
A Highly Fault-Tolerant Quorum Consensus
Method for Managing Replicated Data

Xuemin Lin 1 and Maria E. Orlowska 2

1 Department of Computer Science, University of Western Australia
Nedlands, WA 6907, Australia. e-maih lxue~cs.uwa.oz.au.

2 Department of Computer Science, The University of Queensland
QLD 4072, Australia. emaih maria@cs.uq.oz.au.

Abstract. The main objective of data replication is to provide high
availability of data for processing transactions. Quorum consensus (QC)
methods are frequently applied to managing replicated data. In this pa-
per, we present a new QC method. The proposed QC approach has
a low message overhead: 1) In the best case, each transaction opera-

1 _ . - - - . L . . - - . tion process needs only to communicate with O(x/-nlog ~og3~ n) (~
O(v~log ~176 n)) remote sites (n is the number of sites storing the ma-
nipulating data item). 2) In the worst case, each transaction opera-

tion process may be forced to communicate with O (x / ~ l o g ~ n) (~
O(v~log ~ n)) remote sites. Further, we can show that the proposed
QC method is highly fault-tolerant. The proposed approach is also fully
distributed, that is, each site in a distributed system bears equal respon-
sibility.

Key words: concurrency control, distributed computing, fault tolerance,
quorum consensus method.

1 I n t r o d u c t i o n

Through the replication of data, distributed database system reliability can be
increased if an effective approach is found for managing replicated data. Mean-
while mutuM consistency among the replicated copies of data should be main-
tained by synchronizing transactions at different sites, so that a global serial-
ization order can be ensured. Thus, the problem of replicated data management
involves a compromise between two conflicting goals: maximizing da ta availabil-
ity and maintaining the consistency of data. Quorum consensus (QC) methods
[2,3] are widely used in managing replicated data.

Using a QC method, an operation of a transaction issued at a site in a
distributed database system can proceed only if permission is granted by a group
of other sites storing the replicas of the manipulating data. A general protocol of
a QC method for processing a transaction operation can be described as follows.

Given a data i tem (object), at each site si, the regulations for forming a read
quorum group S~ and a write quorum group S~ are assigned, where S~ and S~'
are both in terms of a subset of the set of the sites storing replicated copies of

172

the object, so that the intersection of a read quorum group and a write quorum
group is not empty, neither is the intersection of two write quorum groups. These
two intersection invariants can be formally defined as:

for each pair of sites si and s j , and any formed S[, S~', S~ and S[,
n #o , n s T # O, and n #o .

A read (write) operation should get permission from each site in S~ (S~) for
processing it.

I fa 2-phase locking mechanism [1] is applied, a QC method will force, through
the intersection invariants, the situation that a write and a read cannot take place
simultaneously on different copies of the same object, and similarly, neither can
two writes. Thus, mutual consistency can be maintained.

Recent trends in developing new QC methods include coupling high data
availability with a low communication cost for processing transactions. The
achievements of a low communication cost are either

1. through the minimization of the number of remote sites which a transaction
operation process has to communicate with [4,8,9], or

2. through the minimization of the total communication cost for processing a
given set of transactions [5,6].

In this paper, we restrict our interests to 1. Interested readers may refer to [5,6]
for a detailed discussion about minimizing the total communication cost.

To maximize the utilization of a distributed system, and then to enhance the
overall performance of transaction processes, a fully distributed QC approach is
investigated in [4,8,9]. In a fully distributed QC approach, each site bears almost
equal responsibility in performing a QC approach. The lower bound of a quorum
group size in a fully distributed QC method has been shown as x/~ [8], where n
is the number of sites storing a given object. This lower bound has been achieved
by the QC method in [8].

A rigorous analysis [9] shows that by the QC method in [8], the data avail-
ability for processing an individual operation gets smaller (falls asymptotically
to 0), when the number of replicas of each data item is increased. This defeats
the main objective of data replication, i.e., increasing data availability through
replication. [9] provides a fully distributed QC method which guarantees that
the data availability is increased (asymptotically to 1) as the number of replicas
increases. But each operation process is forced to communicate with at least
~2(v~log ~ n) remote sites.

In this paper, we will present a new QC method. The proposed method is also
fully distributed, and guarantees that the data availability goes asymptotically
to 1. Further, we can show that using the proposed approach, each operation
process may communicate to less than O(v~log ~ n) remote sites:

- If at the time when an operation is being processed, there are no (or a few)
sites with failures, then the operation process will communicate with only
o(vrn log 0'20s n) remote sites.

173

- If many sites with failures, an operation process will be forced to communi-
cate with O(v/-n log ~ n) remote sites.

The rest of the paper is organized as follows. In Section 2, we first give our
environment assumptions, and then introduce a mathematical model to justify
the degree of fault-tolerance of a QC method. In Section 3, we present our
QC method. Section 4 provides a sketch of a rigorous performance analysis of
our QC approach, and a comparison between our QC method and the related
approaches. This is followed by a conclusion.

2 P r e l i m i n a r i e s

In our distributed system environment, we assume that communication between
different sites is through exchanging messages. Detection of a failure of a site by
another site happens through sending a message, but receiving no reply. To sim-
plify the analysis, we assume that communication links never fail, and that each
site failure probability is independent. The networks are fully connected; that is,
a message can be sent directly between any pair of sites. We follow the model
where replicated data is represented by multiple copies and the transactions are
either simple read or simple write (that is, each read or write manipulates only
one object). So, in this paper we need only to consider a QC method with respect
to one object. Without loss of generality, we assume full data replication; that
is, a copy of each object exists at all sites.

Suppose that in a distributed system N, the probability of each site being
alive is known. Given a site i and a QC method A, let Rr,A,i (Rw,A,i) be the
probabili ty of assembling successfully a read (write) quorum group at i by the
QC method A. The QC method A has a high site resilience [9] if

rain R. A i "* 1 when n --, oo,
iEN, qE{r,w} ~'

where n is the number of sites in the network N. Note that a QC method with
a high site resilience can guarantee that in the asymptotical case, an alive site
is always able to assemble a read (or write) quorum group to process the trans-
actions issued at it; that is, the data availability is increased through increasing
the number of replicas of data, unlike the one in [8].

Note that we are concerned only with the fault tolerance of transaction syn-
chronization algorithms. So, as far as we are concerned, an operation process
cannot successfully assemble a read (or write) quorum group only due to site
failures. We do not consider the situation where an operation process fails be-
cause some other operation has already been granted permission to proceed.

3 A N e w Q C m e t h o d

Inspired by the QC method in [9], our QC method is built on the top of Kumar 's
approach [4] and Maekawa's approach [8]. We first briefly review the methods
in [4,8], and then present our QC algorithm.

174

3.1 K u m a r ' s M e t h o d

Suppose that in a distributed system, there are n sites. [4] proposed a hierar-
chical quorum consensus (HQC) method for update synchronization. Here, we
introduce our special implementat ion of the HQC method, which will be adopted
in our new QC method.

A logical organization Tn of n sites in a network is a Kumar tree if:

- T,~ is a rooted 3-way tree, that is, each node has at most three children; and
the leaf set of Tn consists of the n sites.

- The levels of the tree are ordered such that the root is located at level 0,
and the level number of a parent is one level lower than that of its children.
(Li denotes the set of nodes at level i.)

- T, has m = [log3 n7 + 1 levels (i.e., the last level is Lm-1.)
- Each node in Li, for 0 < i < m - 3, has exactly three children; and each

node in Lm-2 either is a leaf or has at least two children.

Figure 1 illustrates the Kumar trees for n = 6, 9.

L0

Lt

L2

Fig . 1. Kumar trees

Our implementat ion of HQC performs as follows with respect to each site j:

Step 1: The n sites are logically organized as a Kumar tree. Each site keeps the
Kumar tree as a map for assembling its read/wri te quorum groups. Go to
Step 2.

Step 2: The regulations for assembling a read quorum and a write quorum
group are the same:

The root asks (randomly) a pair of its children to take part in assem-
bling the quorum group, and marks these two children. Recursively,
each marked node at Li (randomly) marks a pair of its children at
Li+l, and asks them to part icipate in making the quorum group. (If
the number of children of a marked node is smaller than 3, then the
marked node should mark all its children.)

Go to Step 3.
Step 3: A quorum group is formed by all the marked leaves. In case there are

some marked leaves with a failure, we need to perform a quorum group again.
In order to save communicat ion cost among remote sites, we should keep as

175

many marked non-failure leaves as possible in a new forming quorum group.
So, instead of performing a new quorum group by Step 2 from the scratch,
we can modify the failed formed quorum group to a new quorum group:

Suppose that a marked site l has a failure. The site j looks up the
Kumar tree to find the parent pal of site l. Then re-do the Step 2
with respect only to pal, where keeping another originally marked
child of pal being marked in the new forming quorum group. After
this, if we find that it is impossible to assemble the quorum group
with respect to pal, then j looks up the Kumar tree again to find the
parent pa2 of pa l . Then re-do the Step 2 with respect to pa2, where
keeping another originally marked child of pa2 being marked in the
new forming quorum group, and so on. Finally, we can determine
whether or not it is possible to assemble a quorum group with alive
sites.

0

1 2 3 4 5 6 7 8 9
(a)

1 2 3 4 5 6 7 8 9
(b)

Fig. 2. HQC method

For instance, consider Figurer 2. It shows a collection of 9 sites organized into
a three level Kumar tree. The various possible quorum groups are: { 1, 2, 8, 9 } (see
Figure 2(a)), {2, 3, 4, 6} (see Figure 2(b)), etc. Suppose that {1, 2, 8, 9} is initially
formed, where the site 9 is not available. So by HQC, {1, 2, 7, 8} is then formed.
Again, we find site 7 is not available. By HQC, then one of {1, 2, 4, 5}, {1, 2, 4, 6},
and {1, 2, 5, 6} will be formed.

It has been shown that the size of a quorum group created by using HQC
is bounded by (not greater than) 211~ n] (~ O(n~ This implies that a
transaction process needs to communicate with O(n 0"63) remote sites to get a
read (write) quorum group, if there are no sites with a failure.

Suppose that at the time when a transaction is issued, some sites are not
available in the network due to their failures. As mentioned earlier, in a distribut-
ed environment a site failure is usually detected through sending a message. A
transaction process, by HQC, may be forced to communicate with more than
half of the sites in the network, through sending messages, to know whether or
not it can successfully get a read (write) quorum group. Thus, in the worst case a
read (write) quorum group is formed by communicating with O(n) remote sites.

176

3.2 Maekawa's Method

[8] proposed another fully distributed quorum consensus method. A simple ver-
sion of the method in [8] is to organize n sites into an approximate grid square,
where the possible empty sites are placed at the grid positions as up and right as
possible (see Figure 3). A (read or write) quorum group S~ of a site si (1 < i < n)
consists of the sites which are, with respect to the grid, in the row and the col-
umn occupied by sl. (Figure 3 illustrates the quorum groups of site 4 and site
1.) Clearly, each Si has at most 2 rv/-~ 1 - 1 sites, any two quorum groups have
non-empty intersection, and each site belongs to O (v ~ groups. If a failure of
a site in Si happens, then the process of a transaction from site si has to wait
until the site recovers.

F ig . 8. Maekawa's method

3.3 Our QC Method: KMQC

In this sub-section, we present a new quorum consensus method - KMQC method,
which is built on the top of Kumar and Maekawa's methods. In the KMQC
method, the regulations for forming read and write quorum groups are the same.
We first group n sites {s~ : 1 < i < n} into k disjoint groups {G~ : 1 < i < k}
such that we try to make the sizes of these k groups as equal as possible. A
quorum group is formed, in KMQC, through two layer constructions. KMQC
first performs Maekawa's method on these k groups to obtain a "quorum group"
A - a subset of {Gi : 1 < i < k}. By the application of HQC to each element
Gi in A, we get a quorum group Qi corresponding to each Gi in A; the union of
all these Qi forms a quorum group in KMQC. It can be precisely described as
follows.

Step 1: Group the n sites into k disjoint subgroups {Gi : 1 < i < k} such that

< IG, I_< r- l,

and u~=~G~ = {s~ : 1 < i < n}. A mapping g~, from {s~ : 1 < i < n} to
{Gi : 1 < i < k}, is constructed, such that gl(si) = Gj if s~ E Gj. Go to
Step 2.

177

Step 2: By viewing each element Gi in {Gi : 1 < i < k} as a "site", and by
applying Maekawa's method [8] to these k "sites", we obtain the k "quorum
groups" A1, A2, ..., Ak (i.e, each Ai is a subset of {Gi : 1 < i < k))
corresponding to theses k "sites" Gi for 1 < i < k. Note Gi E Ai. A mapping
g2 is constructed to identify the "quorum group" of "site" Gi: g2(Gi) = Ai.
(Note that 1 < i < k, IAi{ < 2[x/k] - 1.) Go to Step 3.

Step 3: For each site si, its (read or write) quorum group is formed, which
consists of certain sites in group g2(gl(si)) (say Aj), such that for each
element G , in Aj, we use HQC to form a quorum (read or write) group Q~
in G, . Then the quorum group of sl is:

U i axcg2(gl(,0)Q~.

G~ G2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

G3 (]4

'~ ~) ~16~ ~2~Jl~ ~4~5 ~6[

Fig.4. KMQC approach

For example, consider Figure 4. There are 36 sites. Let k = 4, Gt = {si :
1 < i < 9}, G2 = {si : 10 < i < 18}, Gs = {si : 19 < i < 27}, G 4 = {si :
28 < i < 36}. (Note that gl(sgi+k) = Gi+~ for 0 < i < 3 and 1 < k < 9.) By
the application of Maekawa's algorithm, we have that A1 = {G1, G2, G3}, A2 =
{G1, G2, G4}, As = {G1, Gs, G4), A4 = {G2, G3, G4}. (Note that g2(Gi) = Ai
for 1 < i < 4.) A transaction from site sl requires to form a read (write) quorum
group consisting of certain sites in g~(gl(sl)) = A1, that is, certain sites in G1,
G2, and G3. Particularly, the quorum groups will be

82, 83, 85, 86,813,814,816, 8181 819, 8201 822,823},
{84, 85, 87, 88,811,812,816, S17,819,820,825,826}, etc.

Our KMQC is a fully distributed method, since it is a combination of the
method in [4] and the method in [8] which are fully distributed. It can be imme-
diately verified that KMQC is also correct (i.e, each two quorum groups have at
least one common site), based on the facts that both of the methods in [4,8] are
correct.

Now, we estimate how many remote sites will be accessed by a transaction
process, using KMQC. Clearly, if there are no sites with failures, a transaction

178

process needs to access at most (2 [x/rk 1 - 1) 2[(l~ [~])1 remote sites.

o(i-v/~]er(log~rel)l) = O(x/k 2~~ = O(V'~ -n-~~ 2 (~)) (2/

If many sites are not available in the network, then to perform a quorum group
Qi, with respect to each relevant G=, O(]G=]) remote sites may be communicated
with. So in the worst case, a transaction process will communicate with the
following number of remote sites:

n o([vff I f l) = o(4 (3)

4 A P e r f o r m a n c e A n a l y s i s o f K M Q C

Regarding to the performances of KMQC, the main result is:

T h e o r e m 1. In a distributed system N, suppose that the maximum value p of
the site failure probabilities over all sites is less than 18.35~, and k is chosen as

n log j, n}, (4)
min{L

log~Og3 2 n

where n is the number of the sites in N . Then,

1. min/eN,qe{r,w} R q , K M Q C , i '-+ 1 as n ~ oo .

*. The above (2) is O (v / - ~ l o g l - ~ n) ('~ O(vl-nlog~176 while the above

(3) is o(4 log n) o(v log~

Theorem 1 s a y s :

In a class ~r of distributed systems where the maximum value of site
failure probabilities through the whole class is p and p < 0.1835, the
KMQC method has a high site resilience if with respect to any n sites
distributed system in % k is always chosen as (4). Given any n sites
distributed system in r , each transaction process needs only to commu-
nicate with O(x/-~log ~176 n) remote sites in the best case, and needs to
communicate with O(v~ log ~ 92 n) remote sites in the worst case.

The proof of 2 in Theorem 1 is very straight forward according to the choice
of k, (2), and (3). The proof of 1 requires a detailed mathematic estimation.
Due to the space limitation, we do not include the detailed proof in this paper.
The interested readers may refer to [7] for details. A sketch of the proof 1 is as
follows:

We first prove that HQC in [4] has a high site resilience through a math-
ematical estimation about the probability of failing to form any quorum
groups at a site. Then we use the obtained mathematical estimation to
prove 1. The main technique is to use some standard mathematic esti-
mation approaches.

179

Next, we make a comparison between our KMQC method and the other three
fully distributed algorithms in [4,8,9]. To simplify the description, we use HQC
to denote the method in [4], GQC to denote the method in [8], HMV to denote
the method in [9].

First, KMQC, HQC and HMV all have a high site resilience if the failure
probabili ty of each site is smaller than 18.35%, but GQC dose not have. So,
there is only one loser, GQC, according to this index.

HQC requires to communicate with at least I2(n ~ remote sites, GQC
requires ~(x/~) remote sites, HMV requires at least ~ (x /~ log "~ s n) remote sites.
KMQC requires to communicate with at least 12(x/fflog~176 remote sites.
According to this index, GQC is the best, KMQC is the second best, HMV is
the third.

Based on the above comparison, KMQC should be a winner, regarding to
an integrated whole of remote sites number and fault-tolerance, in the reliable
distributed systems where site failure probabilities are small.

5 C o n c l u s i o n

In this paper, we present a fully distributed quorum consensus method, KMQC.
KMQC method has a high site resilience like that in [9], while we can expect that
in reliable distributed systems, KMQC should have a lower message overhead
than that in [9].

Possible future studies could be on either further improving the message
overhead or addressing the communication link failures.

Acknowledgement: The work of the first named author is partially supported by
the grant IRG at UWA.

R e f e r e n c e s

1. P. Bernstein, V. Hadzilocs mad N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison-Wesley, Reading, Mass., 1987.

2. S. B. Davidson, H. Garcia-Molina and D. Skeen, Consistency in Partioned Networks,
ACM Computing Surveys, 17(3), 341-370, 1985.

3. H. Garcia-Molina and D. Barbara, How to Assign Votes in a Distributed Systems,
J. ACM, 32(4), 841-860, 1985.

4. A. Kumar, Hierarchical Quorum Consensus: A New Algorithm for Managing Repli-
cated Data, IEEE Transactions on Computers, 40(9), 996-1004, 1991.

5. A. Kumar and A. Segev, Cost and Availability Tradeoffs in Replicated Data Con-
currency Control, ACM Transactions on Database Systems, 18(1), 102-131, 1993.

6. X. Lin and M. E. Orlowska, An Optimal Voting Schema for Minimizing the Overall
Communication Cost in Replicated Data Management, to appear in Journal o]
Parallel and Distributed Computing.

7. X. Lin and M. E. Orlowska, On High Resilience and Low Message Overhead in
Replicated Data Management, Technical Report, Computer Science Department,
The University of Western Australia, Australia.

180

8. M. Maekawa, A v/N Algorithm for Mutual Exclusion in Decentralized Systems,
ACM Transactions on Computer Systems, 3(2), 145-159, 1985.

9. S. Rangarajan, S. Setia and S. K. Tripathi, A Fault-tolerant Algorithm for Repli-
cated Data Management, IEEE Proceedings o] the 8th International Con]erence on
Data Engineering, 230-237, 1992.

