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ABSTRACT
Graphs are widely used to model complicated data seman-
tics in many applications. In this paper, we aim to de-
velop efficient techniques to retrieve graphs, containing a
given query graph, from a large set of graphs. Considering
the problem of testing subgraph isomorphism is generally
NP-hard, most of the existing techniques are based on the
framework of filtering-and-verification to reduce the precise
computation costs; consequently various novel feature-based
indexes have been developed. While the existing techniques
work well for small query graphs, the verification phase be-
comes a bottleneck when the query graph size increases. Mo-
tivated by this, in the paper we firstly propose a novel and ef-
ficient algorithm for testing subgraph isomorphism, QuickSI.
Secondly, we develop a new feature-based index technique
to accommodate QuickSI in the filtering phase. Our exten-
sive experiments on real and synthetic data demonstrate the
efficiency and scalability of the proposed techniques, which
significantly improve the existing techniques.

1. INTRODUCTION
Many recent real applications strongly demand efficiently

and effectively managing graph structured data such as paths,
trees, and general graphs. These applications include Bio-
informatics, Chemistry, Social networks, Software and Data
Engineering, World Wide Web, etc. In such applications,
graphs are used to model complex structures and relation-
ships. For instance, graphs may represent chemical com-
pounds in Chemistry. Graphs are also used in UML and ER
diagrams.

The subgraph containment query problem can be described
as follows. Given a graph database D = {g1, g2, ..., gn} and
a query graph q, retrieve all graph gi ∈ D such that q is a
subgraph of gi. For example, if we use the graph in Figure 1
as the query q, then among the 3 graphs (D = {ga, gb, gc})
in Figure 2, only graph gb contains q. The subgraph contain-
ment (or subgraph isomorphism) problem has been shown
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Figure 1: Simple Query Graph
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Figure 2: Simple Graph Database

NP-complete [7].
In recent years, a number of techniques for processing sub-

graph containment queries have been proposed [8, 16, 18, 20,
4]. The main paradigm follows the framework of filtering-
and-verification which is based on feature-based indexes. In
the filtering phase, a feature-based index is used to prune
the captured negative results and generate a candidate set.
In the verification phase, a precise computation is conducted
to generate the final results based on subgraph isomorphism
(NP-complete). The existing techniques include gIndex [16],
TreePi [18] and TreeDelta [20].

However, the existing verification techniques are not ef-
ficient especially when the query graph size becomes large.
Note that the larger graphs the higher cost for subgraph
isomorphism testing. Moreover, due to intrinsic limits of
feature-based indexes, the accuracy of filtering may be get-
ting worse while graph sizes are increasing; that is, the ratio
of the generated candidate set size over the actual result
set size is getting larger. This leads to a dramatic perfor-
mance degrade with an increment of query graph sizes. In
[4], Cheng et al. propose a new paradigm, FG-Index, with
the aim to use index only to process a subgraph contain-
ment query; that is, verification free. Nevertheless, when
query graph sizes increase, many graphs still remain for a
verification.

Motivated by these, in this paper, our primary focus is on
developing efficient verification techniques. We propose an
efficient subgraph isomorphism testing algorithm QuickSI



(Quick Subgraph Isomorphism) to conduct a verification
to generate final results. Comparing to the well adopted
Ullman’s algorithm [13], QuickSI achieves up to 1-4 orders
of magnitude speed-up. In addition, our verification tech-
niques can also be used in the filtering phase to efficiently
generate candidates.

Our main contributions are summarized as follows.

• To significantly reduce the verification costs, we de-
velop an efficient subgraph isomorphism testing algo-
rithm QuickSI. Several new techniques are proposed.
Firstly, we propose QI-Sequence, for a given query
graph, to bound the search space in the subgraph iso-
morphism testing. Secondly, we determine the QI-
Sequence order based on the frequencies of features
that appear in the underneath graph database. The
QI-Sequence order further reduces the search space.
With the two techniques, our new algorithm QuickSI
significantly improves the existing verification tech-
niques by up to 4 orders of magnitudes speed-up.

• In addition, we develop a novel index called Swift-
Index where the mined tree features are represented
as QI-Sequences and all QI-Sequences in the index are
organized as a prefix tree. The prefix tree index makes
it possible to significantly reduce the cost in the filter-
ing phase by sharing the cost of subgraph isomorphism
testing. Note that in order to check whether or not a
graph contains a query graph, in the filtering phase, all
the existing algorithms need to check if the graph con-
tains all the indexed features that are contained in the
query graph (subgraph isomorphism). Sharing reduces
the cost of checking the common parts of several fea-
tures. Our Swift-Index significantly outperforms the
filtering techniques used in gIndex.

Experimental results show that our new techniques signif-
icantly outperform the most recent, efficient technique, FG-
index [4] towards both index construction and query pro-
cessing when query graph size is not very small. Against
real data set, our query processing techniques can achieve
up to an order of magnitude speed-up over FG-Index while
the index size is 20% of FG-Index. In addition, the results
also show that our techniques have high scalability on the
database size, the graph size and the number of distinct la-
bels.

The rest of the paper is organized as follows. Section 2
presents the problem statement and the framework. Section
3 introduces a new verification approach and a new sub-
graph isomorphism testing algorithm called QuickSI. Section
4 proposes a new filtering approach with a new prefix-tree
index called Swift-Index. Experimental studies are reported
in Section 5. The related work and conclusion are given in
Section 6 and Section 7, respectively.

2. THE PROBLEM STATEMENT AND THE
FRAMEWORK

We firstly give our problem statement on subgraph con-
tainment queries (or subgraph isomorphism queries). Then,
we outline the framework of filtering-and-verification fol-
lowed by an overview towards the most related work - Ull-
man’s Algorithm for verification. For presentation simplic-
ity, graphs to be studied in the paper are “simple” undi-
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Figure 3: A Sample of Feature-based Index

rected graphs; nevertheless, our results can be immediately
extended to cover directed and/or multigraphs.

2.1 Problem Statement
A graph is simple if it has no loops nor multiple edges

[6]. Given two sets of labels, ΣV and ΣE , a labeled graph g

is defined as a triple (V, E, l) where V is the set of vertices,
E ⊆ V ×V is the set of undirected edges, and l is a mapping
function: V → ΣV and E → ΣE . We denote the vertex set
and the edge set of a graph g as V (g) and E(g), respectively.
Given an edge (u, v) ∈ E(g) and the mapping function l of
g, l(u), l(v) are the labels of u and v in g and l(u, v) is the
label of the edge (u, v) in g. We use |V (g)| and |E(g)| to
represent the number of vertices and the number of edges,
respectively.

Definition 1. (SUBGRAPH ISOMORPHISM) Given two
graphs g′ = (V ′, E′, l′) and g = (V, E, l), g′ is subgraph-
isomorphic to g, denoted as g′ ⊆ g, if there is an injective
function f : g′ → g such that

1. ∀v ∈ V ′, f(v) ∈ V (g) such that l′(v) = l(f(v)).

2. ∀(u, v) ∈ E′, (f(u), f(v)) ∈ E such that l′(u, v) =
l(f(u), f(v)).

A graph g′ is a subgraph of g if g′ is subgraph-isomorphic
to g where g is also called a supergraph of g′, denoted by
g′ ⊆ g. We may also simply say that g contains g′. A
subgraph IndG(V ′, g) of g is induced if it is the maximum
subgraph for a given subset V ′ of V (g); that is, IndG(V ′, g)
consists of all edges in g with the vertices in V ′.

Definition 2. (SUBGRAPH CONTAINMENT QUERY)
Given a graph database D = {g1, g2, ..., gn} and a query
graph q, the problem of subgraph containment query (or
subgraph isomorphism query) is to find a set of graphs which
contain q from D, such as Dq = {g|g ∈ D ∧ q ⊆ g}.

Problem Statement. In this paper, we will develop effi-
cient algorithms to process subgraph containment queries.
In the rest of the paper, we assume edges are not labeled;
nevertheless our techniques can be immediately extended to
cover edge-labeled graphs.

2.2 Filtering and Verification Framework
The framework of filtering-and-verification is presented in

Algorithm 1, where a feature-based index plays the key role
in the framework.



Algorithm 1: QueryProecssing(q, I, D)

Input : q is a query graph;
I is a graph index;
D is a graph database;

Output: R is a set of matched graphs;
F := {fi|fi ⊆ q ∧ fi ∈ I};1

C :=
⋂

fi∈F
fi.list;2

R := ∅;3

for each g ∈ C do4

if q ⊆ g then5

R := R ∪ {g};6

return R7

FEATURE-BASED INDEX. A feature based index I =
{(fi, fi.list)} is a set of indexed items, (fi, fi.list). Here,
fi is a fragment (or subgraph) of a graph, which can be
a path, a tree, or a graph. And fi.list is a list of graph
identifiers for the graphs that contain the subgraph, such as
fi.list = {gi.ID|fi ⊆ gi ∧ gi ∈ D}. (Note that we use gi.ID

to denote the graph identifier of graph gi.) Below, we call
fi a feature and fi, list its graph ID-list (or simply ID-list).

Example 1. The feature f1 in Figure 3 is contained by
all three graphs in Figure 2, therefore its ID-list f1.list =
{a, b, c}. As the feature f2 is only contained by graph (b) in
Figure 2, its ID-list f2.list = {b}.

As shown in Algorithm 1, the filtering phase and the ver-
ification phase are specified in line 1-2 and line 4-6, respec-
tively. Line 1 retrieves the features, which are contained
in the query graph q, from the feature-based index I. Line
2 gets all graph identifiers for the graphs that contain all
the features appearing in the query graph, which is known
as the candidate set C. Line 4-6 process subgraph isomor-
phism testing for each graph g whose graph identifier is in
C. If there is a subgraph isomorphism mapping from q to
g, q ⊆ g, g is added to the result set R. Obviously, q 6⊆ g

if |V (g)| < |V (q)|. Line 7 finally returns the matched result
set.

In the next subsection, we introduce the Ullman’s algo-
rithm which is widely used for subgraph isomorphism test-
ing.

2.3 Ullman Algorithm
Most existing verification techniques adopt Ullman’s algo-

rithm [13], which is designed to find the subgraph-isomorphic
mapping from a graph g′ (e.g., a query graph q) to a graph
g. Assume that α = |V (g)| and β = |V (g′)|. The al-
gorithm uses a vector F = (F1, ..., Fi, ..., Fα) to denote
which vertices of g have been used at an intermediate state
of the computation. Here, Fi = 1 indicates that the ith
vertex of g has been used. Together with F , a vector
H = (H1, ..., Hi, ..., Hβ) is used to record the mapping from
g′ to g. Here, Hi = j indicates that the ith vertex of g′ has
been mapped to the jth vertex of g. Let deg(i, g) denote
the degree of vertex i in graph g. A matrix M = [mβα]
is used to reduce the search tree size, where mij = 1 if
deg(i, g′) ≤ deg(j, g), otherwise mij = 0.

Ullman Algorithm is outlined in Algorithm 2. As a tree-
search-based algorithm, Ullman’s algorithm attempts to elim-
inate successor nodes in a search tree as early as possible.

Algorithm 2: UllmanAlgorithm(g′, g,H ,F ,d)

Input : g′: a graph;
g: a graph;
H : a vector with length β, initialized by all 0;
F : a vector with length α, initialized by all 0;
d: depth, initialized by 0;

Output: Boolean: g′ is a subgraph of g;
if d > β then1

return True;2

for each 1 ≤ k ≤ α satisfy Fk = 0 do3

if REFINE-CRITERION=false then4

goto line-3;5

Hd := k;6

Fk := 1;7

if UllmanAlgorithm(g′, g,H ,F ,d + 1) then8

return True; /* Terminate */9

Fk := 0;10

return False11

Line 1-2 check whether it can find an isomorphic mapping
from g′ to g. Lines 3-4 enumerate all unused vertices and
test whether they satisfy the refine-criterion as stated below.

REFINE-CRITERION:

1. l′(d) = l(k).

2. (∀x ∈ [1, β])((x, d) ∈ E(g′) ⇒ (∃y ∈ [1, α])(y, k) ∈
E(g) ∧mxy = 1).

If the refine-criterion fails for (d, k), it sets mdk to 0. If any
row of M contains the 0 value only, then the procedure fails.
Line 5-9 set the mapping vector H and vector F , and go
down to the next test level. Line 10 backtracks to the upper
level if there is no valid mapping in the current level.

Note that we extend the original refine-criterion in [13]
by accommodating node labels (i.e., by adding Criterion 1).
It can be immediately verified that our refine-criterion is
correct.

3. A NEW VERIFICATION APPROACH
Ullman algorithm is designed based on the branch and

bound paradigm [11]. In such a paradigm, one of the criti-
cal issues is how to choose an effective search order so that
it can cut as many branches as possible in searching. It is
important to know that the search order in the Ullman al-
gorithm is random, and a random order can possibly result
in a search order that seriously slows the algorithm. An
example is shown to explain.

Example 2. Suppose that in Ullman algorithm, it deter-
mines if a given query graph q (Figure 1) is sub-isomorphic
to the graph gb (Figure 2(b)) by visiting the vertices in the
query graph q according to the following visiting order: v1,
v3, v2, v4, v5, v6, and v7. Assume that v1 and v3 have been
visited. There are 14 pairs of vertices with labels N and C

in gb that need to be considered (2 N-labeled vertices, and
7 C-labeled vertices). In fact, there are only three pairs of
vertices in g, namely, 〈u1, u3〉, 〈u9, u3〉 and 〈u9, u7〉 need to
be considered.



In order to reduce the search space, in this paper, we pro-
pose QI-Sequence to encode a graph for efficient subgraph
isomorphism testing. In brief, we encode a search order and
topological information in QI-Sequence for a query graph q,
and we determine the effective search order using the fre-
quencies of features that appear in the underneath graph
database D. Following the search order and other topo-
logical information specified in the QI-Sequence for q, we
identify the mapping between q and g. Such encoding and
ordering can significantly reduce the unnecessary branch and
bound, and is shown effective in our extensive experimental
studies.

The rest of this section is organized as follows. Section
3.1 introduces QI-Sequence to encode a query graph. Sec-
tion 3.2 presents an efficient algorithm QuickSI to test if
the query graph q is sub-isomorphic to a data graph, based
on the QI-Sequence of q. In Section 3.3, we discuss how to
determine an effective QI-Sequence, as a search order, by ef-
fectively utilizing feature frequencies in the graph database.

3.1 QI-Sequence
Given a query graph q of size β in terms of the number of

vertices in q, a QI-Sequence is a sequence that represents a
rooted spanning tree for q. It consists of a list of spanning
entries, Ti, for 1 ≤ i ≤ β, where each Ti keeps the basic
information of the spanning tree of q. In QI-Sequence, a Ti

may be followed by a list of extra entries, Rij , which keeps
the extra topology information related to the corresponding
spanning entry.

Formally, a QI-Sequence of q is represented as a regular
expression SEQq = [[TiR

∗
ij ]

β ]. Here, Ti contains several
information. Firstly, Ti.v records a vertex vk in a query
graph q, for example, Ti.v := vk. Secondly, Ti keeps a pair,
[Ti.p, Ti.l], where Ti.p stores the parent vertex of Ti.v in
the spanning tree and Ti.l stores the label of Ti.v. It is
important to note that the subindex i of Ti specifies the
search order. As for Rij , there are two kinds of extra entries
in Rij , namely, degree constraint and extra edge. The degree
constraint is in the form of [deg : d], where d is the degree of
vi.

1 The extra edge (i.e., edge that does not appear in the
spanning tree) is in the form of [edge : j], where j indicates
a vertex indicated by Tj .v in SEQq. We only record such
an extra edge, [edge : j], in Rij after Ti in SEQq if the extra
edge is from Ti.v to Tj .v for j < i.

Table 1 illustrates two different QI-Sequences of the query
graph, q in Figure 1, based on two different spanning trees.
Note that an entry Ti in a QI-Sequence does not neces-
sarily correspond to the vertex vi; for instance, T1 in the
QI-Sequence (b) in Table 1 correspond to v4. The two QI-
Sequences are different. The QI-Sequence (Table 1(a)) is
label selective as the possible mapping of N is less than C

in graph database. On the other hand, the QI-Sequence (Ta-
ble 1(b)) is random. It is clear that the two QI-Sequences
will have different search spaces when processing subgraph
isomorphism testings. We will discuss how to choose an ef-
fective QI-Sequence in details in Section 3.3.

Let SEQg′ and SEQg be two QI-Sequences for two graphs,
g′ and g. In the following Theorem 1, we show that if the
two QI-Sequences are identical then the two graphs are iden-
tical. Our QI-Sequence based subgraph isomorphism testing
algorithm is designed based on Theorem 1.

1To avoid a redundant computation, we do not record [deg :
d] when d ≤ 2.

Table 1: Two SEQqs for query graph q in Figure 1
Type [Ti.p, Ti.l] Ti.v

T1 [0, N ] v1

T2 [1, C] v2

R21 [deg : 3]
T3 [2, C] v3

T4 [3, C] v4

T5 [4, C] v5

T6 [5, C] v6

T7 [6, C] v7

R71 [edge : 2]

Type [Ti.p, Ti.l] Ti.v

T1 [0, C] v4

T2 [1, C] v5

T3 [1, C] v3

T4 [2, C] v6

T5 [4, C] v7

T6 [5, C] v2

R61 [deg : 3]
R62 [edge : 3]
T7 [6, N ] v1

(a) (b)

Theorem 1. Given two graphs g′ and g. Let SEQg′ and
SEQg be the two corresponding QI-Sequences. If the two
QI-Sequences are identical, then the corresponding graphs,
g′ and g, must be identical.

Proof-Sketch: Theorem 1 is immediate based on the fol-
lowing result. A QI-Sequence SEQg, for a graph g, can be
uniquely converted to a graph g′ which is identical to g.

3.2 QuickSI Algorithm
In this section, we discuss our new algorithm for subgraph

isomorphism testing. Let q and g be a query graph and
a graph in the candidate set after filtering phase, and let
SEQq be the QI-Sequence for q. Our QuickSI algorithm is
designed to check if there exists a QI-Sequence for a sub-
graph, g′ of g, denoted as SEQg′ , which is identical to
SEQq.

The QuickSI algorithm is presented in Algorithm 3. There
are five inputs. (1) SEQq is the QI-Sequence of a query
graph q of size β (= |V (q)|). (2) F and H are two vectors
as used in Ullman’s algorithm (Algorithm 2). (3) g is a graph
of size α (= |V (g)|), and (4) d is the current search position
for 1 ≤ d ≤ β. The algorithm adopts depth-first-search order
following the order explicitly specified in SEQq.

We explain the two vectors below. Firstly, H = {H1, ...,

Hi, ..., Hβ} is used to store mapping from the QI-Sequence
SEQq to a graph g. Hi := uj indicates that the vertex Ti.v

of q has been mapped to the vertex uj ∈ g. Given a success-
ful mapping H1, H2, ..., Hi, the degree constraint, [deg : x],
specified in Rij , implies that the vertex Hi ∈ g must have the
degree, deg(Hi, g), not smaller than x; that is, deg(Hi, g) ≥
x. Moreover, each edge constraint [edge : x], specified in
Rij , implies that there must be an edge between Hi and Hx

in graph g where x < i. Secondly, F = {F1, ..., Fi, ..., Fα} is
used to indicate whether or not the ith vertex in g is used
at an intermediate state of the computation.

In Algorithm 3, α and β are the numbers of vertices in g

and q, respectively. We first test whether computation has
reached the end of SEQq by checking depth d. If d > β, it
implies that we have already found a QI-Sequence, SEQg′ ,
for g′ ⊆ g, that equals SEQq. We can conclude that q is
a subgraph of g, because q is identical to g′ and g′ ⊆ g.
Otherwise, we get the d-th vertex entry Td and try to find
a mapping vertex in g. If there is a vertex u ∈ g with same
label that satisfies all constraints in the extra entries Rdj ,
it can be a valid mapping, and the searching will continue
recursively, until the algorithm ends up with a successful
mapping or fails in all possible trials at a certain label.



Algorithm 3: QuickSI (SEQq, g,H ,F ,d)

Input : SEQq: QI-Sequence of query graph q;
g: a graph;
H : a vector with length β, initialized by all 0;
F : a vector with length α, initialized by all 0;
d: depth, initialized by 1;

Output: Boolean: SEQq is a subgraph of g;
if d > β then1

return True;2

T := Td ∈ SEQq;3

V := ∅;4

if d = 1 then5

V := {v|v ∈ V (g), l(v) = T.l and Fv = 0} ;6

else7

V := {v|v ∈ V (g), (v, HT.p) ∈ E(g), l(v) = T.l and8

Fv = 0} ;

for each vertex v ∈ V do9

for each restriction Rdj ∈ SEQq do10

goto line-9 if Rdj is not satisfied;11

Hd := v;12

Fv := 1;13

if QuickSI(SEQ, g,H ,F ,d + 1) then14

return True; /* Terminate */15

Fv := 0;16

return False;17

Example 3. Consider SEQq (Table 1(a)) for the query
graph, q, in Figure 1, and the graph gb in Figure 2(b). The
QuickSI algorithm first finds that u1 in gb can be mapped
to T1. It stores the mapping H1 := u1 and sets the vector
element F1 := 1. For the vertex set V := {u2} which is
connected to u1, it finds l(u2) = C which is same as T2.l.
When it tests the degree restriction, [deg : 3], specified in
R21, it finds the degree of u2 is 2, which is less than 3. The
tree search algorithm returns to T1, releases u1 by setting
F1 := 0 and matches T1 to a different vertex u9. Finally,
it finds a successful mapping H = {u9, u8, u7, u6, u5, u4, u3}
or H = {u9, u8, u3, u4, u5, u6, u7}.

Correctness. It can be immediately verified that if there
is a QI-Sequence, SEQg′ for a subgraph of g, g′ ⊆ g, that
equals SEQq, then Algorithm 3 must be able to find it.
According to Theorem 1, the correctness of the algorithm is
immediate.

Cost Analysis. Note that the above subgraph isomor-
phism testing follows depth-first search strategy. As the
search depth is fixed, the computation cost depends on the
fan-out at each depth. We define search breadth at depth i

below, denoted by Bi. Search breadth represents the num-
ber of possible isomorphism mappings from the prefix se-
quence SEQi

q = [[TiR
∗
ij ]

i]; that is, SEQi
q = [[TiR

∗
ij ]

i] con-
tains the first i entries in SEQq.

Definition 3. (SEARCH BREADTH) Given SEQq for a
query graph q and a graph g, the search breadth Bi =|
{H i|H i : SEQi

q → g} | (1 ≤ i ≤ β) where SEQi
q =

[[TiR
∗
ij ]

i] is a prefix of SEQq. Also, H
i is a distinct mapping

vector from SEQi
q to g. The length of a H

i is i since H
i

maps SEQi
q to g.

Given a QI-Sequence SEQq and a graph g, the isomor-
phism testing cost is computed as follows. We use Tiso to
denote the total number of comparisons performed in the
algorithm QuickQI. As we can pre-compute the degree for
data graphs, it takes O(1) time to check both kinds of ex-
tra entries (degree constraint and extra edge) if an adjacent
matrix is used. It takes O(deg) to find a forwarding edge
in a data graph g to go one depth further regarding SEQq,
where deg is the degree of the vertex mapped to HTi.p in g.
(Note that Ti.p points to the parent vertex of Ti.v.)

Tiso = α + B1 · r1 + Σβ−1

i=1 ΣBi
j=1deg<i,j> · ri+1 (1)

≤ α + B1 · r1 + Σβ−1

i=1 Bi · degmax · ri+1

Here, deg<i,j> is the degree of the vertex HTi.p in g at j-th
mapping, ri = 1 + |{Rij |Rij ∈ SEQq}| which is the number
of extra entries at depth i, and degmax is the maximum
vertex degree of g. We have the following Theorem.

Theorem 2. Let SEQq = [[TiR
∗
ij ]

β ] be a QI-Sequence
and degmax(g) be the maximum vertex degree in g.

Tiso ≤ α + B1 × degmax(g)β × rmax,

where rmax is the maximum number of extra entries for any
Rij.

Proof. Because we keep connectivity during the isomor-
phism testing, it is immediate that if ∀ i ≥ 2, then

Bi ≤ Σ
Bi−1

j=1 deg<i−1,j>

≤ Bi−1degmax

The theorem immediate follows from Eq. (1).

The space requirement is O(|SEQq| + |g|) where |g| de-
notes the space required to store a graph g.

As an example, consider Tiso for testing whether the query
graph q is sub-isomorphic to graph ga (Figure 2(a)), using
the two QI-Sequences in Table 1. With the random QI-
Sequence in Table 1(b), Tiso ≤ 161, whereas with the QI-
Sequence in Table 1(a), Tiso ≤ 37.

3.3 Effective QI-Sequence
In this section, we discuss how to determine an effective

QI-Sequence, SEQq, for fast subgraph isomorphism testing.
Reconsider Eq. (1), search breadths play an important role
in subgraph isomorphism testing. Minimizing Bi can re-
duce cost of subgraph isomorphism testing. However, it is
too costly to find the optimal QI-Sequence, in order to mini-
mize the total breadths and therefore significantly reduce the
subgraph isomorphism testing cost for any data graph in the
graph database D. Instead, we develop efficient heuristics to
construct an effective QI-Sequence, SEQq, for a query graph
to reduce the total breadths and the subgraph isomorphism
testing cost for any data graph in the graph database D.
Our approach is based on the inner support defined below.

Definition 4. (INNER SUPPORT) Given a query graph,
q, and a data graph, g, the inner support φ(q, g) is the num-
ber of isomorphic mappings from q to g.

It is immediate that the search breadth Bi is φ(SEQi
q, g)

for a data graph.

Counting Inner Supports for Vertices and Edges.
Suppose that we index all 1-vertex and 1-edge features, we
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Table 2: Average Inner Support
vertices φ(v)

N 1.5
C 6.1

edges φ(e)
(N, C) 1.4
(C, C) 5.1

can count the average inner support φavg(v) for each dis-
tinct vertex v and φavg(e) for each distinct edge e in the
graph database D as follows.

φavg(v) =
|{f |f(v) ∈ V (g) ∧ g ∈ D}|

|{g|f(v) ∈ V (g) ∧ g ∈ D}|
(2)

φavg(e) =
|{f |f(e) ∈ E(g) ∧ g ∈ D}|

|{g|f(e) ∈ E(g) ∧ g ∈ D}|
(3)

The average inner support φavg(e) (φavg(v)) of an edge e

(of a vertex v) is the average number of its possible map-
pings in the graphs which contain this edge (vertex). In
Eq. (3), we omit the graphs which do not contain any map-
ping of the given edge, because these graphs will be pruned
in the filtering step. Therefore, only the graphs that contain
at least one mapping of the given edge need to be tested.
Eq. (3) counts the average number of distinct edges in the
graphs which have high probability not to be pruned in the
filtering step. It is reasonable because only the graphs which
pass the filtering step need to be tested in the verification
step. The statistic for the graphs in the candidate set after
filtering is more valuable than the statistic for all graphs in
the database.

Finding Minimum Spanning Tree. Once the average
inner supports of each distinct vertex and edge are counted,
we add those supports to the vertices and edges of q and
convert q to a weighted graph qw, where each edge e in qw

has a weight w(e) = φavg(e) and w(v) = φavg(v). Then,
we find the minimum spanning tree in qw based on edge
weights. The minimum spanning tree will be used to gen-
erate a QI-Sequence of q and we will use the vertex weights
to determine the order of the first two entries in such a QI-
Sequence.

We extend Prim’s algorithm [1] to compute the minimum
spanning tree for qw and construct the QI-Sequence for q.
Our extension contains the technique to choose a “better”
minimum spanning tree when more than one minimum span-
ning tree are involved. The main idea is presented in Algo-
rithm 4.

In Algorithm 4, VT and ET store the the set of vertices
and edges in intermediate steps. P is the set of current
possible edges which will be chosen to the spanning tree.
SEQq will be refined as follows to fix the order of the first
two vertices to generate a QI-Sequence of q. Suppose that
(u, v) is the first edge in SEQq. If φ(u) 6= φ(v), we pick one
of them with lower average inner support as the first vertex.
Otherwise, we choose one with higher degree. If the degrees
are also equal, we randomly select one.

SelectFirstEdge (Algorithm 5) and SelectSpanningEdge (Al-

Algorithm 4: SpanningTree(qw)

Input : qw: weighted query graph;
Output: T : a minimum spanning tree of q;

SEQq: a QI-Sequence;
VT := ∅;1

ET := ∅;2

SEQq := ∅;3

P := {e|e ∈ E(qw) ∧ ∀(e′ ∈ E)∃(qw)∃w(e) ≤ w(e′)};4

e := SelectF irstEdge(P, qw);5

ET := {e},SEQq ← e, VT := {e.u, e.v};6

Remove e from qw;7

while VT 6= V (qw) do8

P := {e|e ∈ E(qw) ∧ e.u ∈ VT ∧ e.v 6∈ VT };9

e := SelectSpanningEdge(P, qw, VT );10

ET := ET ∪ {e}, SEQg ← e, VT := VT ∪ {e.v} ;11

Remove e from qw;12

for each e ∈ qw satisfying e.u ∈ VT ∧ e.v ∈ VT do13

Sort them by the increasing order of w(e);14

SEQq ← e and remove e from qw;15

T := (VT , ET );16

return T , SEQq;17

Algorithm 5: SelectFirstEdge(P , qw)

Input : P : a set of edges;
qw: a weight graph;

Output: e: an edge in P ;
if |P | > 1 then1

P := {e|e ∈ P ∧ ∀(e′ ∈ P )∃(deg(e.u, qw) +2

deg(e.v, qw) ≤ deg(e′.u, qw) + deg(e′.v, qw))};

Randomly select an edge e ∈ P ;3

return e;4

gorithm 6) in Algorithm 4 deal with cases when there are
several candidate edges in P with the same weight. Our
algorithm will choose the edge which make the induce sub-
graph of the current vertex set VT as dense as possible.

Example 4. Suppose we have a graph q as shown in Fig-
ure 1(a) and the average frequency is shown in Table 2, the
weight graph qw is calculated as Figure 4. In the weight
graph qw, there are only 1 edge (v1, v2) which has the mini-
mum weight 1.4. Therefore, we will select it as the first edge
of the minimum spanning tree. Afterwards, as the edges (v2,
v3) and (v2, v7) have the same weight, both of them are se-
lected to the set P . In the function SelectSpanningEdge, we
find that they have same induced subgraph and the degree
of v3 and v7 are also same. Thus we randomly choose one
of them, for example, v3. Assume the edges (v3, v4),(v4,
v5),(v5, v6) and (v5, v6) subsequently become the spanning
edges. We add (v2, v7) to the SEQq as an extra entry.

3.4 Filtering-And-Verification
Our filtering-and-verification algorithm is shown in Algo-

rithm 7, called QI-Framework, based on the QuickSI algo-
rithm shown in Algorithm 3. Given a query graph q, it first
obtains the candidate set, C, by calling a Filtering procedure
(line 1) which we will discuss in the next section. Next, it
iteratively checks every graph gi in the candidate set C and
inserts gi into final result if q is contained by gi by calling



Algorithm 6: SelectSpanningEdge(P , qw)

Input : P : a set of edges;
qw: a weight graph;
VT : a set of vertices;

Output: e: an edge in P ;
P := {e|e ∈ P ∧ (∀e′ ∈ P )∃(w(e) ≤ w(e′))};1

if |P | > 1 then2

P := {e|e ∈ P ∧∀(e′ ∈ P )∃(|IndG(VT ∪{e.v}, q
w)| ≥3

|IndG(VT ∪ {e
′.v}, qw)|)};

if |P | > 1 then4

P := {e|e ∈ P ∧ ∀(e′ ∈ P )∃(deg(e.v, qw) ≤5

deg(e′.v, qw))};

Randomly select an edge e ∈ P ;6

return e;7

Algorithm 7: QI-Framework(q, I, D)

Input : q is a query graph;
I is the index;
D is a graph database;

Output: R: a set of graphs in which q is a subgraph;
C := Filtering(q, I);1

Convert q to a QI-Sequence SEQq;2

for each gi ∈ C do3

H := {0, ..., 0};4

F := {0, ..., 0};5

if QuickSI(SEQq, gi,H ,F ,1) then6

R = R ∪ {gi};7

return R;8

QuickSI (line 3-7). It is worth noting that it only needs to
convert q to a QI-Sequence once (line 2). Finally, it returns
the result R (line 8).

4. A NEW FILTERING APPROACH
Recall that in the filtering-and-verification (Algorithm 1)

the filtering is done as F := {fi|fi ⊆ q ∧ fi ∈ I} followed by
C :=

⋂
fi∈F

fi.list (line 1-2). It first obtains a set of features

that appear in the query graph q as well as in the index (I),
and then identifies the candidate set (C). For the first step,
it needs to decompose the query graph, q, into a set of fea-
tures, fi, and identify every feature fi that also appears in
the index I. The query decomposition can be done fast but
the identification of a feature in the index needs subgraph
isomorphism testing, which is costly.

We observe that the subgraph isomorphism testing cost
can be further reduced if two indexed features fj and fk

in the database share a common subgraph. We explain our
main idea below. Suppose that there are two indexed fea-
tures, fj and fk in the database which share a common
subgraph. Let fi be a feature in a query graph q. We need
to test whether fi ⊆ fj and further test whether fi ⊆ fk, in
the existing filtering-and-verification framework. In our
approach, instead, we pre-compute QI-Sequences for fj and
fk, denoted as SEQfj

and SEQfk
, and maintain SEQfj

and SEQfk
in a prefix-tree index called Swift-Index. Given

a query graph q, we do not decompose the query graph, q,
into a set of features fi. Instead, we search from the prefix-
tree index in a top-down fashion, and test if a QI-Sequence,

say SEQfj
, appear in Q using our QuickSI algorithm. The

prefix-tree structure allows us to reduce the computational
cost for subgraph isomorphism testing, because if a prefix
of QI-Sequences does not appear in the query graph q, the
whole QI-Sequences cannot appear in q.

Taking the advantage of the paradigm in QuickSI, we de-
velop efficient filtering techniques to generate a candidate
set. Our techniques are based on a new effective prefix-tree
index called Swift-Index which indexes tree features that ap-
pear in the graph database D. Our QuickSI paradigm not
only can be used to speed up the verification but also can
be used to speed up the filtering computation.

4.1 Swift-Index
In Swift-Index, we use tree features instead of subgraph

features for the following reasons. Firstly, it is well known
that the costs of mining tree features are much lower than
those of mining graph features, especially when feature sizes
increase. Secondly, features need to be canonized, while a
graph canonization is equivalent to the graph isomorphism
problem. It is well known that the graph isomorphism prob-
lem is open [2]; there is no polynomial algorithm developed
nor proof of NP-complete. On the other hand, computing
a canonical form of trees can be done in O(degmaxk log k)
[5], where k and degmax are the number of vertices and the
maximal vertex degree in the tree, respectively.

Tree features in Swift-Index are organized by a prefix tree
[6]. To construct such an index, we first convert each tree
feature f to a QI-Sequence SEQf . Then we organize all QI-
Sequences into a prefix tree. Note that in a QI-Sequence of
a feature, there are no extra edge constraints since a feature
is a tree. In the prefix tree, each node represents an entry
Ti of a SEQf for a tree feature f such that all entries in
SEQi

f are recorded along the path from the root to the
node. A dummy node is created to represent the root in
the prefix tree. Consequently, each node of a prefix tree
accumulatively carry a prefix of a QI-Sequence, SEQi

f . The
ID-list of a feature (i.e., a list of IDs of graphs containing
the feature) is attached to the end node of the feature in
the prefix tree. Because each node in the prefix tree can
be represented by [TiR

∗
ij ], the maximum depth of the prefix

tree is the maximum number of vertices among features.
Figure 5 shows a simple prefix tree for three features in

Figure 3 and an additional feature f4. We can see the en-
coded QI-Sequences of f1 and f4 share the prefix of SEQ2

f1
=

[T1[0, N ]][T2[1, C]].

4.2 Filtering
Given a Swift-Index I, in this section, we discuss our

prefix-pruning and prefix-sharing techniques to reduce the
costs of subgraph isomorphism testing in the filtering phase.

Prefix-Pruning. The prefix-prunning is based on the fol-
lowing property: A prefix SEQi

f of a QI-Sequence SEQf

represents an induce subgraph of the tree feature f against
the vertices in SEQi

f . The QI-Sequence SEQf cannot be

mapped to a query graph q if its prefix SEQi
f cannot be

mapped to f . This property allows us to prune away the
features as early as possible.

Given a query graph q and the prefix-tree Swift-Index, I,
the process of finding all features in I that are contained
in q is conducted by traversing the prefix-tree from the top
to the bottom in the depth-first fashion. When visting a
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node in the prefix-tree, ni, the path from the root to the
node ni represents SEQi

f for all tree features SEQf that

has SEQi
f as their prefix. If SEQi

f is not sub-isomorphic
to q, then there is no need to further examine the subtrees
below ni in the prefix-tree, because SEQ

j

f , for j > i, cannot
be sub-isomorphic to q.

Prefix-Sharing. We further reduce the subgraph isomor-
phism testing cost by utilizing the prefix-tree. Note that
there could be many sub-isomorphism mappings from a pre-
fix, SEQi

f , to a query graph q. To save memory space, dur-
ing the depth-first traversal of the prefix-tree (Swift-Index),
we only keep one sub-isomorphism mapping and replace it
by another sub-isomorphism mapping if the current sub-
isomorphism mapping has been already used against all the
features with the prefix. We explain it using an example.

Example 5. Regarding the prefix tree in Figure 5(b), as-
sume that the query graph q is the one in Figure 2(b). Since
f1 and f2 share the prefix SEQ2

f1
= [T1[0, N ]][T2[1, C]], we

could identify whether q contains f1 and f2 by sharing com-
putation for deciding if SEQ2

f1
is sub-isomorphic to q. It

proceeds as follows.
In the beginning, T1 and T2 are mapped to the vertices

u1 and u2 in q, respectively. We try to identify the next
entry T3 in the QI-Sequence of f4 and find that it cannot be
mapped to any vertex adjacent to u2 in q. Then, we keep
the isomorphic mapping between 〈T1, T2〉 and 〈u1, u2〉, while
trying to find a mapping between T3 in the QI-Sequence of
f1 and a vertex in q. We successfully map T3 to u3 of q. As
T3 is the last entry the QI-Sequence of f1, we select f1 into
the result feature set and mark T3 of f1 as a successful node
in the prefix tree.

As T3 in the QI-Sequence of f4 fails to be mapped to any
vertices in q regarding the mapping between 〈T1, T2〉 and
〈u1, u2〉, we will find the next mapping from 〈T1, T2〉 to 2
vertices in q. To do this in a backward fashion in the depth-
first search, we will find the next mapping of T2. In this case,
there is no other isomorphic mapping from T2 to a vertex in
q given the mapping between T1 to u1. Then, we go back

Algorithm 8: Filtering(q, I)

Input : q: a query graph;
I: a prefix tree index;

Output: C: a list of candidate graphs;
S := ∅;1

H :=empty mapping from feature to query;2

F :=empty vector for vertices usage of q;3

for each child n of I.ROOT do4

PrefixQuickSI(n, q,H ,F ,1,S);5

C :=all graph IDs in graph database;6

for each feature f ∈ S do7

C := C ∩ f.list;8

return C9

to T1. We find another isomorphic mapping: 〈T1, T2〉 to
〈u9, u8〉 in q. Next we only need to focus on f4. We find T3

of f4 still cannot be mapped to any vertex adjacent to u8.
We can conclude that f4 is not contained by q.

The Filtering Algorithm. Based on prefix-pruning and
prefix-sharing discussed, we propose our filtering algorithm
in Algorithm 8 where Algorithm 9 is invoked recursively.
Filtering (Algorithm 8) initializes H and F for mapping
information and vertex usages of q, respectively. It recur-
sively calls PrefixQuickSI (Algorithm 9) to find out all fea-
tures {f} such that f ⊆ q and f ∈ I. Finally, it intersects
the ID-lists of the features in set S to create candidate set
C of graphs; that is, find graphs that contain all the features
in S. PrefixQuickSI can be regarded as a “batch” version
of QuickSI. Different from processing an one-to-one isomor-
phism testing, given a query graph q, PrefixQuickSI can do
the subgraph isomorphism testing simultaneously for a set
of features with the same prefix. It reuses the ancestor’s
intermediate status in the subgraph isomorphism testing ef-
fectively.

4.3 Index Construction
In order to control the index size, we only choose frequent

and discriminative tree features to build the prefix tree. We
assume that frequent trees have high probability to appear
in queries. Given a tree feature f , the frequency frq(f) is

computed by |{g|f⊂g∧g∈D}|
|D|

, where D is the graph database.

Let the frequency threshold be δ ∈ [0, 1]. We define the
frequency selection criteria as follows.

Frequent Criteria. Given a frequency threshold δ, a fea-
ture f is frequent iff frq(f) ≥ δ.

Given a feature f , we also define the discriminative mea-
sure dis(f) as follows.

dis(f) =
|f.list|

|
⋂
{f ′.list|f ′ ⊂ f ∧ f ′ ∈ I}|

where f.list is the inverted list of feature f . Let the discrimi-
native threshold be γ ∈ [0, 1]. The discriminative criteria[16,
20] shown below is also used to control feature number as
follows.

Discriminative Criteria. Given a discriminative thresh-
old γ, a feature f is discriminative, iff dis(f) < 1− γ.

The Swift-Index is constructed using Algorithm 10. We
use both PrefixQuickSI and QuickSI algorithms in the query



Algorithm 9: PrefixQuickSI(n, q,H ,F ,d,S)

Input : n: a node in prefix tree;
q: a graph;
H : a vector with mapping information;
F : a vector with usage information;
d: depth, initialized by 1;
S: the matched feature set;

SEQ := n.SEQ;1

T := Td ∈ SEQ;2

if d = 1 then3

V := {v|v ∈ V (q), l(v) = T.lb} ;4

else5

V := {v|v ∈ V (q), (v, HT.gv) ∈ E(q), l(v) = T.lb6

and Fv = 0} ;

for each vertex v ∈ V do7

for each restriction Rdj ∈ SEQ do8

goto line 7 if Rdj is not satisfied;9

if n is a feature then10

if n 6∈ S then11

S:=S ∪ {n};12

if n is a leaf node then13

n.flag := true;14

return15

Hd := v;16

Fv := 1;17

for each child node m of n do18

if m.flag = false then19

PrefixQuickSI(m, q,H ,F ,d + 1,S);20

if ∀ child m, m.flag = true then21

n.flag := true;22

return23

Fv := 0;24

return25

processing(line 7) to speed up the feature mining.

5. PERFORMANCE EVALUATION
In this section, we report extensive empirical results to

evaluate the effectiveness and efficiency of our new tech-
niques. We compare our verification algorithm QuickSI de-
scribed in Section 3 against the widely applied subgraph
isomorphism testing algorithm Ullman [13]. To analyze the
benefit of our verification algorithm and index technique on
overall query processing performance, we implement two al-
gorithms GSI and SSI. GSI combines gIndex [16] with our
verification algorithm QuickSI by feeding the output of gIn-
dex to QuickSI to produce final results. We show that our
verification algorithm can bring immediate benefit to the
performance of current filtering-and-verification based algo-
rithms 2. SSI is a combination of our new index technique
Swift-Index proposed in Section 4 with QuickSI for verifica-
tion. We compare FG-Index [4] and (Tree+∆) [20] with
GSI and SSI. All algorithms proposed in this paper are im-
plemented in standard C++ with STL library surport and
compiled with GNU GCC. Experiments are run on a PC

2We do not use the index techniques in [18] and [20] as those
indexes are closely interfered with the verification procedure.

Algorithm 10: Constuction(D,θ,γ,L)

Input : D: a graph database;
θ: the frequency threshold;
γ: the discriminative threshold;
L: the maximal size of feature;

Output: I: a prefix tree index;
I := ∅;1

for each single vertex and single edge f do2

f.list := {g|f ⊆ g};3

I := I ∪ {f};4

for i := 3 to L do5

for each tree feature f with i vertices do6

R:=QI-Framework(f ,I,D);7

if |M|
|D|
≥ θ ∧ |M|

|C|
< (1− γ) then8

f.list := {g|f ⊆ g};9

I := I ∪ {f};10

return I11

with Intel Xeon 2.40GHz dual CPU and 4G memory run-
ning Debian Linux.

In our experiments, we use default parameters or sug-
gested values unless specified otherwise. Particularly, de-
fault values σ = 0.1 and δ = 0.1 are used in FG-Index [4]
algorithm. In algorithm (Tree+∆) , the support thresh-
old is set to 0.01 and the maximal tree size is by default
10. For GSI algorithm, we adopt the default parameters in
[16] with support threshold 0.1 and maximum fragment size
maxL=10. The values of θ and γ are set to 0.1 and L is set
to 10 in algorithm SSI.

Our experiments are conducted on the real dataset as well
as synthetic datasets. Following previous works [16, 9, 18,
20], we omit edge labels of graphs in our experiments.

Real dataset. We use the AIDS Antiviral Screen dataset,
which consists of 43, 905 classified chemical molecules. The
dataset is publicly available on the website of Development
Therapeutics Program.

Synthetic dataset In order to evaluate the scalability of
our techniques, we generate a large number of graphs by
using the synthetic graph data generator GraphGen in [4].
The generator also allows us to specify various parameters
such as the average graph density, graph size and the number
of distinct node labels.

5.1 Performance on Real Dataset
The AIDS Antiviral dataset is a popular benchmark in

recent related works[16, 18, 20, 4]. There are totally 62
distinct vertex labels in the data set but the majority of
the vertex labels are C, O and N . We derive different sub-
sets from the full collection for comparison purpose. De-
fault real dataset is a subset containing 10K graphs, which is
firstly used in [16] and can be downloaded from http://www.

xifengyan.net/software.htm. On average, each graph has
25.4 vertices and 27.3 edges. Other subsets with 1K, 5K,
20K and 40K graphs are derived in a similar way in order
to study the scalability of the algorithms against different
database size. We also create a large real dataset in order to
evaluate the performance of our techniques on large graphs.
This set consists of the largest 10K graphs taken from the
original AIDS Antiviral collection. In the large real dataset,



each graph has 40.4 vertices and 44 edges on average. We
adopt the query set from [16] to test the effectiveness of our
technique in terms of query response time. There are six
query sets Q4, Q8, Q12, Q16, Q20 and Q24. Each query
set Qi consists of 1000 query graphs with i edges. Default
query set is Q16 in the following experiments.
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In the first experiment, we demonstrate the efficiency of
our subgraph isomorphism testing algorithm QuickSI against
Ullman algorithm. We first run filtering algorithm proposed
in Section 4 against the default real dataset to create can-
didate sets for each query set. The candidate sets are then
verified for subgraph isomorphism using QuickSI and Ull-
man respectively. We use QuickSI and QuickSI(R) to denote
QuickSI algorithm with an effective QI-Sequence and a ran-
dom QI-Sequence, respectively. Average verification time
for each query set is recorded and demonstrated in Figure 6,
which shows that both QuickSI and QuickSI(R) algorithm
significantly outperform Ullman algorithm. Both QuickSI
and QuickSI(R) achieve even more performance gain with
increasing query graph size. For query set Q24, the av-
erage runtime of QuickSI is 5, 535 times less than that of
Ullman. Moreover, compared with Ullman algorithm, per-
formance of both QuickSI and QuickSI(R) are less sensitive
to query graph size. Meanwhile, QuickSI is twice as fast
as QuickSI(R). It confirms our heuristic QI-Sequence con-
struction algorithm plays an important role in reducing the
verification cost.

Figure 7 illustrates the average query response time of
two previous algorithms FG-Index and (Tree+∆) against
different query sets. It turns out that FG-Index is much
more competitive than (Tree+∆) in terms of query response
time, which is our primary performance measure.3 Thus we
exclude (Tree+∆) in the following experiments.
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Figure 8 reports the average query response time per query
comparing SSI, GSI and FG-Index algorithms against the
default real dataset and the large real dataset. Filtering

3The main goal of (Tree+∆) is to reduce mining cost while
achieving high efficiency in processing subgraph contain-
ment queries.

time and verification time (QuickSI) are recorded separately
for SSI and GSI.

The experiments demonstrate that our new SSI Algorithm
is the clear winner in the three algorithms on both datasets
regarding query processing time.

FG-Index is attractive for very small queries. This is a rea-
sonable result, as for small queries, large amount of graphs in
the candidate set can be verified without subgraph isomor-
phism testing using FG-Index, whereas for larger queries,
the verification free technique can not take effect on most
candidates.

Comparing GSI and FG-Index, we can see that FG-Index
beats GSI with a factor of up to 2 on median-sized data
graphs, while on the large real dataset, GSI Algorithm out-
performs FG-Index by a large margin. Remember that in
[4], gIndex is outperformed by FG-Index Algorithm with
at least one order, while with the help of our efficient ver-
ification algorithm, GSI Algorithm is comparable, in some
cases much better than FG-Index. The difference shows that
our verification algorithm can bring immediate improvement
to the overall query performance of current filtering-and-
verification based algorithms.

GSI Algorithm always spends less verification time com-
pared with SSI Algorithms, since its graph-based index has
better pruning ability, but the overall performance of GSI
dramatically decreases when query graph size increases, be-
cause the filtering time grows and becomes the dominant
cost.

We also record the index construction time, number of
features in the index and the size of index for both default
real dataset and large real dataset. Results are listed in
Table 3 and Table 4. It is clear that the SSI technique has
the smallest feature number, construction time and number
of features. Note that both SSI and GSI indexes are counted
in ASCII mode, while FG-Index is counted in binary mode.

Construction Time (s) #Features Index Size

FG-Index 167.08 (166.5 + 0.58) 1641 12.5M

GSI 146.6 3276 13M

SSI 26.6 462 5.5M

Table 3: Statistic for Real data

Construction Time (s) #Features Index Size

FG-Index 2133 (2102 + 31) 7100 53.8M

GSI 306.2 4394 13M

SSI 170.7 922 11.8M

Table 4: Statistic for Large Real data

In order to study the scalability of the algorithms against
the graph database size, Figure 9 demonstrates the over-
all performance of three techniques on different subsets of
the AIDS Antiviral collection. Because the binary code of
gIndex from [16] fails to build index when the number of
graphs reaches 20K, there is no experimental result of GSI
for the 20K and 40K datasets. In Figure 9(a), the query
set with medium size Q16 is used as default query set to
evaluate the response time. We can see the SSI wins on all
four metrics in Figure 9, showing that the scalability of SSI
also outperforms FG-Index.

5.2 Performance on Synthetic Dataset
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Figure 9: Scalability to #Graphs

In this section, we present the performance evaluation on
synthetic datasets. As important parameters such as graph
size, number of graphs and size of the query graph are stud-
ied on the real dataset, we focus on investigating the scal-
ability of the techniques to the number of distinct vertex
labels, which has a great impact on overall performance.
Generally speaking, the less the number of distinct vertex
labels, the harder the subgraph search problem is, since in-
formative vertex labels are supposed to guide pruning and
to reduce search space. We use the synthetic data generator
from [4] to generate a set of graph datasets with different
number of distinct labels, varying from 50 to 10. The aver-
age number of edges in the queries graph and data graphs
are 20 and 30 respectively. There are 10K data graphs and
1K queries in the following experiments.

Figure 10 reports the overall performance of three tech-
niques against the number of distinct labels. As expected,
performance of all three techniques deteriorate with the de-
creasing number of distinct vertex labels. But compared
with the other two techniques, SSI is much more scalable.
When the number of distinct labels drops from 50 to 20, the
response time of SSI are nearly fixed, while response time of
FG-Index and GSI increases 10 times and 5 times, respec-
tively. Same trend is observed on the number of features and
index size, but all three techniques are not scalable to con-
struction time. gIndex fails to build index when the number
of distinct labels reaches 10. We do not report the response
time of FG-Index for distinct number of 10, since FG-Index
fails to return any result.

6. RELATED WORK
Research in subgraph isomorphism and graph isomorphism

has drawn a great deal of attention in the database commu-
nity. In order to speed up subgraph and similarity search
over large graph databases, most related work focuses on
developing index techniques to support efficient searching.
There are two categories of indexing techniques: feature-
based index and nonfeature-based index.

In feature-based index, some graph fragments or patterns
are chosen as index features, and an inverted list is built
for each feature. Generally query processing follows the
filtering-and-verification framework. Shasha et al. [8] pro-
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Figure 10: Scalability to # Distinct Labels

posed a path-based technique called GraphGrep. Graph-
Grep enumerates all paths within a threshold length as index
features. Main problem of the method is that by extracting
paths from graphs, large amount of structural information
is not preserved, and as a consequence, the index’s pruning
power is diminished.

To overcome this problem, some recent work uses more
complex and selective sub-structures as index features, mean-
while adopt data mining techniques [15, 19] to improve per-
formance and to reduce index size. Among these techniques,
gIndex [16] developed by Yan et al. introduces “discrimina-
tive ratio” for selecting feature set. Only frequent and dis-
criminative subgraphs are selected as index patterns. Com-
paring with GraphGrep, index size of gIndex is 10 times
smaller, while the candidate set size after filtering is 3-10
times smaller. Authors of gIndex also extend the framework
and propose a structural filtering algorithm called Grafil to
support approximate graph queries [17]. Two recent tech-
niques, TreePi [18] and (Tree+∆) [20] try to index frequent
and discriminative subtrees rather than subgraphs, as trees
can be manipulated efficiently while preserving most struc-
tural information of the original graphs. Since mining fre-
quent trees is much easier than mining graphs, construction
time of both TreePi and (Tree+∆) are relatively small.
TreePi also adopts a new pruning technique based on the
concept of Center Distance Constraints. The basic obser-
vation is that if the query graph appears in a candidate
graph, distances between pairs of features in query graph
must be preserved in the candidate graph as well. In an-
other new indexing technique FG-Index [4], both frequent
subgraphs and edges are chosen as feature set. FG-Index
supports verification-free subgraph search with a reversed
containment testing. The observation is that, if the query
graph is contained by some feature in the index, all graphs
in the database which contain that feature must also con-
tain the query graph, and such graphs can be returned as
final results without further verification. This technique be-
comes effective only when many large subgraphs are indexed,
thus construction cost and storage overhead of FG-Index are
much larger than other feature-based indexing techniques.

In the category of non-feature-based index, Messmer et al.
propose novel clutering-structured mechanism and decision-
tree approach for indexing graphs for isomorphism and sub-



graph isomorphism [12]. The method generates results in
polynomial time, at the cost of a large index whose size in-
creases exponentially with respect to database size. Berretti
et al. [3] propose a metric indexing schema for content-
based image retrieval. Graphs are clustered hierarchically
according to their mutual distances. More recently, He and
Singh propose a clustering-based index called Closure-tree
to support both subgraph queries and similarity queries [9].
The graph closure is a “bounding box” containing structural
information of the constituent graphs. [9] also proposes a
technique called pseudo subgraph isomorphism, which is an
approximation technique for subgraph isomorphism.

There are other literatures related to graph queries on spe-
cific graph databases. gString [10] is developed on chemical
compound databases. Williams et al. [14] develop a tree-
structured index based on graph decomposition for graphs
with limited sizes. And a novel spectral graph coding tech-
nique named GCoding is proposed for the sub-graph search
problem in [21]. Based on GCoding, the structure of the
graph can be encoded into a numerical space, and a two-step
filtering method is presented to search the graph database.

7. CONCLUSION
In this paper, we study the problem of efficiently process-

ing subgraph containment queries. An efficient subgraph-
isomorphic verification algorithm, QuickSI, is proposed. In
addition, combining QuickSI with a novel prefix-tree index,
Swift-Index, our new techniques significantly improve the
existing techniques for subgraph containment queries, in
particular for graphs with median and/or large sizes. Our
new techniques achieve high scalability regarding graph sizes
and graph database sizes. Possible directions for future stud-
ies include an investigation of whether or not our current
techniques can be effectively used to support the existing
techniques for subgraph containment queries. Approximate
query processing is another direction.
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