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With the rising popularity of wearable devices and sensors, shielding Body Area Networks (BANs) from eavesdroppers has
become an urgent problem to solve. Since the conventional key distribution systems are too onerous for resource-constrained
wearable sensors, researchers are pursuing a new light-weight key generation approach that enables two wearable devices
attached at different locations of the user body to generate an identical key simultaneously simply from their independent
observations of user gait. A key challenge for such gait-based key generation lies in matching the bits of the keys generated
by independent devices despite the noisy sensor measurements, especially when the devices are located far apart on the
body affected by different sources of noise. To address the challenge, we propose a novel machine learning framework, called
Auto-Key, that uses an autoencoder to help one device predict the gait observations at another distant device attached to the
same body and generate the key using the predicted sensor data. We prototype the proposed method and evaluate it using a
public acceleration dataset collected from 15 real subjects wearing accelerometers attached to seven different locations of the
body. Our results show that, on average, Auto-Key increases the matching rate of independently generated bits from two
sensors attached at two different locations by 16.5%, which speeds up the successful generation of fully-matching symmetric
keys at independent wearable sensors by a factor of 1.9. In the proposed framework, a subject-specific model can be trained
with 50% fewer data and 88% less time by retraining a pre-trained general model when compared to training a new model
from scratch. The reduced training complexity makes Auto-Key more practical for edge computing, which provides better
privacy protection to biometric and behavioral data compared to cloud-based training.
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Fig. 1. Comparison of acceleration signals between chest-and-waist and chest-and-shin when a user is walking.
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1 INTRODUCTION
We are at the cusp of a revolution in wearable computing. There is rising popularity to wear various types of
sensors and smart devices for better health, comfort, entertainment, and convenience. A recent survey [26]
reveals that the market is already beaming with hundreds of different types of smart wearable products including
smartwatches, smart bands, smart glasses, smart jewelry, electronic garments, skin patches, and so on. To further
extend the capability and utility of wearable computing, new wireless communications standards have been
released to connect multiple wearable sensors into a Body Area Network (BAN) [20]. However, as wearable
devices capture sensitive personal health and lifestyle data, protecting wireless communications in BAN against
potential eavesdropping has become a pressing issue to resolve.

Symmetric key cryptography is a common practice to secure communications against adversaries. It requires
two parties to use a common secret key to encrypt and decrypt all communications between them, so an
eavesdropper cannot access the data. Since storing secret keys permanently within mobile devices has a high
risk of the keys being stolen, mobile communication networks employ dynamic distribution of keys among the
communicating parties. Unfortunately, such dynamic key distributions have high overhead and often require
communications with a trusted third party, which becomes too demanding for resource-constrained body sensors.
Light-weight key distribution in BAN, therefore, has become a topic of intense research.

An interesting recent trend in the literature is to exploit unique biometric signals, such as gait and heartbeat,
as a source of independent generation of symmetric keys in multiple body sensors [17, 25]. The key idea behind
this approach lies in the fact that multiple wearable devices attached to the same human body can sense the
same biometric signal at the same time. Thus, by converting the continuous biometric signal into discrete bits,
two wearable devices can produce an identical bit string, which can be used as symmetric keys. This process
of autonomic key generation is very attractive for BAN because biometric signals are unique and cannot be
reproduced by an attacker, and they can be easily captured with low-cost sensors, such as accelerometers, that
are already built into most wearable products.

The fundamental drawback of biometric key generation is that, due to the presence of various noise sources, the
independent observations of the same biometric signal by two body sensors do not always match perfectly. This is
particularly the case when the sensors are attached far apart to different body parts experiencing distinct localized
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noises. This phenomenon is illustrated in Figure 1, which, for a walking person, compares acceleration signals
captured by accelerometers attached at chest, waist, and shin. We can see that the independent acceleration
signals, which are supposed to capture the same gait signal of the user, are not exactly matching. The mismatch
is particularly visible between chest and shin as the sensor attached to the shin is subject to significant noise due
to the free motion of the leg. Unfortunately, such a signal mismatch increases the mismatch probability between
the generated bit strings, which consequently requires more attempts to finally obtain two perfectly matching
keys. The more attempts it requires to generate matching (symmetric) keys, the longer it takes to establish a
secure communication session in BAN, thus damaging the overall user quality of experience with the technology.

In this paper, we propose to use machine learning to reduce signal and bit mismatch between two body sensors
attempting to generate symmetric keys from gait observations. In particular, we propose a novel deep learning
framework, called Auto-Key, that uses an autoencoder to help one body sensor predict the sensor data obtained
at another body sensor and generate the key using the predicted sensor data. Our experiments with real body
sensor data show that Auto-Key can significantly reduce the key generation time compared to previous methods
that do not employ signal prediction.
The main contributions of our paper can be summarized as follows:
• For a walking person, we propose the concept of using acceleration sensor data obtained at one body
location to predict the acceleration signal observed at a different body location and then use the predicted
signal for key generation. We design an autoencoder framework to realize this prediction. To the best of
our knowledge, this is the first attempt to speed up gait-based key generation using Machine Learning
(ML).

• We implement and evaluate Auto-Key using a public dataset of acceleration signals collected from 15
walking subjects wearing accelerometers attached to six different body locations. Our results show that
Auto-Key increases bit agreement rate by 16.5%, which speeds up key generation by more than 1.9X.

• We propose a transfer learning model that reduces the required training data and time of subject-specific
autoencoders by 50% and 88%, respectively. Such reductions in training complexity make Auto-Key training
more practical for edge computing, which provides better privacy protection to personal gait data compared
to uploading them to third-party cloud servers.

The rest of the paper is organized as followed. Background and related work are reviewed in Section 2. In
Section 3, We introduce the proposed machine learning framework in Auto-Key. Performance evaluation of
Auto-Key is presented in Section 4 followed by a security analysis on Auto-Key in Section 5. The paper is
concluded in Section 6.

2 BACKGROUND AND RELATED WORK
Autonomic symmetrical key generation exploits a common secret observation between the communicating parties
to independently generate matching keys without requiring help from third parties. In recent years, researchers
have explored a range of contexts for the secret observation, which includes vibrations from handshaking [7, 14],
user heartbeat [11, 17, 24], and user gait [25, 29, 35]. While the actual algorithms for extracting keys from the
observed signals vary, all these techniques have the same fundamental usage model and signal processing pipeline
as illustrated in Figure 2.
The key generation process in Figure 2 starts with one of the devices requesting the other to begin the

process, which is confirmed by the other device with a response. At this point, both devices collect a time-
series of the common signal and preprocess the data to remove noise as well as mark the start of the series to
achieve synchronization between the two independently collected time series. For example, in gait-based key
generation, some form of frequency filters are often employed to remove non-gait-related body vibrations, while
synchronization is achieved by detecting clearly observable events, such as heel strike.
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Fig. 2. Signal processing pipeline of existing autonomic symmetric key generation systems

A quantization algorithm is then applied to the processed time series to convert each time series data point
to a binary digit, i.e., bit ‘0’ or ‘1’. While most quantization algorithms [25, 29] use statistical gait features to
generate the bits, Walkie-Talkie [35] exploits the shape of the gait curve to achieve better matching between the
independently generated bit sequences [6].

In the quantization of Walkie-Talkie, the time series is first normalized to have a zero mean and unit length, i.e.,
all data points stay between -1 and 1. A guard band is then defined as the region between α and −α to convert
each data point value, v , according to the following quantizer Θ(·), which converts all values greater than α to ‘1’,
while values less than α are converted to ‘0’ and values that fall within the guard band are simply discarded:

Θ(v) =


1, v > α

0, v < −α

Discarded, −α ≤ v ≤ α

(1)

As the quantization is performed on two independently generated non-identical time series, the generated bit
sequences exhibit minor mismatches. The reconciliation algorithm allows the pair of devices to exchange some
specific information about the mismatch in an attempt to correct them. The fully matched symmetric keys are
successfully generated if the reconciliation is successful; otherwise, the key generation process starts over and
loops through the fundamental steps of data collection and preprocessing, quantization, and reconciliation, until
a symmetric key is generated successfully.
For the quantizer of in Eq. (1), the speed of key generation is sensitive to the choice of α and there exists an

optimum α that maximizes it. If α is too small, time series samples are hardly discarded at the expense of a high
mismatch rate between the generated bit sequences, which forces the key generation process to loop through the
process many times before successfully obtain a fully matched symmetric key. On the other hand, although the
bit mismatch could be reduced by choosing a large α , it would discard a large number of data samples increasing
the data collection time that would be required to obtain all the bits of a symmetric key.
To speed up key generation, previous research [25, 29, 35] mainly focused on the design and optimization of

the quantization algorithms. In contrast, in Auto-Key, we propose to accelerate the key generation by improving
the similarity of the two signals used by the quantizer. More specifically, we apply ML to predict sensor data
at one body location from the data collected at another location, thus producing two time series that are more
similar to each other compared to the raw time series. Our method, therefore, can be adopted as value-added
processing in the existing key generation pipeline to further reduce the end-to-end key generation time.

3 PROPOSED MACHINE LEARNING FRAMEWORK IN AUTO-KEY
ML is the key feature of Auto-Key. which is used during key generation to improve the matching between the
two time series independently used by two body sensors to produce the symmetric key. Auto-Key uses a two-tier
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Fig. 4. The two-tier cloud-edge training framework used in Auto-key. The universal model is trained in the cloud (a), which
is retrained for a specific user with minimal sample collection and training time in a private edge computer (b).

cloud-edge training framework to address the training overhead as well as the privacy concerns associated with
cloud-based training.

3.1 ML-augmented Key Generation
We propose to augment the existing key generation pipeline with ML as illustrated in Figure 3. As we can see, for
a given sensor/location pair, the pipeline for only one location is affected, while the other location continues to
use the existing pipeline. Basically, for one location (location A in Figure 3), Auto-Key uses a pre-trained ML
model to predict the time series of location B before it is fed to the quantizer. Thus for location A, the quantizer
now works on the predicted time series instead of the raw time series, while the raw time series is quantized
at location B. Assuming that the ML model can accurately predict the time series of B, we can expect a high
matching probability between the two bit sequences after quantization, leading to successful and accelerated key
generation without having to repeat the pipeline.

3.2 ML Model and Training
Training an ML model to observe sensor time series at one location and predict the corresponding time series at
another body location is not only challenging in terms of designing the model, but the training itself has high
user overhead in terms of training data collection and training computation time. Although the high training
computation overhead could be technically addressed by training the model in the cloud, handing over private
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body-centric data to third party cloud operators raises privacy concerns [2, 16]. Auto-Key addresses the overhead
and privacy challenges with a two-tier cloud-edge training framework as illustrated in Figure 4. In the
two-tier framework, the manufacturer of wearable sensors trains a universal model in the cloud by using data
from a large number of users (i.e., population samples). A specific user downloads such a universal model from
the manufacturer’s site and retrains it with only minimal sample collection and training time in a private edge
device.

We refer to the proposed ML framework as Auto-Key because an autoencoder is used to design the universal
model. To reduce the required sample size and training time for the edge-based retraining, Auto-Key applies the
well-known concept of transfer learning on the universal autoencoder. The design of the autoencoder and the
applied transfer learning are explained next.

h X’X

input output

code

encoder

decoder

... ...

hidden layers hidden  layers

Fig. 5. Structure of a typical autoencoder

3.2.1 Autoencoder Design. Autoencoder is a type of neural networks typically used to learn a “compressed”
representation for a set of data [4, 8, 10, 19]. As shown in Figure 5, an autoencoder consists of two components,
encoder and decoder, each of which can have an equal number of hidden layers. The encoder learns to compress
the input vectorX to a shorter codeh, while the decoder learns to reconstruct the input vectorX by uncompressing
h. The encoder and the decoder, respectively, are defined by two functions f and h as: f (X ) = h and д(h) = X ′. A
typical autoencoder aims to solve the loss function as follows:

arg min
f ,д

∥X − д(f (X ))∥2. (2)

Denoising autoencoder is a type of autoencoder that tries to reconstruct a clean “repaired” input from a
corrupted one by learning to filter out the noise during its training [8, 32, 33]. Recent work has shown the
surprising advantage of corrupting the input of autoencoders on pattern classification, speech recognition, and
word representation [4, 19, 32]. In those research works, by corrupting the input, denoising autoencoders can
extract robust features as code h. Suppose that the initial input is X , and the corrupted input is X̄ created by noise
s (i.e., X̄ = X + s). Then the loss function in Eq. (2) becomes:

arg min
f ,д

∥X − д(f (X̄ ))∥2. (3)

This loss function enables the denoising autoencoder to discard the noise s in the initial input.
When we have two sensors at two body locations producing two time series, one of them could be assumed

as a corrupted version of the other. This assumption holds because both sensors are supposed to observe the
identical body signal, such as the gait. Thus, we can use a denoising autoencoder to remove the “noise” from one
of the time series by solving the loss function of Eq (3). The structure of the proposed denoising autoencoder is
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Fig. 7. Proposed teacher-student network for training the denoising autoencoder

shown in Figure 6. It has symmetric layering around the middle layer (in red), which produces the short code
h. Both the input and the output layers have a dimension of 32, but the optimum dimensions for the hidden
layers can be selected for different applications via experiments, as we have done in Section 4 for gait-based key
generation. All layers are fully connected.

Next, we propose the Teacher-Student network in Figure 7 to train the denoising autoencoder. Let us consider
two preprocessed time series windows,WA at location A andWB at location B. If our objective is to predict
seriesWB fromWA, we useWB as the label ofWA. Here,WB is the teacher providing supervision for training the
denoising autoencoder that can be considered as the student network S(·), which learns to predictWB by taking
WA as input.

The training objective of the student network S(·) is to minimize the difference between the student network’s
prediction S(WA) and the inputWB as:

arg min
S

L(WB, S(WA)). (4)

We define the loss as Mean Square Error (MSE) for every value in the input time series window and the
corresponding value in the label windows as follows:

L(W ,W p ) =

∑n
i=1(Wi −W

p
i )

2

n
, (5)
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Fig. 8. The procedure of transfer learning in Auto-Key

where n = 32 denotes the training window size, and wi and w
p
i denote the i-th value in WA and S(WB )

respectively.

3.2.2 Transfer Learning. In Auto-Key, we apply the concept of transfer learning [23, 31] to reduce the required
training data, resource and computation time for training a user-specific autoencoder model. Such reductions
make Auto-Key training more practical for edge computing, which provides better privacy protection to personal
gait data compared to uploading them to third-party cloud servers [28].
We use the transfer learning with a technique called fine-tuning transfer learning [36], which is illustrated in

Figure 8. The steps include: (1) target user k sends a small amount of training data to an edge device; (2) the edge
device downloads the universal pre-trained autoencoder model produced from a large population samples in a
central cloud server; (3) the edge device retrains all the layers in the pre-trained universal model; (4) The trained
model for target user k (i.e. user specific model) is downloaded to k’s wearable devices for use in key generation
pipeline as shown in Figure 3.

4 EVALUATION
The detailed implementation of the key generation procedure used in the evaluation and security analysis in
Section 5 is presented in Appendix A.

4.1 Goals, Metrics, and Methodology
The goals of the evaluation are twofold: 1) to evaluate the effects of different components of Auto-Key including
autoencoder and transfer learning; 2) to evaluate the effects of different body locations including chest, waist,
forearm, head, shin, and thigh.

4.1.1 Data Collection. We use the public dataset in [30] for position-aware activity recognition to evaluate the
impacts of key generation performance of proposed autoencoder in different body locations. In this dataset, 15
subjects (8 males and 7 females, age 31.9±12.4, height 173.1±6.9, weight 74.1±13.8) performed different activities
for approximately 10 minutes. They wore 7 types of sensors on 7 different body locations including chest, waist,
forearm, head, shin, thigh and upper arm. We use the accelerometer data measured at 6 body locations (except
for forearm) of the walking activity of all 15 subjects. The data of forearms is excluded because we find that the
subjects frequently perform random motions with their forearms during walks which make the signals from
forearms do not correlate to other signals. For example. the average Pearson correlation between signals from
the forearm and chest is only about 0.0178 for the first 5 subjects in the public dataset, which indicates that the
signals of forearm and chest are basically not correlated. The core idea of using autoencoder is to let the neural
network to capture the internal correlations among signals from different body locations. If the two signals are
not correlated, the autoencoder can not help the key paring process. The sampling frequency in this dataset is 50
Hz.
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Fig. 9. In-house data collection

We collect an in-house dataset1 to analyze the effect of transfer learning. Namely, 1) what are training data
sizes that we can reduce by exploiting the universal model trained in the public dataset discussed earlier; 2)
how much less training time in the edge devices that we can reduce by exploiting the universal model. For the
in-house dataset, we recruited 6 subjects. As shown in Figure 9, we use SensorTags2 shown in Figure 9(a) to
collect accelerometer data on the subjects. The subjects are asked to wear 2 SensorTags on the chest and waist,
respectively, and walk along an 88-meter indoor path shown in Figure 9(c) for approximately 10 minutes at their
normal speed. The sampling rates of the SensorTags are 50 Hz and we collected 30,000 accelerometer samples
from each subject.

4.1.2 Metrics. For a shared key generation protocol, we focus on the following two evaluation metrics:
(1) Bit Agreement Rate (BAR): this represents the percentage of bits matching between two keys generated

by two devices respectively, and is calculated as:

BAR =
The number of match bits in two keys
The total number of bits in the key

× 100%. (6)

This metric evaluates the potential of two legitimate devices (i.e., Alice and Bob) agreeing on a same key.
(2) Key Generation Rate (KGR): this represents the average number of agreed keys generated from the

acceleration samples per minute. In the proposed Auto-Key, the key length is set as 128 bits. Therefore,
KGR is defined as:

KGR =
The number of generated keys

M
. (7)

whereM is the number of minutes. This metric evaluates how fast two devices on different body locations
can generate secret keys.

The results are presented for the average values and 95% confidence levels of 10-fold cross-validation.

1Data collection involving human subjects has been approved by the ethics committee of the anonymous organization (HC17008).
2SensorTag:http://www.ti.com/ww/en/wirelessconnectivity/sensorta/2015/index.html
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Table 1. Different dimension settings of autoencoder models (public dataset). We use signal observed from other body
locations to predict that from chest.

model name model setting MSE (Prediction)
head upperarm waist thigh shin

Model 1 32-16-8-4-8-16-32 0.00285 0.00336 0.00490 0.00370 0.00527
Model 2 32-32-16-8-16-32-32 0.00244 0.00286 0.00445 0.00338 0.00526
Model 3 32-32-32-16-32-32-32 0.0026 0.00282 0.00444 0.00352 0.00540
Model 4 32-32-32-32-32-32-32 0.0027 0.00334 0.00447 0.00394 0.00540
SVR the kernel is RBF kernel 0.03336 0.05288 0.06965 0.06772 0.09622

(a) chest - waist (b) chest - head (c) chest - shin

(d) chest - thigh (e) chest - upper arm

Fig. 10. The prediction signals vs. raw signals (public dataset)

4.1.3 The Implementation of Autoencoder. We implement the autoencoder using Keras [9] framework with
TensorFlow [1] back-end. The autoencoder is trained with a batch size of 32. We use 7 layers totally in our
autoencoder. All the layers of the autoencoder are fully connected. The encoder consists of 3 dense layers and the
input dimension is 32, while the decoder also consists of 3 dense layers and the output dimension is also 32. We
have tried different dimensions of hidden layers as shown in Table 1. The number denoted as red is the middle
hidden layer which produces the short code h. On the left side of the middle layer, it is the dimension settings of
the encoder. On the right side of the middle layer, it is the dimension settings of the decoder. We use MSE as the
loss function. The training is stopped when no improvement can be found in 1,000 epochs. For comparison, we
also implemented a popular conventional ML method, e.g. Support Vector Regression (SVR, with Radial Basis
Function or RBF kernel), as the baseline.
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4.2 The Impact of Autoencoder
Table 1 presents the MSE values of test dataset for one subject randomly selected in public dataset to compare the
performance of different settings of the autoencoder models and select the best one for the rest of the paper. We
train models for using acceleration signals observed at the head, waist, upper arm, thigh and thin to predict those
observed at the chest. Thus, there are five pairs here: (head - chest), (upper arm - chest), (waist - chest), (thigh -
chest) and (shin - chest).
Table 1 shows that all autoencoder models produce significantly better MSEs than those of SVR on all body

locations, which indicates that the neural network based autoencoder model has superior performance than
traditional ML such as SVR in signal prediction on different body locations. Furthermore, it can be seen that all
models can reach small MSEs after training. Among them, Model 2 achieves the smallest MSEs when pairing
chest device with those at the head, thigh, and shin, while Model 3 achieves the smallest MSEs when pairing
chest device with those at upper arm and waist. In contrast, Model 1 produces the largest MSEs when pairing
chest device with those at the head, upper arm, and waist, while Model 4 produces the largest MSEs when pairing
chest device with those at the thigh and thin. The results indicate that choosing a compression level (i.e., the
length of short code h) is important. If we compress the input too much (e.g., Model 1) or too little (Model 4), the
autoencoder cannot learn to produce h as good quality as Models 2 and 3 to predict the signals observed at the
chest.
The differences between Models 2 and 3 are insignificant when pairing chest device with those at the waist

and upper arm, but Model 2 performs significantly better than Model 3 at the other three locations. Therefore,
we choose Model 2 as our denoising autoencoder for the rest of the paper.

Fig. 11. MSE and Pearson correlation (public dataset)

In Figure 10, we plot the predicted signals against raw signals for some randomly chosen samples. The blue
signals are measured from devices at the chest. The green signals are measured from devices at the other body
locations (e.g., head, upper arm, waist, shin, and thigh). The red signals are the predicted signals observed at the
chest when taking signals observed at the other body locations as input. It can be clearly seen that the predicted
signals are significantly closer to those observed from the chest device than the raw signals observed at other
body locations. Nevertheless, there are still some small differences between the predicted signal and the signals
observed at the chest, which may produce some mismatched bits in the generated keys and the reconciliation
component (see Appendix A.5.1) is used to correct them.
To quantify the relationship between predicted and raw signals (ground truth). We calculate the Pearson

correlation coefficients [5] between them. The coefficients are in the range of [-1, 1], where 1 is a totally positive
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(a) head - chest
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(b) upperarm - chest
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(c) waist - chest
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(d) thigh - chest
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(e) shin - chest
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(f) aggregated results

Fig. 12. Bit agreement rates of pairing the signals observed at 5 different body locations (i.e., waist, head, shin, thigh and
upperarm) with those observed from chest and the aggregated/average results. Public dataset.

linear correlation, -1 is a totally negative linear correlation, and 0 is no linear correlation. A high correlation
coefficient means two acceleration sequences have a strong linear correlation and thus may be used to generate
keys. A low correlation means two acceleration sequences are not correlated. If we use them to generate keys,
the generated keys may have many mismatched bits. In Figure 11, it can be seen that the correlation coefficients
between the predicted signals and the ground truth raw signals are significantly higher than those between
the raw signals observed at two body locations. This indicates that the proposed autoencoder can improve the
correlation between two acceleration sequences by prediction. The signals observed at the locations of the head,
upper arm and waist have a higher correlation with those observed at chest because they are on the body trunk
and are close to the chest. The signals observed at the other locations, i.e., thigh and shin, are on the limbs that
have lower correlations with those observed at the chest. The motions of limbs can add significantly more noise
to the measurements from the thigh and shin. We also plot MSE in Figure 11, which draws a similar conclusion.
Namely, for all pairs, autoencoder can significantly reduce the MSE of 2 acceleration sequences by prediction.
Locations on the body truck produce smaller MSE than those on the limbs.
Figure 12 plots the BAR of different pairs at different body locations. The blue line is the BAR of the keys

generated by using the predicted and raw signals, and the red line is the BAR of the keys generated by using the
raw signals at two different body locations (without prediction). It can be clearly seen that BARs of all 5 pairs
have been improved significantly for all α values by prediction. For the locations on the body truck such as waist,
head, and upper arm, the improvement of BAR is smaller than those locations on the limbs such as shin and thigh
because the BARs produced by raw signals are already high (e.g., 85%) for the locations on the body truck. On
average, the proposed method based on autoencoder can improve BAR by 16.5% (Figure 13(f)).
In Figure 13, the blue line represents the KGR of using the prediction and raw signals, while the red line

represents the KGR of using raw signals observed at two body locations directly. Similar to Figure 13, this figure
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(b) upperarm - chest
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(c) waist - chest
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(d) thigh - chest
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Fig. 13. Key generation rates of pairing the signals observed at 5 different body locations (i.e., waist, head, shin, thigh and
upperarm) with those observed from chest and the aggregated/average results. Public dataset.

shows that KGR can be significantly improved by using prediction instead of raw signals. Figure 13(f) plots
the average values among all body locations, and it shows that the value of α has a high impact of the KGR
improvement because a larger alpha value produces a higher BAR (see Figure 12) at the cost of discarding much
more samples. Figure 13 also shows that the largest improvement was produced when α is 0.1. The KGR increases
from 1.8 to 5.2 keys per minute (kpm) on average. Similar to Figure 12, we can see that for those locations on the
body trunk (e.g., waist, head, and upper arm), the improvement in KGR is relatively smaller than those on the
limbs (e.g., shin and thigh). We note that the KGRs of pairing the raw signals observed at the chest with those
observed at the thigh or shin directly is very close to 0 (the key generation protocol almost does not work!). This
is because the gait signals are highly corrupted by the noise at those locations. However, with the proposed
autoencoder, the KGRs has been improved to 4.7 and 4.9 kpm, respectively, which represents more than 25 times
improvement.

In summary, our results show that: 1) the denoising autoencoder can remove the noise among the gait signals
observed at different body locations and predict the signal observed at one location by using those observed at
another location. 2) By using the predicted gait signals to generate a key, the BAR and KGR can be significantly
improved by 16.5% and more than 1.9 times, respectively. 3) The optimal value of the guard band ratio (α ) is 0.1
to produce the fastest KGR.

4.3 The Impact of Transfer Learning
In this section, we first train universal autoencoder models by using the public dataset. The universal models are
trained on a server with a GeForce RTX 2080 Ti graphics card from NVIDIA3. Then, we download the universal

3https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
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models to a common desktop computer with an Intel Core i7-8700 CPU4 and without graphic cards, which is
served as an edge device. Finally, for each subject in our in-house dataset, we have 30,000 acceleration samples,
which are divided into 9 parts (8 for training and one for testing). For each subject, we use different percentages
of training data (see in Table 2) to retrain the universal model in the edge device to obtain subject-specific models.
For comparison, for each subject, we also produce models from scratch (without transfer learning) using all
training data and use them as the baseline models.

Table 2. The effects of different train data sizes to the performance of proposed transfer learning

Training
data size MSE(e−03) BAR KGR Training

Epochs
Training
Time (s)

10%
30%
50%
70%
90%
100%
baseline(937 samples)

4.71
3.48
2.84
2.67
2.61
2.52
2.80

90.24
94.59
96.52
96.82
97.38
97.65
97.07

2.40
3.86
4.69
4.90
5.14
5.13
5.01

72
225
712
543
511
692
3,646

0.86
6.80
32.86
32.96
38.67
64.25
276.77

In Table 2, we compare the MSE on test data, BAR, KGR, epochs and training time when using different
percentages of training samples. The results are presented for the average values of 6 subjects. Retraining a
universal model via transfer learning has three benefits as follows. 1) It has a lower MSE starting point than
training from scratch (see Figure 14 for an example). 2) It reduces training epochs (time). For example, when using
50% training samples, the training finishes in 32.86 seconds, and it takes training from scratch more than 276
seconds (approximately 88% reduction). 3) It reduces training data sizes. For example, when using 50% training
samples(468 samples), the training reaches a small MSE which is comparable with that of baseline using all
training samples(947 samples).
To balance the training overhead and performance, Auto-Key recommends reducing the training data size

by 50%. In such the setting, the BAR and KGR are 96.52% and 4.69 kpm, respectively. So the minimum training
dataset for Auto-Key has 468 samples. Since the window size of each sample is 30 and the sampling frequency is
50 Hz, it will take a 5-minute walk for a user to generate 468 samples needed for the training dataset. According
to [22], the frequency of human walking steps is between 1.8 Hz and 2.8 Hz. Therefore, it requires the user to walk
between 540 and 840 steps. In [3], the average steps that a person walks per day are 3,400 during weekdays and
3,500 during weekends respectively in the USA. Therefore, the user may produce the training dataset passively
with less than 30% of her daily walk. Figure 14 plots the test MSE of one randomly selected in-house dataset
subject over time.

4.4 The Impact of Location Variance
We investigate the impact of location variance on the performance of Auto-Key since there may be small variance
when a user wears a wearable device on the same body location at different times. In this experiment, we collected
data from a subject in the middle of her waist and chest respectively and trained a model to predict her chest’s
signal by using her waist’s signal. Then we collected another set of data by moving the device on chest 1 cm,
3 cm, 5 cm away from the original spot respectively while keeping the other device in the original spot of the
waist. Table 3 shows the performance of Auto-Key decreases with the increasing of deviation, unsurprisingly.
4https://ark.intel.com/content/www/us/en/ark/products/126686/intel-core-i7-8700-processor-12m-cache-up-to-4-60-ghz.html
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Fig. 14. The test MSE of one randomly selected in-house dataset subject over time.

However, even the deviation distance is 5 cm, the BAR is 85.3% which is similar to that of the baseline without
Auto-Key prediction. We note that 5 cm represents a large distance deviation for the same wearable device worn
on the same body location, which rarely happens in reality. If the deviation distance is larger than 5 cm, the
device should be considered in a new body location and retrain a new autoencoder for the prediction.

Table 3. The impact of location variance

Metric Baseline1 using raw data
(no deviation)

Baseline2 with model
(no deviation)

Device on chest deviated by
1 cm 3 cm 5 cm

BAR(a = 0.1) 86.1% 94.9% 90.5% 88.6% 85.3%

4.5 The Overhead of Auto-Key Training and Inference
In this section, we will analyze the computational overhead of Auto-Key.

Cloud

Edge

IoT Devices

Fig. 15. An example architecture of edge computing

Figure 15 shows a popular architecture of edge computing, which consists of three levels as in [15]. The devices
in BAN are wearables and mobile devices which can be considered in the third level “Internet of Things (IoT)
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devices”. Devices at the “Edge” are defined as edge devices or edge computers. Although there are different
types of edge devices depending on the application scenarios, the training of Auto-Key is operated in a smart
home scenario. So the edge devices can be a desktop and laptop computer owned by the user. When the training
starts, the desktop computer first downloads the universal model from the manufacture’s cloud server and collect
train data from user’s mobile devices. Then the model is re-trained on the desktop computer. Note that sensitive
personal biometric (gait) data are stored (and computed) in the edge devices owned by the users instead of the
public cloud to protect her privacy. After the model is re-trained, the user’s mobile devices may download it.
Therefore, we use a typical desktop with Intel Core i7-8700 CPU as our edge device prototype. Directly training
in IoT devices is also another choice, though the limited computational capabilities of current IoT devices are
the bottleneck. Table 4 shows the training time of two different devices. It can be clearly seen that training on a
desktop is approximately 8 times faster than a Raspberry Pi 3. Therefore, it is more appropriate for the re-training
tasks to be run in the edge devices instead of in the IoT devices directly to significantly reduce training time and
provide a better user experience.

Table 4. Training times on different devices

Training devices Average training time per model in 712 epochs (ms)
A desktop computer with a Intel Core i7-8700 CPU 32.86
A Raspberry Pi 3 Model B+ with a 64-bits quad-core
ARMv8 CPU 259.12

The inference is another overhead of the Auto-Key key generation process. Table 5 shows the average inference
times for a 128-bit key on different devices. It can be seen that inference overhead is insignificant compared to
that of the training. The inference of the model on a Raspberry Pi takes only 0.64 ms which is 2.7 times slower
than the desktop computer. The inference time in an iPhone X increases to 26.58 ms, which is still small.

Table 5. Inference times on different devices

Inference devices Average inference time for a 128 bits key (ms)
A desktop computer with a Intel Core i7-8700 CPU 0.23
A Raspberry Pi 3 Model B+ with a 64-bits quad-core
ARMv8 CPU 0.64

Apple iPhone X 26.58

5 SECURITY ANALYSIS

5.1 Trust Model
Similar to previous work [6, 25, 29, 35], we assume that all devices that can measure the motion signals of a user
directly are legitimate, which means all the devices worn on the user’s body are trustworthy. The user is assumed
to be capable of detecting such attacks if an attacker tries to place an adversary device or modify the legitimate
devices on the user’s body so that the attackers have no access to the legitimate devices and their data.

5.2 Adversary Model
We assume that attackers attempt to breach Auto-Key by violating confidentiality and compromising integrity
while ensuring the availability is out if the scope of this paper.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 32. Publication date: March 2020.



Auto-Key: Using Autoencoder to Speed Up Gait-based Key Generation in Body Area Networks • 32:17

Tracker

SensorTag

Camera

3 m

Fig. 16. Video side-channel attack data collection

We assume that the gait signal is private information that cannot be obtained by an attacker, who may use it
to train a similar neural network. If the attacker can somehow obtain the gait signal of a user(e.g. by hacking a
wearable device), then she can use it to pair with the legitimate device directly. Preventing hacking the legitimate
device is out of the scope of this paper. Then, we assume that an attacker (i.e., Eve) has the full knowledge of the
key generation mechanism in Appendix A and has full control of the communication channel except for jamming
the channel. Therefore, Eve may eavesdrop the message between Alice and Bob, and impersonate a legitimate
device to derive the secret key that secures the communication channels in BAN. We also assume that Eve can
eavesdrop the message transmitted via the public channel in the reconciliation step (see Appendix A.5.1). So,
Eve can derive a key from various means and she can also use reconciliation to correct the mismatched bits for
this key. We assume that the attackers may have the access to the universal autoencoder model trained with the
population dataset, but don’t have the access to user-specific transfer-trained models because the user-specific
models are always kept confidentially in the users’ (edge and IoT) devices.
We analyze three types of attacks in this paper similar to recent work [6]:

(1) Video Side-Channel attacks. Recent works have shown that video-based acceleration signals extraction
methods can accurately extract accelerations signals from the video that records the walking user [39].
We assume that Eve may use this approach to extract acceleration information and use the extracted
acceleration information to generate keys for either Man In The Middle (MITM) or spoofing attacks.

(2) ActiveMimicking attacks. Eve can observe and study the walking style of the genuine user. She generates
a key by mimicking the walking style of the genuine user and use this key to pair with genuine user’s
devices.

(3) Passive attacks. Eve generates a key based on her own gait signals and uses this key to pair with the
genuine user’s devices.

In the experiments, we recruited 6 subjects to collect data and conduct experiments as below:

(1) For legitimate device, each subject is wearing two SensorTags on chest and waist as in Figure 9(b). For each
subject, we trained a model to use data observed at the chest to predict data observed at the waist. We use
the waist’s prediction based on the data observed at the chest to pair with the data observed at the waist.
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Fig. 17. Three types of attacks directly on same locations

(2) For side-channel video attacks, the data collection setup can be seen in Figure 16. Each subject wears a
Sensortag and a marker (for vision-based tracking) next to the Sensortag on their waist to collect the
acceleration data since it is reported in [6] that the waist is one of the most vulnerable locations for the
side-channel video attacks. The subjects are asked to walking on a treadmill for 50 steps. In the meantime,
a slow-motion camera at 60 frames per second films the walking and tracks the marker worn on the
subject’s waist. Then Eve will extract estimated acceleration data via two-times differentiation from the
video using computer vision-based techniques such as [39] and then try to use the extracted acceleration
data to generate keys to pair with the device (i.e., SensorTag) next to the marker.

(3) For passive attacks, we grouped 6 subjects into 3 pairs. Each subject attaches a SensorTag at their waist. All
subjects are asked to walk freely for 1 minute in their own walking style. Then two subjects in pair use
their own acceleration data to try to pair with each other.

(4) For active mimicking attacks, we grouped 6 subjects into 3 pairs like the passive attacks above. Each subject
attaches a SensorTag at their waist. Each participant is asked to be an active attacker to mimic her partner’s
walking style and try to imitate it. Then the attacker uses her acceleration signals to pair with her partner’s
device.

(5) Since above attacks scenarios show that active mimicking attack is the most powerful one with the highest
BAR (see Figure 17 for more details), we use the active mimicking attack to investigate whether the universal
autoencoder model can be exploited by the attackers to increase attack performance (i.e., BAR). To this
end, we grouped 6 subjects into 3 pairs similar to the active mimicking attacks discussed above. Each
subject wears two Sensortags on her waist and chest, respectively. Each participant is asked to be an active
attacker to mimic her partner’s walking style and try to imitate it. The mimicked gait data from the waist
are input to a trained universal autoencoder model to predict the gait data observed on the chest. Then the
mimicking attacker uses the prediction signals to pair with the device on her partner’s chest.

Many unrealistic advantages are given to the side-channel video attackers deliberately. For example, the subject
is asked to walk on the treadmill so that the camera can have a close and stable observation on the trajectory of the
marker worn at the waist and generate “clean” acceleration signals of the subject’s gaits; The distance between the
treadmill and camera is fixed to 1.5 m, which also make the estimation of trajectory as well as the accelerometer
values much easier. Each genuine subject is asked to attach an explicit marker next to her SensorTag so that the
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feature-based computer vision gait tracking tasks become easier and more accurate. Considering the advantages
given to the side-channel video attackers, we anticipate that it will be significantly more difficult for a real-world
attacker to obtain similar results as reported in this paper.
In [21], it has been shown that an attacker is unable to mimic the unique gait pattern of a subject to get

sufficiently similar data to break the key generation protocol. While in [35], it has been shown that the passive
attacker can not succeed either since the gait is unique for each person. However, for completeness, we still
collect data to produce the results of these two types of attacks. In Figure 17, the BAR of these two attacks is only
slightly above 60% after reconciliation. In comparison, the BAR using (proposed autoencoder) prediction is all
more than 96%, which makes it easy to produce a successful key pair for legitimate devices. Our results show
that the attacker fails to produce any successful key pairs.
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Fig. 18. Attacks with trained population model.

One interesting observation from Figure 17 is that the video side-channel attacks produce approximately 60%
BAR, which is worse than these of mimicking attacks. In [6], it has been shown that such a video side-channel
attacker may obtain sufficiently accurate gait estimation to generate successful key pairs with a legitimate device.
That difference between the results reported in this paper and those in [6] is mainly caused by that we use
magnitude values of acceleration readings from three axes in Auto-Key (see Appendix A.2.1), while [6] uses the
acceleration data from gravity direction only. Normal cameras cannot accurately produce tracking information in
3D spaces. While vision-based 3D motion tracking systems such as Vicon can produce highly accurate tracking
in 3D spaces, they are very expensive (e.g, in the order of US$100,000) and need careful set-up calibration and
markers on the subject.
Since Figure 17 shows that mimicking attack is more effective (produces higher BAR) than the other two

types of attacks, we further investigate if the attackers can improve mimicking attacks by exploiting the trained
population autoencoder model. Figure 18 shows that the BAR is not improved significantly by such enhanced
mimicking attacks. Moreover, our studies show that the enhanced mimicking attacks with trained population
models also fail to produce any successful key-pairing with legitimate devices. Therefore, Auto-key is resilient to
such attacks.
Finally, the proposed Auto-Key increases the differences of BAR between legitimate devices and those of

attackers significantly as shown in Figure 17. For example, when α = 0.1, the difference is increased from 20% to
36% when we use prediction instead of raw signals, which makes the gait-based key generation systems stronger
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against different attacks because such difference increases enable us to choose the parameters of reconciliation
(see Appendix A.5.1) that have less error correction capabilities. For example, we may choose a smaller number
(e.g., 40) instead of 60 chosen in our implementation in Appendix A.5.1. Consequently, it will be difficult for the
attackers to pair with legitimate devices, though it may also decrease the KGR between two legitimate devices.
Similar to the passive and mimicking attacks discussed earlier, we note that the attacker fails to produce any
successful key pairs with side-channel video attacks with our current implementation in Appendix A.

5.3 Randomness of the Final Key
The bits in the final keys should be random for strong security. To validate the randomness of keys generated by
Auto-Key, we apply the NIST suite of statistical tests to all the keys generated using both datasets. The NIST
statistical tests give the p-values of different random sub-tests. The p-value indicates the probability that the key
sequence is generated by a random process. If p-value is less than 1%, the randomness hypothesis is rejected
which means the key is not random. The test results of Auto-Key are presented in Table 6, which shows that all
the tests have p-values that are greater than 1%.

Table 6. NIST Statistical Test

NIST sub-test p-value
Frequency 0.082731
FFT Test 0.574149
Longest Run 0.420442
Linear Complexity 0.985606
Block Frequency 0.822883
Cumulative Sums 0.148170
Approximate Entropy 0.886438
Non Overlapping Template 0.889227

6 CONCLUSION
We propose an autoencoder based signal pre-processing step to speed up gait-based key generation. We prove
that using acceleration sensor data obtained at one body location to predict the acceleration signal observed at
a different body location can be achieved by using autoencoder. We further show that by using the predicted
signals can speed up key generation. The bit agreement rate is increased by 16.5% and the key generation rate
is increased by more than 1.9X. We further use transfer learning to reduce the required training data by 50%
and the required training time by 88% to obtain a user-specific autoencoder model for a new user by retraining
a pre-trained universal model. Finally, we also analyze the security of the proposed approach against various
attacks.
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A IMPLEMENTATION DETAILS OF KEY GENERATION PROTOCOL

A.1 Synchronization
We adopt a heel strike-based method in [35] to temporally align signals. The heel strikes, referring to peaks in
gait curves, can be detected and used as an anchor point to eliminate the time offset between two pairing parties.

A.2 Signal Preprocessing
A.2.1 Magnitude. After synchronization, two legitimate devices (i.e., Alice and Bob) begin to sample the accelera-
tion data at the sampling frequency of 50 Hz. Since the devices may be placed in arbitrary rotations, and to reliably
generate symmetric key across different devices placed in different rotations, we need a device rotation-invariant
basis for the three-axis acceleration data. Therefore, we compute and use the summation of absolute magnitudes
of the acceleration instead of the three-axis data individually.

A.2.2 Band pass Filter. According to the study in [25], human motion usually lays below 12 Hz and there is
some unexpected correlation between arbitrary acceleration signals in low frequencies (e..g., < 0.5 Hz). Therefore,
we apply a band-pass filter of 0.5 Hz - 12 Hz to keep the relevant information in the acceleration signal only.

A.3 Prediction
After signal preprocessing, the acceleration samples are segmented with non-overlapping data entries of 32
samples. Each entry is then input into the trained autoencoder model S(·) as discussed in Section 3.2. The length
of the prediction results is also 32, which will then be concatenated before the quantization step.
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A.4 Quantization
Auto-Key applies the guard band-based quantization method in [35] as discussed in Section 2, to quantize the
gait samples and encode them into bits.

The default setting for the quantization is: window size = 10 samples, α = 0.1. We choose a window size of 10
to increase the randomness of the produced keys as recommended in [6]. α is the guard band ratio can be tuned
in [0, 1). When α is 0, no bits will be discarded by a guard band. α can not be 1 as all bits will be discarded. We
choose α = 0.1 to maximize KGR as discussed in Section 4.

A.5 Information Reconciliation
A.5.1 Reconciliation. Two acceleration signals may consist of the energy from different motions of different
body locations and noise. As a result, there may exist mismatched bits in two independently generated keys. So
we often get KeyAlice ≈ KeyBob , not KeyAlice = KeyBob after quantization.

A typical key generation system usually has an information reconciliation stage allowing two parties to
exchange a certain amount of information to correct the mismatch between two parties [27, 37]. The conven-
tional information reconciliation protocols include Cascade [12, 34, 40], and error-correcting code(ECC)-based
method [18, 35, 38]. Note that fuzzy vault [13, 25] can be broadly considered as an extension of the ECC-
based method. The state-of-the-art information reconciliation protocol is a recently developed Compressive
Sensing-based method [17]. By adjusting the compression rate or sensing dimension, the CS-based information
reconciliation protocol allows the user to determine the mismatch correction capabilities, making it more flexible
than conventional methods. AutoKey adopts the state-of-the-art compressive sensing-based reconciliation method.
For the benefit of space, we omit the details of the reconciliation method and the readers are encouraged to refer
to [17] for the details. We choose the size of the sensing matrix as 60 × 128, which represents a compression of
more than 50%.

A.5.2 Message Authentication Code. Since Alice and Bob do not share an authenticated channel during the
reconciliation procedure, an attacker Eve may modify the messages transmitted between two legitimate devices.
To protect the integrity of the message, we adopt the message authentication code (MAC) method to verify
the massage yBob is indeed sent by Bob. Bob transmits LBob = (yBob ,MAC(KeyBob ,yBob )) instead of only yBob .
Upon receiving LBob , Alice will compute Key∗Alice to correct all mismatches. The purpose of the information
reconciliation stage is to eliminate all mismatches, so Key∗Alice is expected to be the same as KeyBob . Therefore, if
Alice obtainsMAC(Key∗Alice ,ybob ) , MAC(KeyBob ,yBob ), Alice can conclude that the key pairing is unsuccessful
and ask for a new pairing attempt. Since Eve does not know the bits in Keybob and any modification on yBob will
fail the MAC verification. As such, Eve may only block the key pairing by violating the availability, she cannot
damage the integrity by modifying the message.

A.5.3 Privacy Amplification. Information reconciliation achieves higher reliability but also reveals partial infor-
mation to Eve since some information is transmitted over a public channel and can be eavesdropped by Eve. In
Auto-Key, we use one of the universal secure hash functions (i.e., SHA2-256) to further increase the randomness
of the final keys and resiliency against attacks.
Finally, Bob and Alice got the same final key after privacy amplification. Then the final key can be used by

symmetric-key algorithms such as AES-128 to ensure secure communications between Alice and Bob. After
privacy amplification, Alice and Bob should produce the same secret keys: Key′′

Alice = Key
′′

Bob . But if the two
keys do not match with each other, the key generation will restart from data collection.
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