
MDAbench: A Tool for Customized Benchmark
Generation Using MDA

Liming Zhu
School of Computer

Science and
Engineering,

University of NSW,
Australia

Liming.Zhu@nicta
.com.au

Yan Liu
Empirical Software

Engineering Program,
National ICT Australia

Jenny.Liu@nicta.c
om.au

Ian Gorton
Empirical Software

Engineering Program,
National ICT Australia

Ian.Gorton@nicta.
com.au

Ngoc Bao Bui
Faculty of Information

Technology,
University of

Technology Sydney,
Australia

NgocBao.Bui@st
udent.uts.edu.au

ABSTRACT
Designing component-based application that meets performance
requirements remains a challenging problem, and usually
requires a prototype to be constructed to benchmark
performance. Building a custom benchmark suite is however
costly and tedious. This demonstration illustrates an approach for
generating customized component-based benchmark applications
using a Model Driven Architecture (MDA) approach. All the
platform related plumbing and basic performance testing routines
are encapsulated in MDA generation “cartridges” along with
default implementations of testing logic. We will show how to
use a tailored version of the UML 2.0 Testing Profile to model a
customized load testing client. The performance configuration
(such as transaction mix and spiking simulations) can also be
modeled using the UML model. Executing the generated
deployable code will collect the performance testing data
automatically. The tool implementation is based on a widely
used open source MDA framework AndroMDA. We extended it
by providing a cartridge for a performance testing tailored
version of the UML 2.0 Testing Profile. Essentially, we use OO-
based meta-modeling in designing and implementing a
lightweight performance testing domain specific language with
supporting infrastructure on top of the existing UML testing
standard.

Categories and Subject Descriptors
D.2.11 [Software]: Software Engineering – Software
Architectures; D.2.2 [Software]: Software Engineering – Design
Tools and Techniques; D.3.4 [Programming Languages]:
Processor – code generation

General Terms
Design, Language, Theory

Keywords
MDA, model-driven development, CASE Tools, Performance,
Testing, Code Generation

1. INTRODUCTION
With the growing interest in Model Driven Architecture (MDA)
[5]technologies, attempts to integrate performance analysis with
MDA and UML have been made, aiming to reduce the
performance modeling effort required in component-based
software development. Recent work has focused on model
transformation from UML design models to method-specific
performance analysis models, using standard UML performance
profiles. To obtain model parameter values, a number of
different methods can be used. One is to use a benchmark
application. This approach has proven to be useful [3] with
component--based technologies. An effective benchmark suite
includes a core benchmark application, a load testing suite and
performance monitoring utilities. But implementing a custom
benchmark suite for a component platform from scratch is also
costly and tedious. A benchmark implementation usually
requires a large amount of container and infrastructure related
plumbing, even for a relatively simple benchmark design.
Interestingly, this characteristic is particularly amenable to
MDA-based code generation, which is efficient at generating
repetitive but complicated infrastructure code. However, one
capability that current MDA code generation frameworks lack is
that they do not provide solutions to generation of a load testing
suite with data collection infrastructure for a given benchmark.

The aim of this tool is to automate the generation of complete
benchmark suites from a design description. The input is a UML-
based set of design diagrams for the benchmark application,
along with a load testing client modeled in a performance
tailored version of the UML 2.0 Testing Profile [6]. The output is
a deployable complete benchmark suite including
monitoring/profiling utilities. The target platform is server-side
component platforms, currently the J2EE component framework.
Executing the generated benchmark application produces
performance data in an analysis friendly format, along with
automatically generated performance graphs.

2. CUSTOMIZED BENCHMARK
GENERATION USING MDA
The tool is built on top of an open source extensible framework -
AndroMDA [4], for MDA based code generation. We extended
AndroMDA to support a performance testing tailored version of
the UML 2.0 Testing Profile for load test suite generation.
Benchmark designers can model their own benchmark

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

application along with a load testing suite in UML. The overall
structure of the benchmark generation and related process
workflow is presented in the boxed area in Figure 1.

Figure 1. Model Driven Benchmark Suite Generation

The core benchmark application generation simply exploits
MDA development techniques and existing cartridges using
AndroMDA. The load testing behavior is modeled using a
tailored version of the UML 2.0 Testing profile [6]. To this end,
we have implemented the following stereotypes in the UML 2.0
Testing Profile: SUT(System under Test), Test Context, Test
Component, Data Pool, Data Partition, Test Case. Each
stereotype includes a set of tagged values for various purposes
including correlations to the SUT, test data modeling, test
scenario modeling (such as transaction mix) and performance
testing configurations (number of runs, ramp up time and etc.).

The AndroMDA extension for load test modeling and generation
results in a new cartridge. The design and implementation of the
cartridge combines OO-based meta-modelling and domain
specific language design. We also provide a complete template
for generating a default implementation of the loadTestAll() test
case with randomly generated data based on a data pool model
and transaction mix. A database seeder is also generated to
populate the database. A simple client side example modeled
using this profile in MagicDraw 8.0 is shown in Figure 2.
Executing the generated deployable code will collect the
performance testing data automatically in analysis friendly
format and graphs.

3. RELATED WORK
Some pioneering work has been done on generating benchmark
and prototyping applications using models, as in [1, 2]. However,
these have several limitations:1) The code generators for the
chosen technologies are built from scratch by the researchers.
They do not draw upon the vast pool of exiting code generation
“cartridges” for latest technologies. Any change to the chosen
target technology or the introduction of a new technology
requires significant extra work. 2) These methods do not follow
the MDA standards. Existing industry experience on UML and
code generation is therefore not leveraged. 3) The load testing
part of the benchmark suite can not be comprehensively modeled
compared to using the UML 2.0 testing profile. The latter makes

load test suite modeling more modular, reusable and modifiable.
Our approach directly addresses these limitations.

Figure 2. Stock-Online benchmark load test model

4. CONCLUSION
We have validated our tool through a case study. We took an
existing benchmark application which took considerable time to
be built and performance tested for different middleware
platforms, and undertook the same task using our tool. One
student, the main developer of the AndroMDA extension but
with no experience with J2EE, took one week to model the
system and conduct the load tests on WebLogic. It took her
another half day to deploy the system on JBoss and conduct the
same load testing. Hence we believe the productivity savings
afforded by this approach are considerable. The effort involved
in the basic plumbing code and load test suite has been absorbed
by cartridge developers and code generation. Making changes to
the design to generate a new version of the benchmark is also
simpler. We are currently migrating the tool onto other platforms
with other flavors of Model Driven Development (MDD) such as
.Net and DSL-based MDD.

5. REFERENCES
[1] M. J. Rutherford and A. L. Wolf, "A case for test-code

generation in model-driven systems," in Proceedings of the
The second international conference on Generative
programming and component engineering, Erfurt, Germany,
2003.

[2] J. Grundy, Y. Cai, and A. Liu, "Generation of distributed
system test-beds from high-level software architecture
descriptions," in Proceedings of the 16th Annual
International Conference on Automated Software
Engineering (ASE), 2001.

[3] I. Gorton and A. Liu, "Evaluating the performance of EJB
components," Internet Computing, IEEE, vol. 7 (3), pp. 18-
23, 2003.

[4] "AndroMDA, v3.0M3", http://andromda.org/.
[5] "Model Driven Architecture", http://www.omg.org/mda/.
[6] "UML 2.0 Testing Profile Specification",

http://www.omg.org/cgi-bin/doc?ptc/2004-04-02.

