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Abstract—Kinetic energy harvesting (KEH) may help combat battery issues in wearable devices. While the primary objective of KEH is to
generate energy from human activities, the harvested energy itself contains information about human activities that most wearable devices
try to detect using motion sensors. In principle, itis therefore possible to use KEH both as a power generator and a sensor for human activity
recognition (HAR), saving sensor-related power consumption. Our aim is to quantify the potential of human activity recognition from kinetic
energy harvesting (HARKE). We evaluate the performance of HARKE using two independent datasets: (i) a public accelerometer dataset
converted into KEH data through theoretical modeling; and (i) a real KEH dataset collected from volunteers performing activities of daily
living while wearing a data-logger that we built of a piezoelectric energy harvester. Our results show that HARKE achieves an accuracy of
80 to 95 percent, depending on the dataset and the placement of the device on the human body. We conduct detailed power consumption

measurements to understand and quantify the power saving opportunity of HARKE. The results demonstrate that HARKE can save
79 percent of the overall system power consumption of conventional accelerometer-based HAR.

Index Terms—Wearable computing, energy harvesting, human activity recognition, internet of things

1 INTRODUCTION

ITH the rapid advancement of electronics, wearable

devices such as Fitbit, Apple Watch, and Nike Fuel-
Band, are rapidly becoming an integral part of our daily
lives. A key service provided by these devices is to continu-
ously track the movements and activities of the users with
the help of inbuilt precision accelerometers enabling 24x7
activity information at the finger tip of the user. While
health and fitness are two major application domains [1],
[2], [3], [4], continuous activity monitoring using some form
of wearable devices has also potential applications in many
other domains, such as sports [5], smart living [6], and
indoor positioning [7], [8], [9], [10].

Despite the growing demand for wearable devices, bat-
tery recharging is seen as a major roadblock to the ultimate
pervasiveness of this technology. Although battery technol-
ogy has advanced over the years, most wearable devices still
require battery recharging every other day or at least once a
week. To reduce dependance on batteries, a current trend
in the literature [11], [12], [13], [14] is to develop kinetic
energy harvesting (KEH) solutions to convert kinetic energy
released from human motion and activities into usable elec-
trical energy to power wearable devices. Some wearable
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KEH products are already appearing in the market, such as
AMPY" and EnSole,” that enable the wearers to capture and
convert kinetic energy as they walk, run, and jog into battery
power that can be used by their smartphones and wearables.
These recent developments paint a promising picture for the
inclusion of KEH in many future wearable products.

While the mainstream energy-harvesting research
focuses on increasing the power throughput of the energy-
harvesting hardware, in this paper, we investigate a differ-
ent approach to exploiting KEH for human activity recogni-
tion (HAR). In particular, we propose to mine the energy
harvesting patterns to detect human activities. The feasibility of
such mining relies on the fact that human motion is the
source of any power generated by the wearable KEH hard-
ware and that human motion has distinctive patterns for
different human activities. Indeed, state-of-the-art wear-
able-based HAR technology [15], [16], [17], [18], [19], [20],
[21] relies on these distinctive motion patterns that are accu-
rately captured by three-axial accelerometers.

However, accelerometers require constant power supply
for sampling acceleration data from human motion, which
could be avoided if activity was recognised directly from the
output pattern of the KEH device. Therefore, KEH could
potentially serve the dual purpose of generating power as
well as saving sensor-related power consumption by acting
as a proxy for the accelerometer. The concept of human activ-
ity recognition from kinetic energy is referred to as HARKE
in this paper, while the state-of-the-art HAR methods that
classify activities using accelerometer data are referred to as
HARAC. Although HARAC is a matured technology, there

1. AMPY: http:/ /www.getampy.com (accessed on July 28th 2016).
2. EnSole: http://www.solepowertech.com (accessed on July 28th
2016).

1536-1233 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1354

is little known about the potential of HARKE. In our recent
study [22], we applied theoretical modelling to estimate
KEH patterns from accelerometer patterns of common
human activities using mass-spring damping system. We
used the estimated KEH data to prove the concept of using
KEH signal as a source of sensing human activities.

In this paper, we carry out more comprehensive study to
assess the potential of KEH as a sensor for realising human
activities. First, we use a publicly available dataset [23] that
contains 3-axis acceleration data collected from eight subjects
mounting the sensing units on three different body positions
(arm, leg, and torso) and performing nine daily and sport
activities, such as rowing, cycling, running, walking, jump-
ing , standing, sitting, ascending, and descending stairs. The
KEH data for all of these activities and body placements
were approximated by applying a standard mass-spring
damping system to the available acceleration data.

Then, we build a wearable KEH datalogger capable of log-
ging both accelerometer as well as voltage output of a piezo-
electric KEH device that harvests electrical energy from the
vibrations of the piezoelectric element. We collect both accel-
erometer and piezoelectric voltage data from ten subjects
performing five daily activities, such as walking, running,
standing, ascending and descending stairs, by wearing the
datalogger at two different body placements, hand and
waist. Our analysis shows that HARKE is sensitive to both
body placements and classifiers used with significant accu-
racy differences. We identify a vibration-specific feature set
which noticeably improves HARKE performance.

Moreover, we compare the performance of HARKE with
the conventional state-of-the-art HARAC. We observe that
HARKE is as accurate as HARAC so long as the activities
are not too similar, but the performance of HARKE would
start to deteriorate as soon as very similar activities are
added to the target set. This leads to approximately 15 per-
cent performance gap with HARAC when the device is
attached to the hand or arm. However, the gap is signifi-
cantly reduced to only 4.17 percent when the device is
placed closer to the central part of the body which helps
sensing and identifying similar activities more accurately.

The contributions of this paper can be summarised as
follows:

e We present a novel human activity recognition
method (called HARKE) which uses KEH patterns
as the source for activity classifications.

e We provide a proof of concept of HARKE by imple-
menting the idea with off-the-shelf energy harvesting
hardware and experimenting it with real subjects. We
show that HARKE can detect some basic activities of
daily living with 80 to 95 percent accuracy depending
on the placement of the device on the human body.

e We conduct a detailed power measurement study to
understand and quantify the power saving opportu-
nity of HARKE. We demonstrate that HARKE can
save 79 percent of the overall system power consump-
tion compared to the conventional accelerometer-
based HAR.

The rest of the paper is organised as follows. Related work
is reviewed in Section 2 followed by the preliminaries on the
accelerometers and KEH principles in Section 3. The motiva-
tion of HARKE and the proposed architecture is presented in
Section 4. Next, Section 5 presents the evaluation of HARKE
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using a publicly available accelerometer dataset which is
converted into KEH data using a standard mass-spring
damping system. Section 6 presents HARKE experiments
with wearable KEH hardware. Finally, the power consump-
tion measurements are explained in Section 7, while conclu-
sions and future research directions are offered in Section 8.

2 RELATED WORK

Existing human activity recognition (HAR) systems can be
broadly categorized into three different approaches [24],
vision-based, environmental-based and wearable-based.
Vision-based HAR, which is achieved by instrumenting the
environment with cameras, has been a research focus for a
long period of time due to its important role in various
domains such as surveillance, security, and robot learning
[25], [26]. However, the deployment and maintenance of
cameras (as recording devices) are costly in addition to the
privacy and ethical issues [24].

Similarly, environmental-based HAR uses physical sen-
sors (e.g., pressure, proximity, RFID, etc.) attached on
objects to infer human activities from interaction with
objects or change of environmental variables [27]. It enables
many useful applications in smart environments domain
including people/object tracking [28] and detection of
human-object interaction [29]. In particular, RFID-based
HAR [30], [31] which relies on body attenuation and/or
channel fading of wireless radio, has many power advan-
tages with RF energy harvesting [32], [33]. However, the
recorded RFID data is highly subject to noise and interfer-
ence caused by moving people and other objects which in
turn impacts the performance of HAR using this approach
[34]. Moreover, it only recognizes those activities that
involve interaction between human and objects [34].

On the other hand, wearables can continuously monitor
user activities at all times and locations. By placing various
wearables on the human body, accurate and pervasive HAR
can be achieved without deploying significant infrastructure
and at the same time preserving the privacy of users [35].
Several previous studies relied on attaching various special-
ised wearable sensors to different places on the human body
toachieve HAR[15], [16], [17], [18]. However, the recent pop-
ularity of smart wearables, such as smart-phones, smart-
glasses, and smart-watches, has shifted the research atten-
tion to use such wearables for HAR [19], [20], [21]. The major
challenge of wearable devices is the battery life, especially
with increasing user demand for more power and function-
ality. It is not convenient for many users to frequently
recharge their wearable devices, especially if they need to
plug these devices into a power source. Although, there
exists extensive work on improving battery technology to
meet the users’ expectations, batteries are still one of the big-
gest limitations in advancing the wearable technology [36].

Accordingly, minimising the power consumption of
wearables has become an essential requirement. Three
main components are highly contributing to the power
consumption of the wearables: sensing, computation, and
communication. Reducing the power consumption of these
components can make the wearable more energy efficient.
Typically, wearable-based HAR relies on inertial sensors
(e.g., accelerometers) to measure the acceleration while
performing different activities. Informative features are
then extracted from the accelerometer data and used to
train a classifier, which is used later to detect activities
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from a given sample of acceleration values. Although iner-
tial sensors can be considered low-power electronics, the
continuous sampling of different inertial sensors in the
wearable can be power consuming. Therefore, in this paper
we focus on reviewing some of the ideas from the litera-
ture that aim to reduce the sensors-related power con-
sumption in wearable devices.

Sensor reduction. It has been found that reducing the num-
ber of sensors for activity recognition can help improve the
energy efficiency of the device, but it can trade off the detec-
tion accuracies. A dynamic sensor selection mechanism is
therefore preferred to provide energy efficiency while achiev-
ing the desired performance of the detection algorithms. For
example, Zappi et al. [37] exploited sensor redundancy for
dynamically selecting sensors according to their contribution
to the classification accuracy as assessed during system train-
ing. By reducing the average number of sensors used, their
method was able to significantly extend the battery life while
maintaining high accuracy for HAR. Wang et al., [38] selec-
tively turned on the minimum set of sensors to monitor user
state and triggered a new set of sensors only if necessary to
achieve state transition detection. Gordon et al., [39] leveraged
the predictability of human behavior to turn off sensors which
are needed to recognise only the unlikely activities.

Adaptive sampling. Because the system power consump-
tion increases with the increase in sampling rate, reducing
the sampling rate of sensors has become a popular method
to reduce power consumption of HAR. However, any
reduction in sampling rate must be achieved without
sacrificing the precision of the recognition system. Krause
et al, [40] studied the trade-off between sampling rate
(power consumption) and human activity classification
accuracy for the eWatch wearable device. The authors have
demonstrated that the battery life of the device can be
extended significantly by selecting the optimal sampling
rate without sacrificing accuracy. This study indicates the
existence of a sampling threshold, below which the accu-
racy falls dramatically. Consequently, the use of a sampling
rate equal to the sampling threshold is proposed in order to
save energy. In [41], Yan et al., pointed out that the trade-off
is activity-specific, and proposed that the sampling fre-
quency and classification features should be adapted in real
time, based on the activity type. Moreover, in [42], Qi et al.,
proposed AdaSense algorithm which uses a lower power
single activity event detection most of the time and only
resorts to higher power multi-activity classification when
the activity changes. AdaSense uses Genetic Programming
to find the optimal feature set that effectively reduces the
sampling rate and computational complexity.

KEH Wearables. Although sensor reduction and adaptive
sampling mechanisms can reduce the sensor-related power
consumption and extend the wearable lifetime, battery-
powered wearables cannot provide sustained operation
without the need for battery recharge and eventually
replacement. Recently, Kinetic Energy Harvesting has
emerged as a viable option to power the wearables by con-
verting the kinetic energy from human motion into electri-
cal energy [43]. Some wearable KEH products are already
appearing in the market, such as AMPY and EnSole, that
enable the wearers to capture and convert kinetic energy as
they walk, run, and jog into battery power to be used by
their smartphones and wearables. However, the amount of
power that can be harvested from daily human activities
with current energy harvesting hardware is still too small to
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enable wearables or smartphones to fully rely on KEH to
power them. Many KEH models have been recently devel-
oped [11], [12], [13], [14]. The main focus of these models is
to optimise the parameters of the harvester so as to maxi-
mise the output harvested power. However, there is still a
gap between what energy can be generated and what
energy is required to power the wearables. This is particu-
larly true with the function rich wearables consisting of var-
ious embedded sensors.

In our recent study [22], we showed that the power
requirement for sampling an accelerometer to detect com-
mon human activities with high accuracy ranges between
0.35 to 5 times the harvested kinetic power from human
motion. Although reducing the sampling rate of accelerom-
eter can save some power, accelerometers still require
power supply during sampling. To address this challenge,
we proposed the prospect of using KEH signal as a source
of sensing human activities, which leads to further opportu-
nity of power saving. We estimate KEH patterns from accel-
erometer patterns for common human activities using
theoretical modeling. In [44], a discussion about KEH wear-
ables for activity-aware services is provided with a prelimi-
nary proof of concept experimental study. In this paper, we
carry out more extensive experiments to assess the potential
of KEH as a sensor for realising HAR using a range of com-
mon daily activities and different placements of the KEH
device on the human body. We also conduct measurements
to quantify the power saving opportunity of our method as
compared to the existing accelerometer-based method.

3 ACCELEROMETER AND KEH PRELIMINARIES

Both accelerometers and KEH transducers rely on the same
basic principle of mass-spring damping system, however,
they serve different purposes. Accelerometers are used to
sense vibration, but KEH is used to generate electrical
energy from the wasted vibration energy. Generally speak-
ing, accelerometers require some means for inferring accel-
eration from sensed vibration. In this section, we present
some preliminaries on accelerometers and KEH.

3.1 Accelerometers

Accelerometers are electromechanical devices that are used
to sense static acceleration forces such as gravity and/or
dynamic acceleration forces such as vibrations and move-
ment. They can sense acceleration in one, two, or three axes.
Different kinds of accelerometers are available, however,
capacitive accelerometers are mostly used in wearable and
mobile devices. This is because they have low power con-
sumption, large output level, low noise level, and fast
response to motions [45]. In a capacitive accelerometer, a
capacitor is formed by a stationary plate (the housing which
moves with the base acceleration) and a moving plate
attached to the seismic mass. The distance between these
two plates determines the capacitance, which can be moni-
tored to infer acceleration (change in capacitance is related
to acceleration). Capacitive accelerometers are capable of
measuring constant acceleration, such as gravity as well as
slow transient and periodic acceleration. Accelerometers
are generally considered low-power devices which require
a power supply voltage of 5V or less. Their required current
can vary depending on the settings of power saving mode
or standard operating mode and typically ranges between
micro and milli ampere [46].
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Wearable Device

Load
KEH Generator Power Energy | | Power ', gonsor (e.g. accelerometer)
(Transducer) Conditioning Storage Supply | Micropro.ce:ssor

® Radio

Human activites

No Need to Replace Batteries!!

Fig. 1. A generic architecture of a KEH-powered wearable device.

3.2 Kinetic Energy Harvesting

Kinetic energy harvesting is a process of converting the envi-
ronmental kinetic or vibration energy into electrical energy
which can be stored to power small and low energy electron-
ics. KEH can ease the dependence on batteries and signifi-
cantly enhance the versatility of consumer electronics. Kinetic
and vibration energy harvesting are synonyms; the environ-
ment around us is full of sources of kinetic or vibration energy
such as natural seismic vibration (e.g., earthquakes), wind
movement, sea waves, vehicular traffic, machinery vibration
and human motion. Among these environmental vibration
options, human motion is the most relevant for wearables
because it can power the wearable directly from human
movements. Fig. 1 shows a generic architecture for a KEH-
powered wearable device. The KEH system typically contains
a generator (transducer) to convert human motion into electri-
cal power, a power conditioning circuit to provide power rec-
tification and regulation, and a storage element (e.g., a
capacitor or a rechargeable battery) to store the harvested
energy. The harvested energy is used to extend the life time of
batteries, thus enabling self-powered wearables.

There are three main transduction mechanisms for con-
verting kinetic energy to electric power [47]: piezoelectric,
electromagnetic (capacitive), and electrostatic (inductive).
Piezoelectric is the most favourable transduction mecha-
nism due to its simplicity and compatibility with MEMS or
micro electrical mechanical system [48]. The piezoelectric
effect was discovered in natural quartz crystals, but today’s
piezoelectric transducers are typically made from patented
proprietary ceramics. Fig. 2 shows a typical usage configu-
ration of a piezoelectric cantilevered beam. One end of the
beam is fixed to the device, while the other is set free to
oscillate (vibrate). When the piezoelectric material is sub-
jected to a mechanical stress due to any source of environ-
mental vibration, it expands on one side and contracts on
the other. Positive charges accumulate on the expanded
side and negative charges on the contracted side, generating
an alternating current (AC) voltage as the beam oscillates
around the neutral position. The amount of voltage is pro-
portional to the applied stress, which means that different
vibration patterns generate different AC voltage patterns.

Fixed end Free end

/ Expansion (V+)

x N
V+/V- AN
LY

Contraction (V-)

Fig. 2. The piezoelectric cantilevered beam.

The AC voltage is usually converted into regulated direct
current (DC) which is suitable to power sensor nodes,
microcontrollers, and peripherals.

4 PRoPOSED HARKE ARCHITECTURE

Fitness trackers and wearable health monitoring systems
are expected to have long operation time, as it is definitely
not convenient for elders and patients to charge their health
monitoring device frequently. In the near future, kinetic
energy harvesters can be integrated to these devices to
extend the battery lifetime and achieve long-term activity
monitoring. In light of this, we envision and propose
HARKE which eliminates the need for powering an acceler-
ometer to sense human activity. Instead, it employs kinetic
energy harvesting and infers human activity directly from
the KEH patterns without using any accelerometer.

Fig. 3 shows the general architecture of HARKE, in which
the wearable health monitoring system is mainly used to con-
tinuously collect the KEH data generated from human
motion, and periodically transmit them to the data center
(e.g., a data server of a healthcare company) for further analy-
sis and activity classification. In the server, the KEH data are
processed and analyzed to extract informative features. Then,
the extracted features are used to train and validate a classifier
model which will be used to recognize human activities from
KEH patterns. The proposed use of KEH patterns for classify-
ing human activities is based on the observation that different
activities produce kinetic energy in a different way leaving
their signatures in the harvested power signal.

The fundamental advantage of HARKE is the energy sav-
ing due to elimination of the need for powering an accelerome-
ter to sense human activity. HARKE samples only a transducer
that remains active all the time without requiring any power
supply and generates a single-axial data trace to be transmit-
ted. On the other hand, HARAC requires powering up an
accelerometer for each sensor sampling which generates three
times of data samples (3-axial accelerometer) to be transmitted.
This indicates that HARKE can significantly reduce the power
consumption of both data sampling and wireless transmission,
thereby extending the life time of resource-constrained wear-
able health monitoring devices. In the next two sections, we
evaluate the performance of HARKE using two independent
datasets. Then, in Section 7 we quantify the energy saving
opportunity of HARKE as compared to HARAC.

5 EVALUATING HARKE WITH PuBLIC DATASET

In this section, we make use of a public activity dataset [23]
to evaluate the proposed HARKE architecture. We use a

.,)))

KEH data

Wearable Health Monitoring Device

L 4
System
Human motion
(activities)

Data Center

Feature

Data Activity
Processing Extraction Classification

Fig. 3. Proposed HARKE architecture.
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; 1 ,
Transfer Fen Saturation dz(t)/dt
Power b((dz(t)/dt)A2) blf (dz(t)/dt)A2 . :

Fig. 4. Simulink blocks to estimate KEH power from accelerometer data.

mathematical model that relies on the most basic principle
of a kinetic energy harvester [14], namely a standard mass-
spring damping system, to estimate the kinetic power signal
that could be harvested by a kinetic energy harvester.

5.1 Motion Dataset

This dataset contains 3-axial acceleration measurements col-
lected from eight subjects (four females and four males,
ages from 20 to 30) performing a variety of daily and sports
activities [23]. We study nine activities including rowing
(ROW), cycling on an exercise bike (CYC), running on a
treadmill with a speed of 8 km/h (RUN), walking on tread-
mill with a speed of 4 km/h (WALK), jumping (JUMP),
standing (STAND), sitting (SIT), ascending stairs (SU), and
descending stairs (SD). The sensing units were mounted on
three different body placements (Arm, Leg, and Torso),
with a 25 Hz sampling frequency.

5.2 Derivation of KEH Data

We apply the mathematical model developed in [12], [14] to
estimate the KEH power from the acceleration traces in the
dataset. Typically, a resonant kinetic energy harvester is
represented by a mass-spring damper equivalent model
whereby the linear damper represents the combined damp-
ing offered by electrical and mechanical domains. The
mass-spring damper system is a second order system,
which is commonly encountered in system dynamics and
can be modeled using two methods: a second order ordi-
nary differential equation, and a conventional transfer func-
tion. The second order differential equation governing the
system is given by

mi(t) = alt) — bi(t) — kz(t), )

where m is the proof mass, k is the spring constant, b is the
damping factor, a(t) is the external input (control force), Z and
% are the first and second derivatives of the output variable z(t).

Equation (5) can also be represented as a transfer func-
tion (in the Laplace domain) as follows:

Als) ) ©6)

2 b &
s +Tﬂ,8+7n

2At) =L Z(s) = E_l(

where A(s) and Z(s) denote, respectively, the Laplace

transforms of a(t) = \/agﬁ(t‘)2 + ay(t)2 + a,(t)?, the overall
magnitude of the acceleration, and the proof mass displace-
ment z(t). Maximum power is achieved when the excitation
(input) frequency is equal to the natural frequency of the sys-
tem. All practical systems dissipate energy when they
vibrate. To account for this, damping must be considered.
Therefore, the transfer function in Equation (6) can be repre-

\/% and the

sented in terms of the natural frequency o =
damping coefficient ¢ = b/(2v'k * m), as follows:
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Z(s) 1
A(s) 82+ 2ws 4+ w?’

(7)

Once the gravity is filtered out from the motion data, the
filtered motion data is converted to proof mass displacement
using the Laplace domain transfer function of Equation (6).
Next, the resulting proof mass displacement, z(t), is
bounded by the limit of the proof mass displacement, Z;.
Finally, the generated harvested power is determined by

p(t) = b2 (t). (8)

We used the following configuration values: m = 10%kg,
Zr, = 10mm, k= 0.17, and b = 0.0005, optimised in [14] for
typical human activities. The entire procedure was imple-
mented using MATLAB and SIMULINK [49]. The simulink
blocks of this model are shown in Fig. 4. Fig. 5 shows the
accelerometer patterns and the corresponding power traces
for nine activities and three placements of the device on the
human body: arm, leg, and torso. As shown, like accelerom-
eter, the KEH power samples exhibit different patterns for
different activities. These patterns will be used in the perfor-
mance evaluation presented in Section 5.4.

5.3 Feature Extraction and Classification

Feature extraction is a critical initial step in any classifica-
tion process. This step is responsible for extracting the hid-
den information from the input raw data in order to
perform the desired task.

The input raw data is usually subject to noise due to ran-
dom and short-term movements derived from hand shaking
and user interactions. To eliminate the interference of such
noise, we first smooth the data using a moving average filter
which is simple but effective for removing random noise
from time series. It smooths the data traces by replacing each
data point with the average of the neighboring data points
defined within the span (we use a span of 3 data points).
Next, we consider a technique of window overlapping to seg-
ment the input data traces into the corresponding activity seg-
ments. In this technique, the data traces are subdivided into
smaller windows, and then the features are extracted from
the consecutive windows. Using overlapping windows is a
common practice to reduce the information loss at the edges
of the window. In this paper, we used windows of 5 seconds
with 50 percent of overlap between consecutive windows.

Table 1 presents the features used in our study. It shows 24
features that are commonly used for HARAC, that is acceler-
ometer-based HAR. As the accelerometer generates three
time series along the x-, y-, and z- axes, some features are
extracted from each axis separately (single-axial features) and
some are extracted as a combination between the three axes
(multi-axial features). Table 1 includes 19 single-axial features
and 5 multi-axial features. For accelerometer signal, the sin-
gle-axial features are extracted from each axis separately, giv-
ing a total of 57 features, in addition to the 5 multi-axial
features extracted as a combination between the three axes,
thus giving a total of 62 features. On the other hand, the KEH
signal has only one axis of AC voltage, resulting in a total of
19 single-axial features. Overall, we extracted a total of 62 fea-
tures from the acceleration signal and 19 features from the
KEH signal. We call this as the Original Feature Set (OFS).

Based on the success of other researchers in classifying a
range of human activities using accelerometer data, we
chose four common classifiers to evaluate the recognition
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Fig. 5. Acceleration and the corresponding estimated power signals for different activities (“Acc” means Acceleration).

accuracy of HARKE: (1) C4.5 Decision Tree (DT) [50]; (2) IBk
Nearest Neighbour (NN) [51]; (3) Naive Bayes classifier
with kernel estimation; and (4) Support Vector Machine
(SVM) [52]. We utilize the widely used and publicly avail-
able machine learning platform called Waikato Environ-
ment for Knowledge Analysis (WEKA) [53] to assess the
performance of HARKE and compare it to HARAC.

5.4 Performance Results

Table 2 presents the achieved recognition accuracies of both
HARKE and HARAC at three body placements—Arm, Leg
and Torso. We observe that HARAC, which exploits acceler-
ation information from three different axes, achieves high
recognition accuracies (above 93 percent) irrespective of the
classifier selection and body placement. Torso placement
achieves the best accuracy (~ 99%) with no significant dif-
ferences between the four considered classifiers. In contrast,
HARKE performance is sensitive to both body placements
and classifiers used to detect activities with significant
accuracy differences. For HARKE, the Decision Tree (DT)
classifier appears to outperform all other classifiers with rec-
ognition accuracies of 80.96, 82.72, and 95.37 percent for
Arm, Leg, and Torso positions, respectively.

To gain more understanding of the performance of both
HARAC and HARKE, we show the True Positive (TP) rate
for each recognized activity when the DT classifier is used in
Fig. 6. The results are shown for both HARAC and HARKE
for the three body placements: Arm, Leg, and Torso. We can
see that HARAC achieves more than 0.9 TP rate for all activi-
ties and body placements. On the other hand, with HARKE,
some activities cannot be detected with high TP rate such as
SU and SD in case of Arm position (when it achieves less

than 0.7 TP rate), and STAND and SIT for Leg position
(when it achieves less than or equal to 0.7 TP rate). This
means that the energy harvesting signal, which is derived
from the 3-axial accelerometer signal, does not contain all the
information available in the 3-axial accelerometer signal.

This leads to the better performance of HARAC over
HARKE. To get a sense of the overall performance difference
between HARAC and HARKE, we use the term accuracy gap
which is defined as the difference (absolute value) between
the overall recognition accuracies of both HARKE and
HARAC. By calculating the difference between the accuracies
of HARKE and HARAC shown in Table 2 for the best classi-
fier (Decision Tree), we find an accuracy gap of 15.23 percent
for Arm position and 14.96 percent for Leg position. When
Torso position is considered, this problem is resolved and the
accuracy gap is reduced to only 4.17 percent. Fig. 6 confirms
this outcome by showing TP rate above 0.9 for all activities
when the Torso position is considered with HARKE. This
means that Torso is the position where the least amount of
information is lost and hence HARKE could achieve compa-
rable performance to HARAC.

So far, we have analysed the performance of HARKE
using a transformation signal derived from the acceleration
data. To assess the validity of these observations, we carry
out experiments with a real energy harvesting device as dis-
cussed in the next section.

6 EXPERIMENTATION WITH KEH HARDWARE

We further evaluate the proposed HARKE architecture
using practical KEH data. The details of the hardware setup,
data collection campaign, and evaluation results are pre-
sented in this section.
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TABLE 1
The Original Feature Set (OFS)
Feature Abbreviation Description
mean mean The central value of a window of samples.
variance var Measures the amount of variation or dispersion from the mean.
standard deviation std The square root of the variance.
minimum min The minimum value in a window of samples
maximum max The maximum value in a window of samples
range range The difference between the maximum and the minimum values in a window
of samples.
¢ Absolute Mean absMean Average of absolute values.
£ Coefficient of Variation (@Y A ratio of standard deviation and mean times 100; measure of signal dispersion.
& Skewness skew Measure of asymmetry of the probability distribution of the window of samples.
£ Kurtosis kurt Measure of peakedness of the probability distribution of the window
g of samples.
E Quartiles:
g 1st Quartile Q1
= 2nd Quartile Q2 Measures the overall distribution of the signal samples over the window.
3rd Quartile Q3
Inter Quartile Range IOR The difference between the upper (third) quartile and the lower (first) quartile of
the window of samples; it also measures the dispersion of the signal samples
over the window.
Mean Crossing Rate MCR Measures the number of times the signal crosses the mean value; captures how
* often the signal varies during the time window.
= Absolute Area absArea The area under the absolute values of the signal samples. It is the sum of
5 absolute values of the signal samples over the window.
= Dominant Frequency Ratio ~ DFreqR It is calculated as the ratio of highest magnitude FFT coefficient to the sum of
S magnitudes of all FFT coefficients.
.%'-’D " Energy FDEnergy It is a measure of total energy in all frequencies. It is calculated as the sum of the
kS ?5" squared discrete FFT component magnitudes.
0 =
g
< L2
'g FDEnergy = Z F,f (@)
"8 i=1
& where F; is the magnitude of FFT coefficients.
g Entropy FDEntropy Captures the impurity in the measured data. It is calculated as the information
5 . - :
g entropy of the normalized values of FFT coefficient magnitude.
s 9
L
FDEntropy = — Z Fn;logs(Fn;) (2)
=1
where Fin; is the normalized value of FFT coefficient magnitude.
Total absolute area TAA Sum of the absolute areas of all three axes.
L
TAA = |Acc,| + |Accy| + |Acc. (3)
=1
where |Acc,|, |Acc,|, and |Acc,| are the absolute values of the three axes of the
" 2 accelerometer x, y, and z respectively. L is the length of the window.
= E Total magnitude area TMA The signal magnitude of all accelerometer signal of three axis averaged over the
g 8 time window.
= g
£ £ SF A + Ae + Acc?
¢ o i=1 T Ty z
= o TMA = @)
E| g L
= £
Correlation:
Corr(X,Y) CorrXY It measures the dependence relationship between two axes of the accelerometer
Corr(X,Z) CorrXZ signal.
Corr(Y,Z) CorrYZ
6.1 Hardware Setup vibration frequency range 40 Hz - 120 Hz and it is able

Our datalogger hardware includes a product called Vol-
ture v25w from MIDE,”> which implements the KEH
transducer and provides AC voltage as its output. It
employs a cantilever that attaches to a piezoelectric crys-
tal. When vibrations set the cantilever in motion, it gen-
erates an AC voltage. Volture v25w is sensitive to the

3. http://www.mide.com

to generate a maximum of 34 mW at 80 Hz. Since human
motion frequency is rarely higher than 3 Hz, the output
power is expected to be a few magnitudes lower. We
used a 7 g mass to make the harvester sensitive to lower
frequencies. The mass is placed at the free oscillating tip
of the cantilever as shown in Fig. 7c. We also added a
tri-axial accelerometer (MMA7361LC) to collect the accel-
eration signal simultaneously for comparison.



1360

TABLE 2
Accuracy (%) of Both HARAC and HARKE at
Three Body Placements When OFS is Used

HARAC HARKE
Classifier ~ Arm Leg  Torso Arm Leg Torso
DT 96.19 9768 9954 8096 8272 9537
NN 9467 96.87 99.14 6127 7036 92.74
NB 9322 9695 9925 67.14 7585  85.02
SVM 95.04 9719 99.09 55.64 6348 75.62
B Arm Torso
[
g0
N
;-g
2]
35
=
RUN JUMP  ROW cyc WALK NV SD STAND
BArm  0.9906 0.9886 0.9928 0.9706 0.9175 0.9401 0.9465 0.9953 0.915
Leg  0.9896 0.9923 0.9931 0.9958 0.9675 0.9815 0.9789 0.9964 0.8966
Torso 0.9948 0.9948 0.9938 0.9953 0.9948 0.9959 0.9964 0.9933 0.9995
Activity
(a) HARAC
B Arm Leg © Torso
1
[
g o
20
E
[}
35
=
0 RUN Jump ROW cyc WALK sU STAND SIT
BArm  0.9685 0.9979 0.7074 0.8416 0.8415 0.6729 0.6986 0.8125 0.7659
Leg  0.9501 0.961 0.8993 0.8903 0.9501 0.7049 0.7323 0.6225 0.7039

Torso 0.9943 0.9928 0.9291 0.9401 0.967 0.928 0.924 0.9503 0.9574

Activity
(b) HARKE

Fig. 6. True Positive (TP) rate of each activity when decision tree (DT)
classifier is used for: (a) HARAC and (b) HARKE.

The Arduino Uno is used to sample the data from the
KEH transducer and accelerometer at 1IKHz sampling fre-
quency. The sampled data is saved on an 8 GB microSD
card which is connected to the Arduino using microSD
shield. A 9V battery is used to power the device. Our hard-
ware also includes two switches—one to switch the device
on or off, and the other to control the start and stop of data
logging. Figs. 7a, 7b, and Fig. 7c shows the external appear-
ance, the circuit diagram, and the internal appearance of the
datalogger, respectively. In the circuit diagram, a 750 KQ
load resistor was soldered at the harvester output to obtain
the AC voltage and 2 x 10 K() resistors to make the offset at
2.5V instead of 0, to access the negative side of the AC volt-
age. Once the device is assembled, it can be attached to dif-
ferent parts of the subject under test to gather the data.

6.2 Output Transformation

The Arduino board has 10 bits of output resolution (.e.,
1024 different values). Therefore, the range of the output
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(@) The external appearance. (b) The circuit Diagram.

7g mass Start/Stop switch ~ On/Off Switch

Piezoelectric
KEH transducel
(Volture v25w)

MicroSD shield

Accelerometer

(MMA7361LC)
Microcontroller 8 GB Micro
(Arduino Uno) card

(c) The internal appearance.

Fig. 7. The datalogger hardware setup: (a) the external appearance of
the data logger, (b) the circuit diagram, and (c) the internal appearance
of the data logger.

measurements is from 0 to 1023. We map the range of the
measurements to the actual voltage range (0 — 5V) by

5Xm
Voltage = TR 9)

where m is the measurement sampled by the Arduino. For the
accelerometer output, we then used the following equation to
calculate the corresponding acceleration of the three axes.

Voltage — 1.65

Acceleration = ,
cceleration 08

(10)

where 1.65 is the Og acceleration, which is usually defined as
half the supply voltage (in this case 3.3V) and 0.8 is the scal-
ing factor between the measured voltage and acceleration in
g. Then we divide Equation (10) by 9.81 to get the accelera-
tion in m/s?. Finally, we subtract 2.5 from the Volture out-
put to compensate changing the Volture offset to 2.5V
instead of 0V in the hardware setup. The Volture’s offset
has been changed in the design to allow accessing the nega-
tive samples of the AC voltage.

6.3 Data Collection

We used the datalogger to collect data from ten different
subjects who volunteered to participate in this study. The
data includes diversity in gender (4 male and 6 female), age
(ranges from 26 to 35), weight (from 58 to 91 Kg), and height
(from 154 to 185 cm). We considered five different activities:
standing (STAND), walking (WALK), running (RUN),
going up stairs (SU), and going down stairs (SD). All sub-
jects performed the activities normally in their own way
without any instruction. We considered two different place-
ments to study the impact of device placement on the sys-
tem performance. The subjects were asked to first hold the
datalogger in either their left or right hand, perform the five
mentioned activities, and then repeat the same process with
the waist placement. Figs. 8 and 9 show the data collection
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(a) STAND (b) WALK

(c) RUN

(d) SU

(e) SD

Fig. 8. Data collection process: (a) Standing (STAND), (b) Walking (WALK), (c) Running (RUN), (d) Going up the stairs (SU), and (e) Going down the

stairs (SD).

process of the five activities and the two placements of the
device on the subject’s body, respectively.

For each subject, we have collected 300 seconds of data
for both standing and walking; 240 seconds of data for run-
ning; and 200 seconds for both going up and down stairs at
each of the two body placements (hand and waist). Figs. 10
and 11 show the accelerometer and KEH patterns, respec-
tively, for the five activities at two body placements.

6.4 Feature Selection

In addition to the OFS (Table 1) used earlier, we now investi-
gate the utility of some additional features presented in
Table 3, which are typically used to quantify the severity of
vibration [54]. We will call the features in Table 3 the Vibra-
tion Feature Set (VFS), which are single-axial features
extracted from either the KEH signal or each of the 3-axis
acceleration signals. Adding the VFS to the OFS gives a total
of 83 features extracted from the accelerometer signal and a

bl

(a) Hand (b) Waist

Fig. 9. Device placements on the person’s body: (a) hand and (b) waist.

Standing Standing
20 ] ]
[ -
-20 .
0 5 10
Walking
20 [ i
0 RN e 0 M
20 . __-20
K 5 10 ‘%’ 0 5 10
E Running = Running
= =0 weniBNUBLAR LR
s il d
E -20 5 20 ML AR
g 0 5 10 8 o0 5 10
& Ascending Stairs &  Ascending Stairs
20
0 PSR
-20 : '
0 5 10 0 5 10
Descending Stairs
20
0 %) .
-20 e
0 5 10
Time (s) Time (s)
(a) Hand (b) Waist

Fig. 10. The accelerometer patterns of the five activities for two place-
ments: (a) Hand and (b) Waist.

total of 26 features extracted from the KEH signal. We divide
the data traces into 5 seconds windows with 50 percent of
overlap between consecutive windows. Each window is con-
sidered as an instance for feature extraction, from which we
have extracted both the OFS and VFS features.

As the feature set becomes large after adding the VFS, we
applied the well-known Correlation Feature Selection (CFS)
algorithm [55] to reduce the feature set to the most informa-
tive features and discarding the redundant and less informa-
tive features. Table 4 shows the reduced feature sets when
applying the CFS algorithm on accelerometer and KEH data
for both hand and waist placements. For the accelerometer
data, the number of features is reduced from 83 to 22 in the
hand placement case, and 16 in the waist placement case. For
the KEH data, the number of features is reduced from 26 to 10
in the hand placement case, and 9 in the waist placement case.
As will be shown later, the reduced feature set is as effective
as the original large set in detecting human activities.

An interesting outcome of the feature reduction exercise
is that it identified only two features, PktPk and PktPkDiff,
for the Hand placement and PktPk and maxPk for the Waist
placement from the 7 features in the VFS. This means that
these are the most important vibration features for HARKE.
In the following section, we will evaluate the impact of the
vibration features on the performance of HARKE.

6.5 Performance Evaluation
In this section, we analyse HARKE performance based on
the practical KEH data and we relate the results to those
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2 2
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0 5 10 0 5 10
Walking Walking
T — 0 [oabtbsvarsbhbabion
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S 0 5 ) 10 S 0 5 ) 10
Py Running Py Running
8 2 8 2
% 0 % 0
=2 = -2
2 0 5 10 2 0 5 10
Ascending Stairs Ascending Stairs
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0 bttt 6 frbefet $1l bk
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0 hprndempmstontots 0 promboaipadumotatd
-2 -2
0 5 10 0 5 10
Time (s) Time (s)
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Fig. 11. The KEH patterns of the five activities for two placements:
(a) Handx and (b) Waist.
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TABLE 3
The Vibration Feature Set (VFS) Used to Quantify
the Vibration Level in Both Accelerometer and KEH Data

Feature Abbreviation Description

Root Mean Square RMS The square root of the arithmetic
mean of the squares of the values. The
RMS is a measurement of the effective

energy content in a the signal.

Peak-to-Peak PktPk The difference between the
maximum peak value and the
minimum peak value. It indicates the

maximum excursion of the signal.

Peak-to-Peak
Difference

PktPkDiff  The difference between the maximum
difference between peak values and
the minimum difference between
peak values of the sinusoidal wave. It
indicates the maximum excursion of

the time periods.

mean Peak The mean value of the differences
between all the peak values. It
quantifies the average variation level

of the values of the signal.

meanPk

The mean value of the differences
between the all the distances (time
periods) between peak values. It
quantifies the average variation level
of the time periods of the signal.

mean Peak meanDisPk

Distance

The maximum value of the differen-
ces between all the peak values. It
quantifies the maximum variation
level of the time periods of the signal.

maximum Peak maxPk

maxDisPk  The maximum value of the differen-
ces between all the distances (time
periods) between peak values. It
quantifies the maximum variation

level of the time periods of the signal.

maximum Peak
Distance

TABLE 4
The Resulting Feature Sets of the CFS Algorithm
HARAC HARKE
Hand Waist Hand Waist
Placement Placement Placement Placement
varZ CVy absArea absMean
stdZ VarY var absArea
IQRZ FDEnergyY IQR RMS
PktPkDiffY IQRY Q3 Q1
CVX Q3Y min range
meanDismPkX Q1Y Q1 min
PktPkZ MaxY range Q3
MaxPeaksY PktPkDiffY PktPk PktPk
PktPkDiffX meanDisPksY max maxPk
RMSX stdX PktPkDiff
MaxPeaksX FDEnergyX
IQRY RMSX
MinZ DFRatioX
meanDisPkY skewY
meanDisPkZ skewZ
Q1z CorrXZ
CVY
totalMA
absArea
CorrXY
MinY
SkewX

obtained from the publicly available motion data obtained
through theoretical modeling. First, we show the perfor-
mance of HARKE when the OFS (shown in Table 1) is used.
Next, we explore if adding the VFS (shown in Table 3) to
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TABLE 5
HARKE Performance
with OFS with OFS+VFS with CFS
Classifier Hand Waist Hand Waist Hand Waist
NN 70.21 83.51 80.11 87.36 80.19 86.08
DT 76.34 79.27 79.76 80.34 74.93 77.89
SVM 72.89 75.74 72.89 79.66 71.72 72.41
NB 70.58 69.15 70.58 70.90 70.80 73.63

the OFS yields an improvement in the performance. Then,
we investigate whether the use of the CFS reduced feature
set, shown in Table 4, affects the performance of activity rec-
ognition. We also examine the impact of body placements of
the wearable, and the similarity of the activities on the rec-
ognition accuracy. Next, we compare the activity recogni-
tion accuracies that are obtained from the model-based
power data against those obtained using the ground truth
hardware data. Finally, we compare the performance of
HARKE to the conventional accelerometer-based human
activity recognition, HARAC.

In order to analyse the performance of HARKE, we train
and test the classifiers using 10-fold cross validation [56], which
divides the entire dataset into 10 sets with 9 of them used for
training and the remaining one for testing. This process is
repeated 10 times and the average of the 10 repetitions is
reported. Table 5 shows the recognition accuracies (%) of
HARKE using the previously mentioned classifiers when the
OFS, the combined set of OFS and VFS (OFS+VES), and the
CFS reduced feature set (CFS) are used, for both hand and
waist placement cases. For each case, the highest accuracy
obtained is shown in bold. We can see that the nearest neighbor
(NN) classifier achieves the highest accuracies in most cases.

6.5.1 Impact of Vibration Features

In this section, we explore if adding the VFS, shown in Table 3,
to the OFS yields an improvement in the performance. Table 5
demonstrates that adding VFS improves the accuracy of
HARKE significantly as compared to the case when OFS is
used and no vibration features are used. VFS improves
HARKE accuracies noticeably from 70.21 to 80.11 percent for
the hand placement case and 83.51 to 87.36 percent in the
waist placement case with NN classifier. This is because the
VFS contains features which are typically used to quantify
the severity of the vibration through peak analysis [54]. This
helps us distinguish the activities more accurately and hence
improve the performance of HARKE.

6.5.2 Impact of Feature Reduction

Earlier in this section, we showed that the CFS algorithm
has significantly reduced the number of features for
HARKE from 26 features to only 10 and 9, as shown in
Table 4, for the hand and the waist placements, respectively.
In this section, we investigate whether the use of the CFS
reduced feature set affects the activity recognition perfor-
mance of HARKE. Table 5 shows the accuracies (%) of
HARKE when the CFS reduced feature set (CFS) is used for
both hand and waist placements. We find that NN is the
most effective classifier with CFS. These results show that
the CFS reduced feature set is as effective as the combined
set (OFS+VEFS) in detecting human activities when the NN
classifier is used. Using only 10 and 9 time domain features
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TABLE 6
The Confusion Matrix of HARKE for Hand Placement Using the
CFS Reduced Feature Set When the NN Classifier is Used

Classified as TP Rate
WALK RUN STAND SU SD

WALK 48 0 0 12 4 075

RUN 0 54 0 0 0 1

STAND 0 0 73 0 0 1
Activity suU 17 0 1 18 3 046
SD 10 0 0 6 16 05

TABLE 7

The Confusion Matrix of HARKE for Waist Placement Using the
CFS Reduced Feature Set When the NN Classifier is Used

Classified as

TP Rate
WALK RUN STAND SU SD
WALK 61 0 0 2 3 092
RUN 0 66 0 0 O 1
STAND 0 0 72 0 0 1
Activity SU 5 0 1 29 7 0.69
SD 9 3 0 9 18 046

(shown in Table 4) with NN classifier, HARKE achieves
80.19 and 86.08 percent accuracy for hand and waist place-
ments, respectively.

6.5.3 Impact of Body Position

The performance of HARKE is highly affected by the posi-
tion where the device is placed on the user’s body. Table 5
shows that the waist placement gives higher classification
accuracies than hand placement. This is consistent with the
observation in the previous section, which showed that torso
provides better performance compared to arm and leg place-
ments. This is quite meaningful because when the device is
closer to the central part of the body, it can sense the activity
more accurately. So depending on the accuracy requirement
of the application, the device placement on the human body
has to be chosen carefully. For example, health specific appli-
cations might require the device to be placed near the central
part of the body to achieve the required accuracy [57].

6.5.4 Impact of Similar Activities

Recall that in Section 5.4, we observed that similar activities,
such as going up and down the stairs, are difficult to detect
with KEH power traces estimated from a public motion data-
set. To investigate whether this is also the case with the prac-
tical KEH data, we examine the confusion matrices of
HARKE for hand and waist placements in Tables 6 and 7,
respectively. Standing (STAND) and running (RUN) activi-
ties are identified with very high (100 percent) accuracy, but
the true positive (TP) rate is significantly lower for WALK,
SU, and SD. This is due to the fact that these activities are
quite similar in behaviour as the users periodically move
their legs for either walking, going up or down stairs. This
means that HARKE could be used reliably as long as the
activities are not too similar, but its performance would start
to deteriorate as soon as very similar activities are added to
the target set. The confusion between similar activities is
slightly reduced for waist placement as the attachment of the
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Fig. 12. Derived KEH power versus hardware AC voltage.

device to the central part of the body helps in sensing and
identifying those similar activities more accurately. This is
also confirmed in Section 5.4 with the public dataset where
HARKE achieves above 0.9 TP rate for all activities including
similar ones such as SU and SD for Torso position.

6.5.5 Model versus Hardware

As our hardware records both accelerometer and ground
truth AC voltage data, we have an opportunity to assess the
validity of the mass-spring model used in our earlier analy-
sis for the publicly available accelerometer data sets. Let us
point out that our hardware was designed to collect only
the AC voltage data. We have not built the complete circuit
to convert the AC voltage to DC power, nor any power opti-
mization was used for the circuit or piezoelectric trans-
ducer. As such, a direct match between the theoretical
model and the ground truth data, i.e., the raw power data,
cannot be expected. It would be more appropriate to com-
pare the activity recognition accuracies that are obtained
from the model-based power data against those obtained
using the ground truth AC voltage data.

We first compare the model-derived power data against
the ground truth AC voltage data in Fig. 12, which shows
that both data sets capture variations due to the different
activities that generate them. Then we compare the activity
recognition accuracies based on model-derived data and
ground truth AC voltage data in Fig. 13, which compares
results from the classifiers that produce the best results for
these two data sets (i.e., DT for model-based power data and
NN for ground truth AC voltage). As can be seen from this
figure, the activity recognition accuracies obtained with
ground truth AC voltage are very similar to the ones
obtained with power data derived from the accelerometer
traces using the mass-spring model. Additionally, the funda-
mental conclusions about human activity recognition accura-
cies, e.g., the waist placement can give better accuracy over
the hand placement, can also be accurately obtained using
the model. We can therefore conclude that the mass-spring
model can be reliably used for KEH-based activity recogni-
tion studies when only the accelerometer data are available.
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Fig. 13. Performance comparison of model-based evaluation using DT
classifier and hardware-based evaluation using NN.

6.5.6 HARKE versus HARAC

In this section, we compare the performance of HARKE (as
shown in Table 5) with HARAC (as summarized in Table 8).
We make the following observations. First, the nearest
neighbor (NN) classifier appear to achieve the highest accu-
racies for both HARKE and HARAC in most cases. Second,
for both methods, CFS reduces the number of features sig-
nificantly without sacrificing activity recognition accuracies.
Third, the use of vibration features (i.e., the VFS) has no
noticeable impact on the performance of HARAC, whereas
it obtains significant improvement for HARKE.

A comparison between Tables 5 and 8 also confirms the
expected accuracy gap between HARKE and HARAC, which
we already observed in Section 5.4 using the public data set.
This time, HARKE accuracies are lower than those of HARAC
by 14.82 and 13.07 percent for hand and waist placements,
respectively. This is clearly due to the multi-dimensional
(three-axial) measurements of the accelerometer signal
The accelerometer provides X, Y, and Z components of accel-
eration (shown in Fig. 10), whereas KEH is a single-axial AC
voltage signal (shown in Fig. 11). A 3-axial accelerometer is
fundamentally advantageous in separating very similar
human activities, such as going up and down the stairs due to
the multi-dimensional measurement of the motion, hence
achieving very high performance. Fortunately, as observed in
Section 5.4, the accuracy gap between HARKE and HARAC
can be reduced significantly by placing the device closer to
the chest (torso placement).

In the next section, we conduct a detailed power mea-
surement study to analyse and quantify the power saving
opportunity for HARKE.

7 POWER MEASUREMENT

The key motivation of our proposed HARKE architecture is
energy saving by eliminating the need for powering an accel-
erometer to sense human activity. Unlike the conventional
accelerometer-based HARAC approach, HARKE samples
only a transducer that remains active all the time without
requiring any power supply. An earlier measurement study
tested the power consumption of six commonly used capaci-
tive accelerometers when a 3.3v power supply and a 50 HZ
sampling rate were used. The results showed that accelerom-
eters consume hundreds of microwatts at only 50 Hz sam-
pling rate which could be saved by HARKE. In fact, the exact
amount of power that can be saved by HARKE will depend
on the design configurations of actual systems which may
have different kind of accelerometer and different ways of
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TABLE 8
HARAC Performance
with OFS with OFS+VFS with CFS
Classifier Hand Waist Hand Waist Hand Waist
NN 95.44 99.64 95.81 99.64 95.01 99.15
DT 87.02 90.59 88.19 91.27 86.33 93.26
SVM 90.43 96.86 88.89 98.24 88.38 87.51
NB 84.69 88.44 85.44 88.09 88.54 91.51

sampling it. However, fundamentally, significant amount of
power can be saved by not having to power up an accelerom-
eter for each sensor sampling. Moreover, HARAC generates
three times of data samples (3-axial accelerometer) but
HARKE generates a single axis data trace to be transmitted
which can also save significant power of data transmission.

In this section, we carry out a detailed measurement
study to quantify the power savings of HARKE compared
to HARAC using a typical configuration of today’s energy
efficient wearable devices. The main variables measured for
HARKE and HARAC are the length of the sampling inter-
val, the average power consumption during the interval for
each sampling event, and the average power consumption
of data transmission.

7.1 Measurement Setup

We use an off-the-shelf Texas Instruments SensorTag [58] as
the target measurement device, which includes an ultra-low
power ARM Cortex-M3 MCU specifically designed for
today’s energy-efficient wearable devices, such as FitBit
fitness trackers [59], [60]. The SensorTag is embedded
with the CC2650 microcontroller (MCU) [61], which pro-
vides ultra-low power consumption, and the InvenSense
MPU9250 9-axis motion sensor. Our SensorTag is running
with the Contiki 2.6 operating system [62] which utilizes the
power saving features of the CC2650. The processing event
running on Contiki has been programmed to sample either
the 3-axial acceleration signal from the MPU9250 motion
sensor, or the voltage signal of the supply power source.
The Contiki OS has been programmed to put the MCU into
deep-sleep mode when there are no sampling events in the
OS event queue. When a sampling event occurs, the MCU is
awakened from deep-sleep mode by software interrupts.

Fig. 14a shows the energy measurement setup. The Sensor-
Tag (shown at the top part) is connected with the oscilloscope
(shown at the bottom). We use the Agilent DSO3202A oscillo-
scope to capture both the current consumption and time dura-
tion for each acceleration and voltage sampling event. The
SensorTag is first connected with a 10€2 resistor in series, and
powered by the 3V coin battery. Then, the oscilloscope probe
is connected across the resistor to measure the voltage.

In the remaining of this section, we first measure the power
consumption due to data sampling, which will be followed by
the analysis of transmission power consumption. Finally, we
will analyze the overall system power consumption consider-
ing both sampling and transmission power consumptions.

7.2 Power Consumption for Sampling

Separate measurements are done to quantify the sampling
power consumptions for HARAC and HARKE.

7.2.1 HARAC

Accelerometers generally come in two different types—digital
and analog. Digital accelerometers produce acceleration in
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MCU wakes up to sample periodically.
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Fig. 14. The experimental setup for the power measurement and the results for both accelerometer and KEH sampling.

digital format, which can be read and used directly by activ-
ity classification process. However, an I°C bus has to be
powered separately to read the data from the digital acceler-
ometer. Analog accelerometers, on the other hand, produce
analog data, which can be read directly using an analog-to-
digital converter (ADC) instead of powering an I>C bus.
Therefore sampling analog accelerometers could avoid
power consumption related to the / 2C' bus, but at the expense
of some processing cost to convert analog signals into digital.
While it is not immediately obvious whether digital acceler-
ometer sampling would be less or more power consuming
relative to the analog counterpart, an earlier measurement
study [63] has confirmed that digital accelerometer is more
power efficient than the comparable analog ones from the
same manufacturers. Based on this finding, we choose to use
digital accelerometers for our study.

The SensorTag includes a 9-axis digital MPU92507
motion sensor combining a 3-axis gyroscope and a 3-axis
compass along with a 3-axis accelerometer. During the
power measurements, we only enable the accelerometer
and leave all the other sensors turned off. The digital accel-
erometer is sampled at 25Hz using the I*C bus embedded
in the SensorTag.

Fig. 14b shows the power measurement profile of the
accelerometer sampling. It shows the periodical sampling of
the accelerometer (in the top part of the figure) and the
details for each sampling event (in the bottom). The MCU
automatically goes to the deep-sleep mode between each
sampling event to reduce the overall system energy con-
sumption. As observed from the figure, the accelerometer
sampling event is divided into six states (S1 - 56).

At the beginning of each event, the software timer inter-
rupts the MCU from the deep-sleep mode (S_sleep), so that
the MCU wakes up to boot the accelerometer and then goes
back to sleep (S1). The accelerometer is powering up during
S2 when the MCU sleeps. Then, after one software clock
tick (7.8 ms in Contiki OS), the MCU wakes up again to ini-
tialize the accelerometer, and then goes back to sleep (S3).
The accelerometer completes initialization and becomes
active after S5. Then, MCU wakes up again to read the accel-
erometer sample during 56, and goes back to deep-sleep
mode after finishing. The details of the power consumption
and time duration for all the states in the accelerometer
sampling event are stated in Table 9. Based on these meas-
urements, we find that the length of each accelerometer
sampling is 17.2 ms in total and 322 uW of power is
consumed on average during this interval. This means that
for each accelerometer sampling, the system consumes
17.2 x 322 = 5.5 ] of energy.

7.2.2 HARKE

In this section, we investigate the power consumption in
sampling the voltage signal from the power source. The
signal can be either the voltage coming out from the energy
harvester (transducer) directly, or the voltage of the battery
powered by the energy harvesting transducer. To ensure sta-
ble power supply, in our measurement, the MCU is pro-
grammed to periodically sample the supply voltage coming
out from the lithium coin battery with 25 Hz sampling rate.
The MCU reads voltage signal through ADC. Fig. 14c shows
that similar to the accelerometer, the MCU goes back to
deep-sleep mode after each sampling event. However, the
sampling takes only 0.6 ms with an average power consump-
tion of 480 W, which means that only 0.6 x 480 = 0.3 pJ is
consumed for each sampling in the HARKE system (details
of the power consumption and time duration for all the states
in the voltage sampling event are stated in Table 10).

7.2.3 HARAC versus HARKE for Different

Sampling Rates
Now, let us compare the sampling-related power consump-
tion for HARAC and HARKE for different sampling rates.

For a duty-cycled system, the sampling power consump-
tion, P, can be obtained as

t txn : 1000
P— {ﬁ_o%Rsample + (1 - ﬁ)Psleep if 0 S n S B (11)

+¢ 1000
Psa,mple if 1 < n.

TABLE 9
States of Accelerometer Sampling, Which Takes 17.2 ms in
Total and Consumes 322 W on Average during this Interval

. Power
State ~ Duration Consumption Description
(ms) W)
S1 0.6 480 MCU wakes up to boot
accelerometer.
S2 7.2 72 MCU goes back to sleep when
accelerometer starts booting.
S3 0.6 480 MCU wakes up to initiate
accelerometer.
S4 3.2 72 MCU goes back to sleep when
accelerometer starts initializing.
S5 4 480 Accelerometer is turning on.
56 1.6 1440 MCU wakes up to sample
accelerometer signal.
S_sleep null 6 MCU in deep-sleep mode;

Accelerometer is turned-off.




1366

TABLE 10
States of Voltage Sampling, Which Takes 0.6 ms in Total and
Consumes 480 nW on Average during this Interval

State Duration Power Description
(ms)  Consumption
(W)
S1 0.6 480 MCU wakes up to sample
voltage signal.
S_sleep  null 6 MCU in deep-sleep mode.

where, P;q is the power consumption of the system during
each sampling event, Py, is the power consumption when
the MCU is in deep-sleep mode, n is the sampling frequency
in Hz, and t is the interval length of a sampling event in units
of ms. Fig. 15 compares the power consumption of HARKE
against HARAC for the range of sampling frequencies appli-
cable for human activity recognition. HARKE exhibits huge
power saving as the required sampling rate starts to increase.
Considering a very modest sampling rate of 10 Hz, which is
the lowest reported sampling rate for HAR, based on our
measurements, HARAC consumes 60.35 uW while HARKE
consumes only 8.84 uW in data sampling.

Now let us consider an example of a typical wearable
system that samples at a rate of 10 Hz, but accumulates sam-
pled data for every 10 seconds before transmitting them to
the data centre in a batch. The sampling power consump-
tion for each 10-sec cycle is therefore 603.5 ] and 88.4 ]
for HARAC and HARKE, respectively. In the next section,
we are going to evaluate the power consumption due to the
transmission of these sampled data.

7.3 Power Consumption for Data Transmission

To account for the power consumption due to transmissions,
we conduct power measurement of Bluetooth Low Energy
(BLE) using the embedded CC2650 wireless MCU in the Sen-
sorTag. This BLE has a data rate of 1 Mbps and it retransmits
every packet over three different channels for improved reli-
ability. We programmed the Contiki OS to wake-up the
CC2650 MCU periodically to transmit a BLE packet of maxi-
mum length (i.e., 28 bytes of payload plus 19 bytes of header).
The measurement results indicate that BLE transmission con-
sumes 2.72 mW on average, which applies to both HARKE
and HARAC. Note, however, that the transmission energy
consumption will eventually depend on the duration it takes
for the BLE to complete the transmission of all data sampled
during the last 10-sec. Given the use of the 3-axial accelerome-
ter, HARAC is expected to produce three times as much data
as compared to HARKE, which means the BLE transmissions
would be equally longer and the transmission-related energy
consumption would be equally higher.

With 3-axial accelerometer, HARAC generates 300 accel-
eration samples (at 10 Hz) in 10 seconds, which results in
600 bytes of data to be transmitted in total (i.e., 2 bytes for
each acceleration sample). According to our measurements,
it takes 106.11 ms for HARAC to transmit these 600 byte
over BLE, including the BLE packet overhead and the time
spent due to retransmissions on separate channels. HARAC
therefore consumes 2.72 mW x 106.11 ms = 288.62 uJ of
transmission energy for every 10-sec cycle of sampling and
data transmission.

HARKE, on the other hand, generates only 100 voltage
samples (at 10 Hz) within 10 seconds, which results in
200 bytes of data to be transmitted in total (2 bytes for each of
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Fig. 15. Power consumption as a function of sampling frequency.

the 12-bits ADC voltage reading). According to our measure-
ments, it takes 35.37 ms to transmit these bytes. This results
in the consumption of 2.72 mW x 35.37 ms = 96.21 uJ of
transmission energy for HARKE.

7.4 Overall System Power Consumption

The overall energy consumption of a wearable health tracker
mainly comes from two different parts: data sampling and
data transmission. For the example wearable system, the over-
all system energy consumption is therefore obtained as
603.5 + 288.62 = 892.12 uJ and 88.4 4 96.21 = 184.61 uJ for
HARAC and HARKE, respectively. This indicates that HARKE
can save approximately 79.31 percent of the overall system
energy consumption as compared to HARAC. Note that
although we used a 10-sec cycle as an example, this amount of
power saving is valid irrespective of the cycle length.

8 CONCLUSION AND FUTURE DIRECTIONS

In this paper we have proposed a novel method of human
activity recognition, called HARKE, directly from the
kinetic energy harvesting patterns without using any accel-
erometer. With detailed power measurements, we have
demonstrated that HARKE can potentially reduce system
power consumption by 79 percent compared to existing
accelerometer-based activity detection systems. Our study
has revealed that HARKE can detect daily activities with 80
to 95 percent accuracy depending on the activities and the
placement (location) of the wearable device on the human
body. These accuracies are within 4 percent of existing
accelerometer-based methods if the wearable device is
placed close to the chest and within 15 percent when the
device is attached to the hand or arm. Therefore, HARKE
can be readily used in chest-worn devices for applications
that can tolerate slightly lower accuracies.

The activities we have evaluated exhibit significant repeti-
tiveness. It is therefore expected that our results will be valid
for many other activities, such as gym activities, that are also
repetitive. However, there exist more sophisticated activities,
such as eating, drinking, cooking, etc., which are not as repeti-
tive as walking and running. Detecting such complex activi-
ties are much more challenging than the repetitive ones.

While the current work clearly demonstrates the useful-
ness of HARKE in detecting many basic activities of daily
living, a future direction will be to investigate the potential
of detecting more complex activities, possibly using wrist-
worn devices, similar to [3], [4]. To this end, we can explore
some of the recent discoveries in energy harvesting
research, such as multi-axial energy harvesters [64] that har-
vest energy from multiple dimensions and could potentially
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provide much richer information about human motion com-
pared to the existing harvesters. Similarly, future self-tun-
able energy harvesters [65] will provide opportunity to
always keep the resonance of the harvester tuned to the cur-
rent human activity, offering better signals for activity
detection. Finally, we plan to explore how to leverage the
recent advancements in machine learning algorithms, such
as Deep Learning constructs [3], to detect complex activities
from crude energy harvesting signals with higher accuracy.
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