
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 265–282
MDABench: Customized benchmark generation using MDA

Liming Zhu a,b,*, Ngoc Bao Bui c, Yan Liu a,b, Ian Gorton a,b

a Empirical Software Engineering Program, National ICT Australia Ltd., School of Computer Science and Engineering, University of New South Wales,

Bay 15, Locomotive Workshop, Australian Technology Park, Garden Street, Eveleigh NSW 1430, Australia
b School of Computer Science and Engineering, University of New South Wales, Australia

c Faculty of Information Technology, University of Technology Sydney, Australia

Received 9 January 2006; received in revised form 10 October 2006; accepted 31 October 2006
Available online 11 December 2006
Abstract

This paper describes an approach for generating customized benchmark suites from a software architecture description following a
Model Driven Architecture (MDA) approach. The benchmark generation and performance data capture tool implementation (MDA-
Bench) is based on widely used open source MDA frameworks. The benchmark application is modeled in UML and generated by taking
advantage of the existing community-maintained code generation ‘‘cartridges’’ so that current component technology can be exploited.
We have also tailored the UML 2.0 Testing Profile so architects can model the performance testing and data collection architecture in a
standards compatible way. We then extended the MDA framework to generate a load testing suite and automatic performance measure-
ment infrastructure. This greatly reduces the effort and expertise needed for benchmarking with complex component and Web service
technologies while being fully MDA standard compatible. The approach complements current model-based performance prediction
and analysis methods by generating the benchmark application from the same application architecture that the performance models
are derived from. We illustrate the approach using two case studies based on Enterprise JavaBean component technology and Web
services.
� 2006 Elsevier Inc. All rights reserved.

Keywords: MDA; Model-driven development; Performance; Testing; Code generation
1. Introduction

Software technologies such as Enterprise Java Beans
(EJBs), .NET and Web services have proven successful in
the construction of enterprise-scale systems. However, it
remains a challenging software engineering problem to
ensure that an application architecture can meet its speci-
fied performance requirements.

Various performance analysis models with prediction
capabilities have been proposed to evaluate architecture
designs during early phases of the application development
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.10.052

* Corresponding author. Address: Empirical Software Engineering
Program, National ICT Australia Ltd., School of Computer Science and
Engineering, University of New South Wales, Bay 15, Locomotive
Workshop, Australian Technology Park, Garden Street, Eveleigh NSW
1430, Australia. Tel.: +61 2 83745523; fax: +61 2 83745520.

E-mail address: Liming.Zhu@nicta.com.au (L. Zhu).
cycle (Balsamo et al., 2004). Utilizing these models requires
two distinct activities to be carried out by the application
architect. The first requires the development of specific
analytical models based on the application design. The
second must obtain parameter values for the performance
model using measurements or simulation. Both these activ-
ities require significant additional effort and specific exper-
tise in performance engineering methods. Hence, we believe
these are key inhibitors that have prevented performance
engineering techniques from achieving wide-spread adop-
tion in practice (Balsamo et al., 2004).

With the growing interest in Model Driven Architecture
(MDA) technologies, attempts to integrate performance
analysis with MDA and UML have been made, aiming
to reduce the performance modeling effort required. The
OMG’s MDA standard defines a way of transforming busi-
ness domain models into Platform Independent Models

mailto:Liming.Zhu@nicta.com.au

266 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
(PIM) and then Platform Specific Models (PSM), and
eventually to executable code. PSMs can also include a per-
formance analysis model specific to a performance engi-
neering method.

Consequently, recent work has attempted model trans-
formation from UML design models to method-specific
performance analysis models. A more comprehensive and
elaborate theoretical basis has been discussed in (Skene
and Emmerich, 2003b). This work has, to a large extent,
improved on the earlier manually-oriented activities related
to deriving analytical models from application designs.

Parameter values in these performance analysis models
also depend greatly on the underlying component and
Web service framework used to implement the application.
One method to obtain and tune these parameters is to run a
benchmark application on the framework. This approach
has proven to be useful (Gorton and Liu, 2003; Gorton
et al., 2003; Liu, 2004) with component-based technologies.
Running benchmark applications can also help in predict-
ing and diagnosing performance problems, including iden-
tifying bottlenecks, preliminary profiling and exploring
core application characteristics.

An effective benchmark suite includes a core benchmark
application, a load testing suite and performance monitor-
ing utilities. In this regard, there are several limitations in
current benchmarking approaches for performance analysis

1. Existing industry benchmark standards and suites (e.g.
ECperf/SPECjAppServer and the TPC series) are not
broadly suitable for performance modeling and predic-
tion for two reasons. First, they are mainly designed
for server vendors to showcase and improve their prod-
ucts, rather than reflecting a specific application’s per-
formance characteristics. The application logic in these
benchmarks is fixed and impossible to adapt to assist
in predicting performance for a specific application
under design. Second, these benchmark suites tend to
be expensive to acquire and complex to use.

2. Implementing a custom benchmark suite from scratch is
costly and tedious. This is largely due to the complexity
of modern component containers and Web service
frameworks. The task difficulty is exacerbated by the
ad hoc ways these technologies adopt for conducting
performance measurement. A benchmark implementa-
tion usually requires a large amount of container and
framework infrastructure-related plumbing, even for a
relatively simple benchmark design. Interestingly, this
characteristic is particularly amenable to MDA-based
code generation, which is efficient at generating repeti-
tive but complicated infrastructure code. However, one
capability that current MDA code generation frame-
works lack is that they do not provide solutions to the
generation of a load testing suite and performance data
collecting utilities.

3. The measurement data that needs to be collected for a
performance analysis model is usually complicated. A
minimal approach is typically preferred over a collect-
all approach in order to reduce measurement overhead.
This requires measurement configurations to be con-
stantly revised against design models and analysis mod-
els which are being iteratively refined. Secondly, time
series based correlation between measurement items
(e.g. resource usage and service time) needs to be speci-
fied by referring to multiple model elements. An MDA
approach enables such model element annotations
through UML profiles. This makes fine tuning measure-
ments against design and analysis model requirements
easier.

The aim of our work is to automate the generation of
complete benchmark suites including monitoring utilities
from a design description. The input is a UML-based set
of design diagrams for the benchmark application, along
with a load testing suite modeled in the UML 2.0 Testing
Profile. The output is a deployable benchmark suite includ-
ing the core benchmark application, load testing suite, per-
formance data collecting utilities and configuration files for
external container/framework specific monitoring and pro-
filing utilities.

Our work complements current performance analysis
approaches as shown in Fig. 1. Existing approaches usually
start with a PSM. The PSM is then annotated with a per-
formance analysis profile for a specific performance analy-
sis method. The model is then transformed to a proprietary
language format using XSLT. To populate the parameters,
a benchmark application and associated monitoring utili-
ties are built manually. In our approach, a PIM design is
annotated with three types of profiles: a platform specific
profile, a performance profile and a tailored UML 2.0 Test-
ing profile. Minimal references among the profiles are cap-
tured using tagged values. A benchmark suite is then
generated using all the profiles. Monitoring utilities have
the information on what to collect for what analysis model
parameters. Measurement results can then be used directly
for populating analysis model parameters. Details of the
analysis model generation and parameter population is
presented in a separate paper (Liu et al., 2006).

To demonstrate the approach, two platforms have been
selected that represent widely used target technologies in
enterprise systems. These are the Java 2 Enterprise Edition
(J2EE) component framework and the Axis Web service
platform (Apache, 2005). By having a single platform inde-
pendent model with minimal platform dependent markups,
different deployable customized benchmark applications
can be generated for different platforms, as we show in this
paper. This demonstrates one of the central benefit of
MDA, namely productivity gains through model reuse. In
addition, executing the generated benchmark application
produces performance data in an analysis friendly format,
along with automatically generated performance graphs.

Our approach has a number of unique benefits:

• The generated benchmark suite is based on a design that
closely corresponds to the application of interest, and

Fig. 1. Model driven performance analysis. (a) Existing approach, (b) MDABench approach.

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 267
hence it captures the unique characteristics of the
application. This should lead to the benchmark produc-
ing more representative measures of the eventual
application.

• Model driven code generation hides the complexities of
the benchmark implementation from architects, and
helps them focus on analyzing the benchmark results
that are automatically produced. It also greatly reduces
the complexity behind the load testing suite and frame-
work-specific performance data collecting utilities,
which in many cases can take more time to understand
and develop than the benchmark application itself
(Grundy et al., 2005).

• The approach derives the benchmark application from
the same application model that the performance
analysis model is derived from. This makes it possible to
use the performance measurement data for analyti-
cal model validation and tuning model parameter val-
ues. This essentially complements the performance
analysis framework proposed in (Skene and Emmerich,
2003b).

• Following MDA standards, including the UML 2.0
Testing Profile, and using existing open source MDA
frameworks significantly reduces the learning curve of
the approach. It also takes advantage of existing code
generation ‘‘cartridges’’ exploiting the latest component
technologies. The wide range of interoperable UML
modeling tools (due to the MDA/UML compatibility
standard) also makes the approach more amenable to
adoption in practice.

• A single PIM for the application logic is used for gener-
ating different platform specific infrastructures and
benchmark applications. Only minimal platform-specific
property markup is required, and these are separated
with the PIM.
2. Related work

2.1. Performance analysis with MDA

It has been argued that the MDA approach is a suit-
able for facilitating performance analysis of large scale
enterprise systems (Skene and Emmerich, 2003a) since it
‘‘permits natural and economical modeling of design and

analysis domains and relationships between them, support-

ing both manual and automatic analysis’’. Some research-
ers have used MDA in performance analysis (Yilmaz
et al., 2004; Weis et al., 2004; Rutherford and Wolf,
2003b; Marco and Inverardi, 2004), and typically focus
on deriving analytical models from UML design models.
A UML design model with appropriate profiles
applied can be transformed into a specific analytical
technique based proprietary model for further analysis.
Most of these model transformations are based on XSLT.
This means the mapping and transformation information
is tangled within the XML query and transformation
language, which has limitations for representing and
validating mapping relationships (Czarnecki and Helsen,
2003).

A more comprehensive framework has been proposed in
(Skene and Emmerich, 2003b). It too advocates represent-
ing analytical performance models in UML using profiles.
Thus, deriving analytical models from design models
equates to standard model transformation in MDA. This
has various standardization, validation and tooling advan-
tages over using XSLT to transform designs into proprie-
tary models.

Analytical model-based performance analysis can not
work without data to populate the model parameters. Pop-
ulating parameters must utilize techniques such as simula-
tion or estimation based on experience or historical data.

268 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
These techniques require an in-depth understanding of the
behavior of the actual system components and they
encounter difficulties if applications use black box frame-
works, which is common for most applications running
on commercial component-based application servers or
Web service frameworks.

In such applications, measurements in the form of
benchmarking and prototyping (Grundy et al., 2004) are
used to obtain valuable information for architects.
Comprehensive prototyping can however be expensive.
To further exacerbate the problem, multiple benchmarking
applications need to be constructed for different target
platforms for comparison or deployment considerations.
Industry standard benchmark results can not usually be
used because the results are specific to the benchmark
application itself, making it difficult to sensibly infer useful
performance characteristics about the application under
design. Combining model based analysis with small scale
customized benchmarking has been introduced to solve
this problem (Liu, 2004). This approach can work on dif-
ferent levels. Benchmarking and prototyping results can be
combined with model-based estimation as a way of build-
ing confidence in performance predictions and ruling out
potential inaccuracy. Benchmarking and prototyping data
can also be directly fed into a performance model for more
accurate prediction. Some recent research has produced
positive results (Liu and Gorton, 2004).

We argue that deriving a customized benchmark appli-
cation from the same application architecture design as
the performance models are derived has great potential
for validating and calibrating performance prediction mod-
els. This approach integrates customized benchmark gener-
ation and performance analysis model transformation into
a single MDA-based approach.

2.2. Benchmark generation

There are a large number of code generation techniques
and generator frameworks (Czarnecki and Helsen, 2003)
that can be used in benchmark suite generation. We choose
a model driven approach because code can be generated
from architecture designs directly. This creates semantic
links between our generated benchmark suite code and per-
formance analysis models since they derive from the same
application design model. Some pioneering work has been
done on generating benchmark and prototyping applica-
tions using models, as in (Grundy et al., 2001, 2004) (Liu
et al., 2002; Rutherford and Wolf, 2003a). However, these
have several limitations:

• The code generators for the chosen technologies are
built from scratch by the researchers. They do not utilize
any extensible generator frameworks, or draw upon the
large pool of existing code generation ‘‘cartridges’’ for
the latest technologies that are maintained by an active
community. When code generation cartridges are not
exploited, any change to the chosen target technology
or the introduction of a new technology requires signif-
icant extra work from the researchers.

• These methods do not follow MDA standards. Most of
them are built as proprietary modeling tools. Although
some have used generic UML modeling tools, they use
them to model proprietary modeling concepts. The
models derived in this way are very different from
UML architecture models in practice, and thus become
throw-away artifacts. Consequently, existing industry
experience with UML and code generation is not lever-
aged, making the code generation tasks for performance
engineering an additional activity for developers to carry
out, rather than a step in an incremental development
process. Not following MDA may also compromise
tool interoperability and semantic model traceability
between derived models.

• The load testing part of the benchmark suite can not be
comprehensively modeled compared to using the UML
2.0 Testing Profile. The latter distinguishes different test-
ing elements (e.g. test context, test cases, data pool, data
partition) within a testing environment. This makes load
test suite modeling more modular, reusable and modifi-
able. Above all, it is standards-based.

Our approach directly addresses these limitations, as the
remainder of the paper explains.

2.3. Performance measurement

Performance measurement for a benchmark suite
includes end to end response time, throughput measure-
ment and application server related performance measure-
ment. For end to end performance data, the application
needs to be instrumented or a profiler used. Both take sig-
nificant software engineering effort.

In our approach, the load testing suite is modeled in the
UML 2.0 Testing Profile. A deployable implementation of
performance data collection utilities for response time and
throughput are automatically generated in the load testing
client. Executing the application causes performance data
to be collected as part of the test execution, with perfor-
mance data displayed in generated graphs.

Server-side performance related data can typically only
be obtained using the particular component container’s
management tools. These are currently mostly proprietary.
However, this is changing as containers expose perfor-
mance related information through programmatically
accessible management components. For example, in
J2EE, JMX-based (Java Management Extension) resource
monitoring is becoming widely used and standardized. A
similar approach is starting to be adopted in container-
based Web service technologies (e.g. Enterprise Service
Bus (ESB)) and standardized through Web Service Distrib-
uted Management, (WSDM) (OASIS, 2005) though they
are still in a very early stage. In our approach, we exploit
this new capability with the J2EE WebLogic application
server in one case study. We use either configuration files

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 269
or scripts generated from UML design models using MDA
to monitor application server related performance data.
3. Customized benchmark generation using MDA

The overall structure of the benchmark generation sys-
tem and related process workflow is presented in the boxed
area in Fig. 2. It also shows on the left side of the diagram
the relationship with model-based performance prediction.

An application design in UML must be transformed
manually or with tool assistance into a customized bench-
mark UML design model. This design usually represents
the core characteristics of the application that are deemed
by the architect to be the most performance critical. The
criteria for this transformation are beyond the scope of this
paper, as they depend on specific needs and characteristics
of the project and performance analysis techniques.

The benchmark UML design model begins with a PIM
which reflects the application logic. The benchmark UML
design model is then annotated with UML profiles for code
generation, and a load testing suite is modeled using the
UML 2.0 Testing Profile. This UML model is then
exported using XMI and becomes an input to the
AndroMDA tool framework. We have extended the
AndroMDA framework with a new cartridge to generate
a load testing suite and associated performance monitoring
functionality. A cartridge is a collection of meta-model def-
initions (XML files), code generation handlers (code
libraries) and templates. It can process model elements that
Fig. 2. Model driven bench
have specified stereotypes and tagged values or model ele-
ments that meet certain conditions.

Along with exploiting existing cartridges, a complete
deployable customized benchmark suite can be generated
that has the capability for extensive performance measure-
ments. The same application design can also be trans-
formed into an analytical performance model. The
measurements obtained by the benchmark suite can be
integrated with the performance model and used to vali-
date or improve its results. Semantic mappings and explicit
model transformation rules provided by the MDA
approach make such integration straightforward and sys-
tematic. However, integration with analytical models is
beyond the scope of this paper.

3.1. Development environment

We use an open source extensible framework, for
MDA based code generation. The reasons for this are
twofold:

• The success of any code generation framework depends
on the range of generation capabilities available, along
with the extensibility of the framework itself.
AndroMDA satisfies both of these requirements. Exist-
ing cartridges are maintained by a community of active
developers. It also has no intrinsic limitations on extend-
ing it to platforms other than the current J2EE and Web
(service) platforms.
mark suite generation.

270 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
• For a model driven approach to generate deployable
components, some implementation details need to be
captured at the model level. This makes abstract model-
ing harder and models cluttered, as models should be a
reasonable abstraction devoid of as many details as pos-
sible. AndroMDA separates UML and generated code
from the manually provided business logic implementa-
tion in different directories. This allows us to have both
a code generation capability and abstract modeling at
the same time. This separation also makes iterative
development possible, which is essential in practical
model-driven development.

We consequently have extended AndroMDA to support
a subset of the UML 2.0 Testing Profile for load test suite
generation. Based on the extended AndroMDA, bench-
mark designers can model their own benchmark applica-
tion along with a load testing suite in UML. AndroMDA
takes XMI outputs representing the UML design and gen-
erates deployable code using available code generation car-
tridges and our cartridge extensions.
3.2. Benchmark application generation

The core benchmark application generation simply
exploits MDA development techniques using AndroMDA.
The principle behind AndroMDA is to generate as much
code as possible from marked PIMs. PIMs are modeled
in a UML profile with platform independent stereotypes
like ‘‘Entity’’, ‘‘Service’’ and any necessary persistence
information. PIMs can also be annotated with platform
specific tagged values.

After modeling, AndroMDA generates all necessary
source files including business method interfaces and imple-
mentation skeletons. The implementation skeletons are
stored in a separate directory so future code re-generation
will not override the skeletons.

Modeling and generating the benchmark application is
not therefore a distinct engineering step from normal devel-
opment activities. It can be considered as one of the steps in
an incremental development process instead of a throw
away performance prototyping activity. One PIM model
can also be used to generate different deployable applica-
tions for different platforms with little modification. This
can greatly reduce the cost and consequently the hurdle
of performing performance engineering in practice.
3.3. Load test suite generation

We model the load testing behavior using the UML 2.0
Testing Profile. This profile is an OMG standard, represent-
ing a comprehensive superset of existing widely used testing
frameworks such as JUnit. Currently however, there is no
test generator available based on the UML Testing Profile.1
1 The Eclipse Hyades project, which will eventually fully support it in
terms of modeling (not automatic generation), remains in a nascent state.
To develop a full test generation framework according to
the profile is a major effort, and beyond our available
resources. Hence we focused merely on modeling load tests
using a subset of the profile and producing a default imple-
mentation of the model including both test logic and test
data.

To this end, we have implemented the following stereo-
types in the UML 2.0 Testing Profile through extending
AndroMDA:

• SUT (System under Test): This represents the applica-
tion to be tested. It consists of one or more objects.
The SUT is exercised via its public interface by Test
Components. In our approach, the SUT is the entry
point for the system (e.g. a remote session bean in
J2EE) which will be exercised for load testing purposes
only.

• Test Context: This is a collection of test cases. In our
approach, it consists of load test cases with a default
implementation of loadTestAll(), which exercises all
the business methods on the SUT.

• Test Component: Test components are classes of a test
system. A test component has a set of interfaces via
which it communicates with the SUT. Since we provide
a default implementation of load test cases, users do not
have to model their own Test Components. These Test
Components are manifested as default method imple-
mentations within the loadTestAll() method. Users
can choose to model their own Test Components, which
will be treated as any normal class communicating with
the SUT.

• Data Pool: A data pool is a collection of explicit values
that are used by a test context or test components during
testing. We use a data pool to model the load testing
data used when calling each method on the SUT. The
system will automatically generate random test data
based on the data type and range specified. The data
pool can also be used to specify the transaction percent-
age mix for all business methods by using tagged values
associated with the stereotype. These configuration
capabilities allow users to accurately and easily model
the anticipated work load.

• Data Partition: Data partitions are logical values for a
method parameter used in testing. It typically defines
an equivalence class for a set of values. We use a Data
Partition to partition the Data Pool into specific sections
for load testing. A Data Pool is general enough for other
testing purposes, including functional testing.

• Test Case: A test case is a specification of one or more
test scenarios for the system. It includes what to test
with which inputs and the results expected under various
conditions. Test cases are modeled within a Test Context
that consists of multiple test cases. In our approach, a
loadTestAll() test case is implemented by default. It
exercises all public methods on the SUT using randomly
generated data modeled in a Data Pool and a selected
Data Partition.

Fig. 3. Extending AndroMDA to support UML 2.0 Testing Profile.

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 271
Fig. 3 illustrates the subset of the UML 2.0 Testing Pro-
file modeled in MagicDraw 8.0 as metafacade extensions in
AndroMDA. They all extend the existing AndroMDA
metafacade to take advantage of the underlying frame-
work. Each metafacade also includes a set of associated
tagged values to specify detailed configurations (we omit
the details of these extensions for clarity). The UML model
can be exported as a profile which can be later used in a
load testing suite modeled along with the benchmark appli-
cation business logic.
3.4. Incremental and spike load simulation

The initial set of test data is modeled rather simplisti-
cally. For example, users can only indicate an average
transaction mix in the Data Pool. This is usually enough
for normal load scenarios. However, many performance
problems occur when a sudden request spike hits the
application or the request load gradually increases over a
period of time. To explore such scenarios, our cartridge
supports a set of tagged values to reflect the common prac-
tice and terminology used in the performance engineering
community (Gomez et al., 2005; TPC, 2004). Some exam-
ples are:

• config.processes: The number of processes the load gen-
erator should start.

• config.threads: The number of threads that each process
spawns.

• configr.runs: The number of runs of the test each thread
performs.

• config.duration: The maximum length of time in milli-
seconds that each process should run for.

• config.initialProcesses: The initial number of processes
to start with.

• config.processIncrement: The number of processes to
increase or decrease for an incremental time interval.
• config.processIncrementInterval: The time interval
between starting up or stopping new processes.

• config.stabilizationperiod: An estimated time before a
steady state period is reached. How to estimate the start-
ing time of the steady state period is specific to the test-
ing environment. Performance data collection only
commences after the stabilization periods.

Such values are directly configured on the model
through tagged values. A configuration file is then gener-
ated on the first round of code generation. Subsequently,
if only the configuration needs to be changed, it is possible
to either change the configuration file directly or let the
code generator re-generate the file without affecting the rest
of the application.

The AndroMDA extension for load test modeling and
generation results in a new cartridge that can be put into
the AndroMDA cartridge repository. It works with all
other existing server-side generation cartridges. Our car-
tridge includes some supporting facilities and a library
of handlers for code generation written in Java. This
facilitates the reuse of existing cartridges and framework
facilities. It also enables template writers to access the
metafacades in templates using tags. The separation of
OO based metamodeling with template based code genera-
tion provides flexibility and ease of use.

We provide a complete template for generating a default
implementation of the loadTestAll() test case with ran-
domly generated data based on a data pool model. A data-
base seeder is also generated to repopulate the database
before a new test. These capabilities greatly reduce the
extra effort involved in using the suite in load testing activ-
ities, in which performance testing is the main interests of
the software engineer.

3.5. Performance data collection

In the above two sections, we have explained how we
have used MDA principles to generate a benchmark suite
including a core benchmark application and a load test-
ing client. We also need to collect performance data for
either informal analysis or to feed in to a performance anal-
ysis model. The data we need falls into two categories,
namely:

3.5.1. Application related profiling information
This includes end to end timings for requests and counts

on method calls, CPU workload and memory status, gar-
bage collection counts and so on. Much of this data must
be obtained through running a profiler and system utilities.
In our default load testing implementation, the end to end
response time distribution, average response time and
throughput are automatically recorded by the client. A
response time distribution graph for each run is also auto-
matically generated. This data is crucial for performance
analysis, and is easy to obtain if the default implementation
is used.

#Get Runtime info for Session Bean and MDB
ls /EJBPoolRuntime
ejbpool = $LAST
for $ejb in $ejbpool do
 sb1 = get /EJBPoolRuntime/$ejb/AccessTotalCount
 sb2 = get /EJBPoolRuntime/$ejb/IdleBeansCount
 sb3 = get /EJBPoolRuntime/$ejb/BeansInUseCurrentCount
end

Fig. 5. JMX-based server side monitoring using scripts.

272 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
3.5.2. Application server (middleware and framework)

related information

This includes health indicators of the application server
or framework itself and component related information
that may have performance implications. For example,
when testing EJBs, the component pool, runtime cache sta-
tus and data source pool usage can be inspected. This
information is typically collected through an EJB con-
tainer-proprietary user interface and with logging and
export functions, and the effort required varies immensely
between different EJB platform implementations.

As mentioned in Section 2.3, several J2EE containers
have recently exposed container related information using
JMX MBeans for both API based and scripting access.
With the help of JMX based container monitoring, we
can automate the container performance monitoring using
script and configuration file generation. Importantly, the
generation templates only need to be written once for each
container and can be reused for different application
designs.

In our approach, two styles of accessing the information
are available for the J2EE platform:

• We can use the JMX Java API to query the MBeans

directly. A generic MBean information query and collec-
tion program runs independently of the benchmark
application, and reads a generated configuration file.
The configuration file includes the name of the MBean

providing the performance information, methods to be
called and all necessary parameters. The data collecting
program is J2EE container specific and needs to be
developed once for each container. With MDA, this
requires a generation template. The configuration file
can then be automatically generated from the UML
model for different application designs. Fig. 4 is a snip-
pet of such a generation template.

• A more convenient solution is to leverage the scripting
shell provided by some J2EE containers. In this case,
no JMX-based data collection program is involved.
All that needs to be generated is appropriate scripts
for collecting the measurement of interests. For exam-
ple, third party applications like wlshell for Weblogic
JMX and the newly integrated WLST (BEA, 2004) for
Weblogic 9.0 provide a scripting shell for accessing the
information in MBeans. Fig. 5 is an example of the gen-
 # methods for Session and MDB Pool
<XDtMethod:forAllMethods>
<XDtMethod:methodName/>:<XDtMethod:methodNameWithout
Prefix/>
</XDtMethod:forAllMethods>
</XDtClass:forAllClass>
…
<XDtEjbSession:forAllBeans>
EjbPoolRuntime:<XDtEjbSession:concreteFullClassName/>
</XDtEjbSession:forAllBeans>

Fig. 4. A (partial) configuration generation template.
erated scripts for collecting EJBPoolRuntime perfor-
mance information.

We provide both shell script and configuration file gen-
eration templates for the Weblogic platform. We assume
by default the target of the performance measurement will
be all the beans in the container and business methods sup-
ported. Architects can tailor this by commenting out
unwanted parts in the generated files.
4. Case studies

We use the Stock-Online system (Gorton, 2000) as a
case study to illustrate our approach. Stock-Online is a
proven benchmark for evaluating various middleware plat-
forms. The original system was developed for different
J2EE platforms. Due to platform differences, there was sig-
nificant effort involved in implementing the same design for
different platforms, and keeping the benchmark application
in line with component technology advancements required
significant ongoing effort. Hence, it makes sense to use
Stock-Online as a case study to demonstrate the amount
of effort that can be saved utilizing MDA development
and code generation.

The case study’s aim is to generate the Stock-Online sys-
tem, including a load testing suite, purely from UML mod-
els. To this end, two variations are generated using two
J2EE platforms, for the WebLogic and JBoss platforms
respectively, both using the same Oracle database backend.
To demonstrate the effectiveness of our approach, the same
UML model with minimal change is then used to generate
a benchmark application for a Web services platform. The
result demonstrates the amount of effort saved across ven-
dor implementations in the same standard (two different
J2EE application servers) and across totally different plat-
forms (J2EE and Web services platforms).
4.1. Benchmark application modeling for J2EE

The server side logic is modeled using the UML and
AndroMDA profiles shown in Fig. 6. Domain components
corresponding to persistent entities are marked using the
stereotype �Entity�. Components which act as business
process facades are marked using the stereotype
�Service�.There are also tagged values associated with
each stereotype for component attributes such as persis-
tence, remote/local interface and other configuration

Fig. 6. Stock-Online benchmark application server side modelling.

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 273
settings. Dependencies among �Entity� and �Service�
elements are marked using �EntityRef� if a reference
exists between them. All of these values are J2EE platform
independent. �ValueRef� and �ValueObject� are ste-
reotypes designed for a common J2EE pattern, namely
the Value Object pattern. This is currently incorporated
into the J2EE cartridges.

We omit these tagged values in the presentation to
reduce cluttering. In this case study, we do not use any
platform specific features, so no platform specific annota-
tions need to be included on the UML model. Hence the
same design model is used for the both target platforms.
4.2. Modeling the load testing suite for J2EE

The load testing suite for Stock-Online is modeled using
a subset of the UML 2.0 Testing Profile with support from
our extensions to AndroMDA. The load testing suite
model for Stock-Online is shown in Fig. 7.

The load testing entry point is the Broker bean. It is the
front end component of the system under test, which is
marked using �SUT�. ClientDemo is the �TestCon-
text� which consists of test cases. Only the default loadTe-
stAll() test case is included with its default implementation
to be generated. For simplification, all the test data is mod-
eled in TrxnData from which �DataPartition� Load-

TestingTrxnData is derived. In more complicated
situations, several test data classes may exist. In
�DataPool� TranDeck, we can also indicate the transac-
tion mix percentage as tagged values shown in Fig. 8. For
example, queryStock represents 34.9% of all transactions
and getHolding represents 11.7%. This data will be used
in randomly generating test data which simulates the real
work load.

We then export both the core benchmark application
and load testing suite UML diagrams into XMI compatible
formats. Since we are not using any application server spe-
cific modeling information in our model, the exported
UML model will be used for both WebLogic and JBoss
code generation.
4.3. Customized benchmark generation, deployment and

execution

By running the AndroMDA wizard, two EJB project
directory structures are generated for WebLogic and JBoss,
respectively. These consist of a MDA directory for storing
the exported UML model, and directories for storing
source code and the future deployable application. Project
property files for specifying dependencies on the targeted

Fig. 7. Stock-Online benchmark load test model.

Fig. 8. Transaction type and percentage mix modeled using �DataPool�.

274 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
platforms and other deployment configurations are also
generated. We then copy the exported UML model into
the designated MDA directory and run the code generation
engine.

Source code is generated based on the UML model. For
the client side, the complete load testing suite is generated
without the need for further modification. The load testing
logic and random test data is derived from the load testing
UML model and method signatures of the server-side com-
ponent interface.

The server-side component code is generated following
EJB best practices, including value objects. Business logic
inside each component method needs to be manually added
by placing implementation code into a separate directory.
This prevents overriding manual modification by subse-
quent code generation iterations. It also separates the
implementation from the specifications (interfaces) which
derive from the UML design. After adding the server side
business logic code, the AndroMDA framework generates
the deployable package. The generated application is
almost a carbon copy of the manually written Stock-Online
system (Gorton, 2000). The application is then deployed in
the following environment (Table 1).

4.4. Performance output for two J2EE platforms

The benchmark test workload, defined by the number of
concurrent requests, is specified in the workload generator.
We then run load tests and obtain the following perfor-
mance results automatically:

• Response time distributions in both log files and chart
based graphs.

• Average response time for each request.

Table 1
Hardware and software configuration

Machine Hardware Software

Client Pentium 4 CPU 2.80 GHz, 512M RAM Windows XP, JDK1.4
Application and

database server
Xeon Dual Processors, 2.66 GHz,
HyperThreading enabled, 2G RAM

WindowsXP Prof. JDK1.4 with settings –hotspot, –Xms512m and
–Xmx1024m, Oracle 9i and thin JDBC driver

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 275
• Application throughput in terms of transactions per
second.

Fig. 9 shows example response time distribution charts
for two application servers under a workload of 100 con-
current clients.

By utilizing the JMX-based monitoring and data collec-
tion techniques described in Section 3.3, many server side
internal parameters can be obtained. For example,
Fig. 10 shows the performance parameters automatically
collected from benchmark execution for 100 clients on
WebLogic application server with 20 server threads and
20 database connections.

The performance data collected in this example is the
same as we have been collecting in conducting various
empirical studies on evaluating architecture candidates
Fig. 9. Samples of response time distribut
and platforms. Interested readers can refer to (Liu,
2004) for the details of the type of data collected and
how to interpret the data for performance compari-
sons. Using the technology described in this paper, we
now have a tool for automatically generating the core
application and load testing components of benchmarks
following MDA, and efficiently capturing the performance
data.

4.5. Benchmark application modeling for Web services

For simplicity, we present only the different model parts
from the J2EE case study since the majority of the models
presented to the end users are identical.

Fig. 10 shows the load test modeling and the system
under test (SUT) entry component (Broker).
ion on two J2EE application servers.

Fig. 10. Parameters collected based on automatically generated JMX
monitoring configurations.

276 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
On server side, an extra �WebService� stereotype is
used to annotate the Web service class. By default, all the
operations can be assessed as Web services. If only selected
methods need to be exposed as Web services, a method
level stereotype �WebServiceOperation� can be used.
In Web service modeling, many performance parameters
can be made through configurations on the model directly,
such as WSDL binding styles (RPC/Document) and bind-
ing use styles (Encoded/Literal). As annotated on the dia-
gram through tagged values on the Broker class, we use
the doc/literal wrapped pattern. The wrapped pattern is a
slightly improved variation of the commonly used doc/lit-
eral style. This is considered the best configuration for per-
formance. Such tuning largely depends on the server side
cartridge. However, the values can be queried by the load
testing client to conduct necessary style-specific testing
and performance measurement.

There is virtually no change on the client side modeling
except the configuration of the endpoint through a tagged
value. All the extra changes involved are encapsulated in
the client cartridge. If a Web service targeted model is
detected, the cartridge will generate Web service specific
look-ups and a Web service client while the rest of the test-
ing logic and data is untouched.
4.6. Performance output for Axis Web service platform

The same set of performance data is collected for the
Web service benchmark application. Fig. 11 shows the
response time for 25 and 50 clients, respectively. The spikes
at the end of the 5000 ms indicate all response times longer
than 5000 ms.2 Fig. 12 shows the average response time
and TPS in terms of number of threads in an incremental
requests simulation scenario (Fig. 13).

Comparisons between different platforms are beyond
the scope this paper.

Note that MDABench generates metrics such as timing
details and distribution statistics. Distribution statistics
allows a more in-depth view of the performance results
compared to average response time and throughput. These
enable us to identify critical irregularities and their causes
during test runs of the benchmark. We also provide facili-
2 The range can be easily changed, and all raw response times are
collected in text files for possible further analysis.
ties to store the timing details. Timing details capture the
time to execute each individual operation and are recorded
in the results repository. This does of course incur perfor-
mance and storage overhead. However, the timing infor-
mation allows further correlation with other internal or
external events which may have significant performance
impacts. Performance collection utilities are based on our
own extensive experience on performance testing.

There are no JMX equivalents and performance APIs in
Axis for internal performance or service performance mon-
itoring. Thus we did not generate performance monitoring
configurations files for obtaining such data as we did for
J2EE platforms.

4.7. Applying MDABench in the real world

We recently had the opportunity to test MDABench in a
Web service-based e-Government project. The system
allowed Australian tax payers to retrieve their medical
costs for a given tax year directly from a Web service for
lodging a tax return. Our aim was to assess the perfor-
mance potential of the Web services involved.

We were able to use the MDABench prototype in the
measurement planning phase. We created test data models
along with transaction mix and exception mix requirements
using the UML 2.0 Testing profile as shown in Fig. 14. We
then used the model to communicate the essential measure-
ments to system’s software engineers. Although we were
not be able to deploy MDABench in the production envi-
ronment due to security reasons, this exercise has given
us considerable insights into using such a tool in real world.
The lesson learned will be discussed in the next section. The
full experience of this project is reported in Liu et al. (sub-
mitted for publication).

5. Discussions

5.1. Lessons learned

5.1.1. Tailoring UML is not always the best way

UML profiles or Domain Specific Languages (DSL) are
often used to serve very different purposes. That includes
inventing new notations, facilitating task automation,
adopting product lines, constructing GUIs, data structure
traversal and so on. A different purpose requires a different
design strategy. We identified the goals of our UML profile
as the following:

• Add new visual notations for the performance testing
domain.

• Transform visual notations to code for task automation.
• Adopting a product line for performance testing for dif-

ferent platforms.

These goals require a strategy based upon abstracting
concepts from existing infrastructures and best practices,
and mapping them to modeling elements (stereotypes and

Fig. 11. Benchmark modeling for the Axis Web service platform.

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 277
tagged values). Since we are tailoring UML 2.0 Testing
profile to achieve this, the mapping was not always smooth.
The UML 2.0 Testing profile is modeled upon a unit testing
mindset in a local environment. It lacks some of the con-
cepts in distributed testing coordination and data collec-
tion. We therefore had to insert these concepts ‘behind
the scenes’ in templates rather than using explicit model
elements. We are currently exploring Microsoft’s DSL to
model these concepts explicitly.
5.1.2. A flexible test data modeling and generation

tool is very valuable

Existing performance tools have scripting and test
recording features, but they lack test data modeling capa-
bilities and are extremely limited in features for test data
generation. During our projects, gaining full access to
any real data for measurement was either prohibited or
infeasible. Using generated test data is therefore the only
option. To represent the system as realistically as possible
and reduce testing effort, we need flexible test data
modeling and generation tools to produce high quality
data for a large number of requests types and their
combinations.
5.1.3. A distributed unified measurement utility

is very valuable

During our projects, we found most ad hoc measure-
ments were performed at different times, under different
runtime conditions and using different tools. Correlating
between these measurements was consequently very diffi-
cult. A unified measurement utility that can collect all nec-
essary measurements at the same time would significantly
increase the usability of the collected data. MDABench
has the capability to conduct such distributed measure-
ments in a unified framework.
5.1.4. Supporting reusability

When we first developed MDABench, we focused our
attention on the J2EE platform. This implementation
adhered to three design principles:

Fig. 12. Samples of response time distribution for 25/75 clients on Axis.

278 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
• Decouple the test suite from the server side technology.
Most information required to connect to the server side
is gathered through querying the server-side Platform
Independent Model (PIM).

• We choose not to instrument any server-side technology
cartridges. This allows the server-side cartridge to be
evolved separately and be kept up-to-date to the latest
technology developments.

• The load testing suite modeling capability is strictly
divided into a platform independent profile and
platform dependent markings. The platform indepen-
dent profile is a combination of the UML 2.0 Testing
Profile and some load testing domain specific lan-
guages. The platform dependent markings are all tagged
values.

These design principles have not only allowed us to
move MDABench to Web service platform but also
achieved a number of benefits for developers. For example,
there are virtually no changes to the load testing suite
architecture model except for the configuration of the end-
point through a tagged value when we move from an exist-
ing J2EE load testing model to a Web service load testing
model. After the initial one-off effort of developing the
Web services cartridge, one student took one day to change
the benchmark model to the Web services annotation and
conduct the test successfully.

5.1.5. Supporting extensibility

MDABench can be easily extended. This can be
achieved in a number of ways:

• Major utility components of MDABench provide either
interfaces or abstract classes for overwriting existing
implementations.

• Components to interpret modeling elements strictly fol-
low a chain of command pattern to enable delegations
to any new model transformation and code generation
interpreters.

• A templating capability within cartridges provides a
simple extension mechanism.

Using these mechanisms, extending MDABench from
J2EE to Web services took relatively little effort. However,
it will be difficult to directly extend MDABench to the
Microsoft .Net platform. Though MDABench theoreti-
cally could generate .Net applications, the UML-based
modeling environment is not encouraged in Microsoft

Fig. 13. Average response time and throughput on Axis in an incremental requests simulation.

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 279
Visual Studio development environment. Microsoft has
launched its own initiative on model driven development
(Software Factories) and uses DSL as its modeling lan-
guage. Thus, we are currently developing an MDABench
equivalent using DSL. It will take advantage of the existing
Visual Studio testing capabilities but raise the level of test-
ing into a model driven level.

5.2. Evaluation

It took considerable effort to develop the original Stock-
Online application for different middleware platforms, con-
duct load testing and collect performance data. Extending
it to Web service platform later involved another round of
similar effort. Though familiarization of the business logic
might make it easier, the repetitive and error prone parts
for testing and infrastructure plumbing are the components
that have to be rebuilt for each platform.

Using our extended framework, one student, the main
developer of the AndroMDA extension but with no expe-
rience with J2EE, took one week to model the system
and conduct the load tests on WebLogic. It took her
another half day to deploy the system on JBoss and con-
duct the same load testing. It took us some time to adapt
our testing suite cartridge to Web services. However, after
this once-off effort, it took the student another day to
change the benchmarking model with Web services annota-
tion and conduct all the tests.

We realize that this effort comparison is anecdotal, and
we do not have accurate effort data from the original
development team. It is also easier to develop the same
application the second time. However, it is preliminary evi-
dence that the effort spent on the basic plumbing code and
load test suite has been absorbed by cartridge developers
and code generation. Hence we believe the productivity
savings afforded by this approach are potentially consider-
able. We are planning to conduct a thorough empirical
investigation on this. Of course productivity is only one
of the benefits. Quality is also improved by encapsulating
best practices in the reusable cartridge, and portability
and modifiability are achieved through MDA standards
compatibility.

In our case study, we are not using any vendor spe-
cific features in J2EE platform so one single UML model
is used for both the JBoss and WebLogic platforms. If plat-
form specific features are involved, the model has to be
marked with platform specific information using tagged
values. The additional complexity of using the platform
specific features is also hidden by the code generation
cartridges.

Fig. 14. MDABench model for e-Government project.

280 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
For the Web service platform, we have only collected the
basic response time and throughput data. The cartridge is
also capable of doing spike and incremental load simula-
tion. Extra Web services specific performance data such
as message sizes can also be collected. There are no sophis-
ticated APIs as in the J2EE component technologies for
querying platform internal performance related or service
related indicators. However, with the maturing of ESB
platforms and the adoption of WSDM standards, such
APIs or configuration-based performance monitor are
appearing. We are investigating how to further adapt our
cartridge to collect a more complete set of performance
data for Web service platforms.

Making changes to the design to generate a new version
of the benchmark is also simpler. If new business compo-
nents and methods are introduced, new implementation
code needs to be added to the generated skeleton on the
server side. No change needs to be made on the client load
testing part. Changing design elements like stateful/state-
less beans or Web service binding styles are simply a matter
of changing the UML model. All the changes will be prop-
agated in the source code and deployment information.

In the process of developing our approach and imple-
mentation, we integrated performance engineering best
practices from the various leading technologies and
our own experience. The internal structured design of
the load testing client is inspired by ECperf/SPECjAppser
(ECperf, 2001). Performance metrics are based on
industry standards such as TPC-W (TPC, 2004). Perfor-
mance collecting utilities are based on our own long expe-
rience on performance testing. Incremental and spike
simulation are inspired by Grinder 3 (Gomez et al.,
2005). All these best practices are essentially encapsulated
in the cartridge, and its use automatically supports these
best practices through generated code structures and
utilities. This is one of the main motivations behind
MDABench.

Generating a benchmark application is essentially not
different from generating any software application. A
benchmark application usually either captures the perfor-
mance critical parts of the full application or acts as a
way of exercising off-the-shelf component framework
services which you are interested in. By unifying bench-
mark related performance work with normal application
development in a single consistent environment, we facili-
tate incremental design and development. This helps to
incorporate performance engineering tasks into the SDLC
with minimal cost.

L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282 281
5.3. Limitations

There are still several limitations of this approach:

• AndroMDA is generic enough to support platforms
other than the existing J2EE and Web service platforms.
Still, the existing cartridges are limited to these two dif-
ferent types of platforms. The lack of .NET platform
support has limited us from applying our approach to
a wider collection of platforms. However, new third
party vendors such as ArcStyler have successfully pro-
vided MDA support for .NET. On the other hand,
Microsoft has integrated a model based modeling capa-
bility (Domain Specific Modeling) in its new Visual Stu-
dio, along with potential interoperability with UML.
Because our philosophy is to integrate architecture dri-
ven performance engineering into practical development
environments, we are currently applying the same con-
cepts presented in this paper to Microsoft DSL
environment.

• The default implementation of the load testing suite is
still relatively simple. It covers only successful testing
scenario generation. In real applications, performance
of exception handling and transaction rollback is also
a major concern. Currently, users have to implement
such scenarios manually. We are considering integrating
these both at the modeling level and in the default imple-
mentation in future versions. We will also take advan-
tage of some other interesting concepts in UML 2.0
Testing Profile such as Arbiter and Verdict stereotypes
for determining the success of the test run.

6. Conclusion and future work

This paper has presented an approach to generate a cus-
tomized benchmark application from architecture designs
based on the J2EE and Web service platform using
MDA. An implementation of this approach based on
extending an open source MDA framework has been
described and demonstrated.

A benchmark design is modeled with platform indepen-
dent models in UML. A corresponding load testing suite is
modeled following a subset of the UML 2.0 Testing Profile.
Deployable code is then generated for both the core bench-
mark design and its associated load testing suite. The core
application is generated by taking advantage of existing code
generation cartridges maintained by the open source com-
munity. The load test suite generator has been developed
by the authors, and fully integrates with the core application
generation. Case studies using EJB component technology
(Weblogic/JBoss) and the Axis Web services platform for
the Stock-Online benchmark suite have demonstrated the
tools and the generated outputs from load tests.

This approach has several significant advantages over
proprietary model-based CASE tool environments for
benchmark generation. Using MDA and exiting open
source MDA frameworks reduces the learning curve and
training effort required, and improves model traceability
and tool interoperability. The default implementation and
test data generation saves a large amount of load testing
effort. The approach also complements existing model-
based performance prediction methods by providing the
potential to use the benchmark results for calibrating and
validating analytical performance models. The semantic
traceability achieved through MDA makes this integration
easier, and this remains a major objective of our future
work.
Acknowledgment

National ICT Australia is funded through the Austra-
lian Government’s Backing Australia’s Ability initiative,
in part through the Australian Research Council.

References

Apache, 2005. Apache Axis 1.3 Final. <http://ws.apache.org/axis/>.
Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., 2004. Model-based

performance prediction in software development: a survey. IEEE
Transactions on Software Engineering 30 (5), 295–310.

BEA, 2004. WebLogic Scripting Tool (WLST). <http://e-docs.bea.com/
wls/docs90/config_scripting/index.html>.

Czarnecki, K., Helsen, S., 2003. Classification of model transformation
approaches. In: Proceedings of the OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-Driven Architectures.

ECperf, 2001. ECperf v1.1. <http://java.sun.com/j2ee/ecperf/index.jsp>.
Gomez, P., Aston, P., et al., 2005. The Grinder V3.0-beta23. <http://

grinder.sourceforge.net/>.
Gorton, I., 2000. Enterprise Transaction Processing Systems: Putting the

CORBA OTS, Encina++ and OrbixOTM to Work, Addison-Wesley.
Gorton, I., Liu, A., 2003. Evaluating the performance of EJB components.

IEEE Internet Computing 7 (3), 18–23.
Gorton, I., Liu, A., Brebner, P., 2003. Rigorous evaluation of COTS

middleware technology. IEEE Computer 36 (3), 50–55.
Grundy, J., Cai, Y., Liu, A., 2001. Generation of distributed system test-

beds from high-level software architecture descriptions. In: Proceed-
ings of the 16th Annual International Conference on Automated
Software Engineering (ASE).

Grundy, J., Wei, Z., Nicolescu, R., Cai, Y., 2004. An environment for
automated performance evaluation of J2EE and ASP.NET thin-client
architectures. In: Proceedings of the Australian Software Engineering
Conference (ASWEC).

Grundy, J.C., Cai, Y., Liu, A., 2005. SoftArch/MTE: generating distrib-
uted system test-beds from high-level software architecture descrip-
tions. Automated Software Engineering 12 (1), 5–39.

Liu, Y., 2004. In School of Information Technologies University of
Sydney, PhD Dissertation.

Liu, Y., Gorton, I., 2004. Accuracy of performance prediction for EJB
applications: a statistical analysis. In: Proceedings of the Software
Engineering for Middleware (SEM).

Liu, Y., Gorton, I., Liu, A., Jiang, N., Chen, S., 2002. Design a test suite
for empirically-based middleware performance prediction. In: Pro-
ceedings of the TOOLS Pacific.

Liu, Y., Zhu, L., Gorton, I., 2006. Model driven capacity planning:
methods and tools. In: Proceedings of the Computer Management
Group Australia (CMGA), Sydney.

Liu, Y., Zhu, L., Gorton, I., 2007. Performance assessment for e-
government services applications: an experience report. In: Interna-
tional Conference on Software Engineering (ICSE), submitted for
publication.

http://ws.apache.org/axis/
http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://java.sun.com/j2ee/ecperf/index.jsp
http://grinder.sourceforge.net/
http://grinder.sourceforge.net/

282 L. Zhu et al. / The Journal of Systems and Software 80 (2007) 265–282
Marco, A.D., Inverardi, P., 2004. Compositional generation of software
architecture performance QN models. In: Proceedings of the 4th
Working IEEE/IFIP Conference on Software Architecture (WICSA).

OASIS, 2005. OASIS Web Services Distributed Management (WSDM).
<http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
wsdm>.

Rutherford, M.J., Wolf, A.L., 2003a. A case for test-code generation in
model-driven systems. In: Proceedings of the Second International
Conference on Generative Programming and Component Engineering,
Erfurt, Germany.

Rutherford, M.J., Wolf, A.L., 2003b. Integrating a performance analysis
kit into model-driven development. In: Proceedings of the 5th GPCE
Young Researchers Workshop 2003, Erfurt, Germany.

Skene, J., Emmerich, W., 2003a. A model-driven approach to non-
functional analysis of software architectures. In: Proceedings of the
18th IEEE International Conference on Automated Software Engi-
neering (ASE).

Skene, J., Emmerich, W., 2003b. Model driven performance analysis of
enterprise information systems. Electronic Notes in Theoretical
Computer Science 82 (6), 1–11.

TPC, 2004. TPC Benchmark W (TPC-W). <http://www.tpc.org/tpcw/
spec/TPCWV2.pdf>.

Weis, T., Ulbrich, A., Geihs, K., Becker, C., 2004. Quality of service in
middleware and applications: a model-driven approach. In: Proceed-
ings of the Eighth IEEE International Enterprise Distributed Object
Computing Conference (EDOC).

Yilmaz, C., Memon, A.M., Porter, A.A., Krishna, A.S., Schmidt, D.C.,
Gokhale, A., Natarajan, B., 2004. Preserving distributed systems
critical properties: a model-driven approach. Software, IEEE 21 (6),
32–40.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.tpc.org/tpcw/spec/TPCWV2.pdf
http://www.tpc.org/tpcw/spec/TPCWV2.pdf

	MDABench: Customized benchmark generation using MDA
	Introduction
	Related work
	Performance analysis with MDA
	Benchmark generation
	Performance measurement

	Customized benchmark generation using MDA
	Development environment
	Benchmark application generation
	Load test suite generation
	Incremental and spike load simulation
	Performance data collection
	Application related profiling information
	Application server (middleware and framework) related information

	Case studies
	Benchmark application modeling for J2EE
	Modeling the load testing suite for J2EE
	Customized benchmark generation, deployment and execution
	Performance output for two J2EE platforms
	Benchmark application modeling for Web services
	Performance output for Axis Web service platform
	Applying MDABench in the real world

	Discussions
	Lessons learned
	Tailoring UML is not always the best way
	A flexible test data modeling and generation	tool is very valuable
	A distributed unified measurement utility	is very valuable
	Supporting reusability
	Supporting extensibility

	Evaluation
	Limitations

	Conclusion and future work
	Acknowledgment
	References

