Storey, M.-A.D.,
Tilley, S.R. and Wong, K., Reverse Engineering: a Roadmap.
in 22nd International Conference on on Software Engineering
(ICSE), Future of Software Engineering Track, (2000).

[26] O'Brien, L. Architecture Reconstruction to Support a Product
Line Effort: Case Study, Software Engineering Institute,
Carnegie Mellon University, 2001.

[27] O'Brien, L. and Tamarree, V. Architecture Reconstruction of
J2EE Applications: Generating Views from the Module
Viewtype, Software Engineering Institute, Carnegie Mellon
University, 2003.

[28] Stoermer, C., O'Brien, L. and Verhoef, C., Architectural
Views through Collapsing Strategies. in 12th IEEE
International Workshop on Program Comprehension (IWPC),
(2004), 100-110.

[29] Stoermer, C., O'Brien, L. and Verhoef, C., Moving towards
quality attribute driven software architecture reconstruction. in
10th Working Conference on Reverse Engineering (WCRE),
(2003), 46-56.

[30] Stoermer, C., O'Brien, L. and Verhoef, C., Practice patterns
for architecture reconstruction. in Ninth Working Conference
on Reverse Engineering (WCRE), (2002), 151-160.

[31] van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L.
and Riva, C., Symphony: view-driven software architecture
reconstruction. in Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA), (2004), 122-132.

[32] Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and Kazman, R.,
DiscoTect: a system for discovering architectures from
running systems. in 26th International Conference on
Software Engineering (ICSE), (2004), 470-479.

[33] Zhu, L., Ali Babar, M. and Jeffery, R., Mining Patterns to
Support Software Architecture Evaluation. in 4th Working
IEEE /IFIP Conference on Software Architecture (WICSA),
(2004), IEEE.

