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Abstract—With the rapid development of sensor networks and embedded computing technologies, miniaturized wearable healthcare

monitoring devices have become practically feasible. For many of these devices, accelerometer-based user authentication systems

by gait analysis are becoming a hot research topic. However, a major bottleneck of such system is it requires continuous sampling of

accelerometer, which reduces battery life of wearable sensors. In this paper, we present KEH-Gait, which advocates use of output

voltage signal from kinetic energy harvester (KEH) as the source for gait recognition. KEH-Gait is motivated by the prospect of

significant power saving by not having to sample the accelerometer at all. Indeed, our measurements show that, compared to

conventional accelerometer-based gait detection, KEH-Gait can reduce energy consumption by 82.15 percent. The feasibility of

KEH-Gait is based on the fact that human gait has distinctive movement patterns for different individuals, which is expected to leave

distinctive patterns for KEH as well. We evaluate the performance of KEH-Gait using two different types of KEH hardware on a data set

of 20 subjects. Our experiments demonstrate that, although KEH-Gait yields slightly lower accuracy than accelerometer-based gait

detection when single step is used, the accuracy problem can be overcome by the proposed Probability-based Multi-Step Sparse

Representation Classification (PMSSRC). Moreover, the security analysis shows that the EER of KEH-Gait against an active spoofing

attacker is 11.2 and 14.1 percent using two different types of KEH hardware, respectively.

Index Terms—Authentication, gait recognition, energy harvesting, wearable devices, sparse representation

Ç

1 INTRODUCTION

WEARABLE health-monitoring systems have received a
great deal of attention from both the industry and the

research community in the last decade. It is predicted that
by 2025, the market for personal wearable devices will reach
70 billion dollar. The major deployments of those devices
are expected to be in health monitoring and medical assis-
tance domains [1], [2], [3]. Some popular wearable devices,
such as Fitbit and Apple Watch, are already monitoring
and storing a mass of sensitive health data about the user.
The private information of users can be further explored to
provide a variety of emerging applications in the healthcare
area. For example, the collected sensory data can be
explored for the understanding of user’s physical and men-
tal health states [4], [5].

However, suchwearable systems are vulnerable to imper-
sonation attacks in which an adversary can easily distribute
his device to other users so that data collected from these
users can be claimed to be his own. In this way, the attacker
can claim potential healthcare profits that are allocated to
people with certain illnesses even though he may not have
any illnesses [6]. For instance, a policy holder may obtain a
fraudulent insurance discount from a healthcare insurance
company by using other people’s health data. Another exam-
ple is that in a mobile healthcare system for disease propaga-
tion control [7], an attacker can obtain additional vaccine
allocation by launching user impersonation attacks and thus
compromise the regular operations of such systems.

To mitigate the risk of malicious attacks, most wearable
devices rely on explicit manual entry of a secret PIN num-
ber. However, due to the small screens of wearable devices
and frequent unlocking requests, it is inconvenient for users
to enter the keys manually. Furthermore, this method is not
applicable when an adversary colludes with other users to
spoof the healthcare company.

Gait recognition using wearable sensors, such as acceler-
ometers, has emerged as one of the most promising solu-
tions for user authentication. Extensive previous studies
have already demonstrated its feasibility in user authentica-
tion [8], [9], [10], but they have also shown that continuous
accelerometer sampling drains the battery quickly. High
power consumption of accelerometer sampling, which is
typically in the order of a few milliwatts, also makes it chal-
lenging to adopt gait-based user authentication in resource-
constrained wearables. Although power consumption may
be not a big issue for wearables with large batteries such
as smartphone, other wearables like Implantable Medical
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Devices (IMDs) suffer from short battery life because IMDs
are long-lived devices and battery replacement requires sur-
gical intervention [11].

A vision for wearable devices is to be battery-free (self-
powered). A current trend in battery-free devices is to
investigate kinetic energy harvesting (KEH) solutions to
power the wearable devices [12], [13], [14], [15]. However,
one fundamental problem in KEH is that the amount of
power that can be practically harvested from human
motions is insufficient to meet the power requirement of
accelerometer for accurate activity recognition [16]. As
reported in [12], the amount of power that can be harvested
from human motion is only in the order of tens to hundreds
of microwatts. They also report that assuming 100 percent
conversion efficiency, the power can be harvested from
walking is only 155 mW . This 2-3 orders of magnitude gap
between power consumption and power harvesting is the
biggest obstacle for realising gait-based authentication in
batteryless wearables. Although the power consumption of
sensors has been largely reduced in the last years thanks to
the Ultra-Low-Power electronics [17], we believe in the near
future energy harvesting will be used to augment or substi-
tute batteries. For example, AMPY [18] has released the
world’s first wearable motion-charger which can transform
the kinetic energy from user’s motion into battery power.
SOLEPOWER [19] produces smart boots that use user’s
steps to power embedded lights, sensors and GPS.

Motivated by this prospect, we propose gait recognition
by simply observing the output voltages of KEH. The feasi-
bility of the proposed idea is based on the observation that
if humans have unique walking patterns, then the corre-
sponding patterns of harvested power from KEH should be
unique too. The proposed system offers several advantages.
The major advantage of KEH-based gait recognition is the
potential for significant power savings arising from not sam-
pling accelerometer at all. On the other hand, the output volt-
age can be used to charge the battery, thus further extending
battery life. Finally, as energy harvester will be integrated in
wearable devices in the near future, the output voltage can
be naturally utilized for authentication purpose without
introducing extra sensors. Thismakes it a promising solution
for light-weight authentication for wearable devices. The
main challenge of implementing such a system is achieving
high recognition accuracy by using a 1-axis voltage signal
rather than 3-axis accelerometer signals. We address this
issue by proposing a novel probability based sparse fusion
method which exploits the information from multiple steps.
Themain contributions of this paper are as follows:

� We propose a novel gait-based user authentication
system for mobile healthcare system, called KEH-
Gait, which uses only KEH voltage as the source sig-
nal to achieve user authentication.

� We build two different KEH prototypes, one based on
piezoelectric energy harvester (PEH) and the other on
electromagnetic energy harvester (EEH). Using these
KEH devices, we evaluate gait recognition accuracy of
KEH-Gait over 20 subjects. Our results show that,
with conventional classification techniques, which
operate over single step, KEH-Gait achieves approxi-
mately 6 percent lower accuracy compared to acceler-
ometer-based gait recognition.

� We demonstrate that authentication accuracy of KEH-
Gait can be increased to that of accelerometer-based
gait detection by employing a novel classification

method, called Probability-based Multi-Step Sparse
Representation Classification (PMSSRC), which effi-
ciently fuses information frommultiple steps.

� Finally, using measurements, we demonstrate that
currently available microprocessors can read KEH
voltage within 33 ms, which is two orders of magni-
tude faster than what it takes to wakeup, interrogate
and read acceleration values from typical 3-axis accel-
erometers. This means that with microprocessor duty
cycling, KEH-Gait promises major energy savings
over conventional accelerometer-based gait detection.

This paper is an extension of our previous work [20].
Compared to the previous conference paper, there are three
aspects of improvement. First, we apply SVD-based noise
reduction method to reduce the impact of noise in signal
processing phase (Section 3.2.1). Then, we employ dictio-
nary learning technique (Section 3.3.2) and column reduc-
tion approach (Section 3.3.3) to build more advanced
training model. Finally, we propose a novel probability-
based classification approach in classification phase to fur-
ther improve classification accuracy (Section 3.4). Building
on the strengths of these approaches, we find that the accu-
racy is improved by 3-5 percent and the energy saving is
improved from 78.15 to 82.15 percent.

The rest of the paper is structured as follows. Section 2
introduces trust models and attacker models of gait-based
authentication system. Section 3 presents the system archi-
tecture of KEH-Gait. Prototyping of KEH wearables and
gait data collection are described in Section 4. We present
evaluation results in Section 5, and analyze power con-
sumption in Section 6. We introduce related work in
Section 8 before concluding the paper in Section 9.

2 TRUST AND ATTACK MODELS

We envision the use of KEH-Gait primarily in resource-
constrained healthcare monitoring wearable devices to
authenticate the identity of the user to prevent spoof attack.
KEH-Gait addresses the issue of short battery life by using
an energy harvester to replace an accelerometer. In the near
future, energy harvesters can even be integrated in the hard-
ware system to achieve battery-free wearable devices. Fig. 1
illustrates the workflow of a typical healthcare monitoring
system. In such a system, each user is given a unique user
ID and a monitoring application which runs on a wearable
device that can collect private sensor data and transmit
them to the data centre of a healthcare company. Before
transmission, the device first collects gait data and transmits
them to the sever. The server will then perform authentica-
tion to verify the user’s identity by using the gait data. If the
user passes authentication, the further private data like
blood pressure or heart rate are then transmitted to the
server. While if the user verification fails, i.e., the user spoof-
ing attack is detected, the sensor data collected from this
user’s device will not be reported to the server. In the server,

Fig. 1. Overview of a typical healthcare monitoring system.
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sensor data will be analysed and processed by the health-
care company to derive user’s physical and mental condi-
tions. For instance, the measurements of heartbeats and
blood pressure can be used to predict user’s psychological
conditions. A wide range of applications can also be enabled
by such mobile healthcare systems and some examples are:

� User’s physical behaviors are often reflection of
physical and mental health and can be used by
healthcare companies to facilitate early prediction of
future health problems like depression [4].

� Health food companies can make advertisement
by cooperating with healthcare related applications
such as “IDOMOVE”1, e.g., providing discount cou-
pons for users who walk more than 1hr a day.

2.1 Trust Model
In this paper, we assume the data collected by sensors built
in the wearable devices are trustworthy. Also, our system
trusts the communication channel between the wearable
device and the healthcare company’s server. We discuss the
feasibility of our assumption as follows.

Tamper-Resistant Sensor.An attack can physically accesses
to the sensor or chipset and manipulate the recorded data.
To make sure the device has not been modified, a healthcare
company can apply tamper-resistant techniques [21]. As
mentioned in [22], ARM TrustZone extension can also be
used to ensure the integrity of the sensors [23].

Trusted Transmission. A man-in-the-middle(MITM) attack
may occur when the device is communicating with the server.
Therefore, the device and server should establish a secure
communication channel. To address this attack, the healthcare
company can install a digital certificate in the wearable device
and the device will perform Secure Sockets Layer (SSL)
authenticationwhen communicatingwith the server.

Security Against Malicious Operator. Although gait data are
collected in KEH-Gait, they are not stored and transmitted in
cleartext. As will be discussed in Section 3, we apply a projec-
tion matrix (compressed matrix) Ropt on original signal to
obtain the compressed samples. Without the knowledge of
Ropt, a malicious operator cannot recover the original gait sig-
nal according to compressive sensing theory [24]. Apart from
our method, an alternative approach is presented in a similar
work which uses fuzzy commitment scheme to maintain the
security of gait template [25]. Another potential problem is
one usermay own several wearable devices while he/she has
a unique gait only. This problem can be addressed by using
different projectionmatrices for different devices.

2.2 Attack Model
The aforementionedmobile healthcare system is vulnerable to
user spoofing attacks. For instance, an adversary can distribute
his device to another person, and upload the data of that per-
son aiming to obtain healthcare benefits. Besides, multiple
users may collude to launch user spoofing attacks to fool the
mobile healthcare system. Therefore, the adversarymodel con-
sidered in this paper focuses on impersonation attacks. We
assume the presence of two types of impersonation attacks:

� A passive adversary. The passive adversary tries to
spoof the healthcare system by using his own walk-
ing patterns.

� An active adversary. The active spoofing attacker
knows the authentication scheme and will try his
best to imitate the walking pattern of the genuine
user to spoof the healthcare system.

The main goal of our system is to detect spoofing attacks.
In fact, there are many other possible attacks to such health-
care system. We discuss these possible attacks and corre-
sponding solutions.

� Replay attack. an adversary first records a measure-
ment trace from another person. Then he replays the
data trace to the monitoring device to fool the health-
care monitoring system. This attack can be easily
detected as discussed in [22].

� MITM attack. Although a MITM attack during com-
munication between the device and server can be
easily prevented, there is another type of MITM in
which an adversary may build a MITM monitor
which bridges the user’s skin and a wearable device.
For example, once it detects a response message indi-
cating healthy problems such as high blood pressure,
it will manipulate the data and transmit the forged
data to the server. This type of attack can be addre-
ssed by the scheme in [22].

� Video analysis. Further potential threats include
deriving the walking patterns by studying a video of
the target’s gait through computer vision techniques.
We believe this is a potential vulnerability of unkn-
own severity and leave it as future work.

3 SYSTEM ARCHITECTURE OF KEH-GAIT

3.1 System Overview
In this section, we first show the output voltage signal from
KEH contains distinctive walking patterns of different
users. Then we describe the proposed system in details.

Fig. 2 compares the output voltage signal from acceler-
ometer, PEH and EEH generated by two subjects when they
are walking. These figures provide a clear visual confirma-
tion that the voltage signal from the energy harvester con-
tains personalized patterns generated by the subjects. This
observation is promising as our goal is to recognize differ-
ent subjects based on the output voltage signal of the KEH
when they are walking.

Now we are ready to describe the proposed system in
details. As shown in Fig. 3, the whole procedure of KEH-
Gait consists of three parts: signal pre-processing, offline
dictionary training, and classification.

When the user is walking, we collect voltage signal from
KEH and apply a SVD-based noise removal method to
reduce noise. Then gait cycles are segmented from time
series voltage signal and interpolated into the same length.
The same optimized projection matrix (as used for training)
is used to reduce the dimension of the test signal and pro-
vide the measurement vector ~yi ¼ Ropt yi, i ¼ 1; 2; . . . ; k; and
k is the number of obtained gait cycles.

During the offline dictionary training phase, we again
apply noise reduction, gait cycle segmentation and interpo-
lation to obtain the gait cycles from the test signal. All
detected cycles are passed to unusual cycles deletion to
remove outliers of gait cycles. The obtained gait cycles are
used to form the training dictionary A0 by dictionary learn-
ing technique. After dictionary learning, we further apply a
column reduction approach [26] to obtain a optimized dic-
tionary A and a projection optimization algorithm [27] to1. IDOMOVE: https://www.idomove.com/
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obtain a optimized projection matrix Ropt. Then the reduced
training dictionary ~A ¼ Ropt A is used in the classifier as
described in Section 3.4.

Now both the training dictionary ~A and the measure-
ments ~yi are passed to the classifier. The ‘1 classifier first
finds the sparse coefficient vector xi. Then the vectors of dif-
ferent gait cycles are fused based on a novel probability-
based sparse fusion model to calculate the probability of
which class the test signal belongs to. Finally, the identity is
obtained by finding the maximum probability P . The
authentication can be achieved by comparing P with a pre-
defined threshold.

In the following sections, we provide more detailed desc-
riptions of signal pre-processing, offline dictionary training,
and classification in turn.

3.2 Signal Pre-Processing

3.2.1 SVD-Based Noise Reduction

In practical measurement, the collected voltage signal con-
tains much noise. In the proposed system, we present a
method to remove noise based on the decomposition of
the data space into orthogonal subspaces through sing-
ular value decomposition (SVD). Because of the energy-
preserving orthogonal transformation in the SVD, these
subspaces correspond to the signal and noise components
contained in the data. The noise reduction is obtained by
suppressing the noise-related subspace and retaining the
clean-signal space only.

Assume the voltage signal is S ¼ s1; s2; . . . ; sL½ �, to achi-
eve noise reduction, the Hankel-form matrix of the original
noisy signal is defined as [28]:

Hnoisy ¼
s1 s2 � � � sJ
s2 s3 � � � sJþ1

..

. ..
. ..

. ..
.

sI sIþ2 � � � sIþJ�1

2
6664

3
7775
I�J

: (1)

The dimension of Hnoisy is I � J , where I þ J ¼ Lþ 1 and
I � J . The original Hankel-form matrix can be decomposed
into two subspaces, i.e., the noise related subspace and clean
signal subspace. By assuming an additive noise component
in the noisy signal, we can obtain:

Hnoisy ¼ Hsignal þHnoise; (2)

where Hsignal is the original Hankel matrix without noise,
andHnoise is the additive noise component.

The method starts with a singular value decomposition
of the matrixHnoisy:

Hnoisy ¼ U
X

V T ¼
Xr
i¼1

diuiv
T
i ; (3)

where U ¼ u1; u2; . . . ; uI½ � and V ¼ v1; v2; . . . ; vJ½ � are orthog-
onal matrices, i.e.,

UUT ¼ II and VV T ¼ IJ; (4)

Fig. 2. A comparison of the output signal from accelerometer, PEH and EEH: first row is the signal from subject 1 and the second row is the signal
from subject 2.

Fig. 3. System flowchart of KEH-Gait.

142 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 1, JANUARY 2019



P
is a diagonal matrix of singular values which has the fol-

lowing form:

X
¼

d1 0 � � � 0
0 d2 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � dr
0 0 � � � 0
..
. ..

. ..
. ..

.

0 0 � � � 0

2
6666666664

3
7777777775
I�J

: (5)

The singular values di, i.e., the nonzero diagonal elements ofP
, are arranged in a descending order.

d1 � d2 � � � � dr � 0: (6)

Theoretically, the largest singular value contributes almost
only clean signal information, whereas the smallest singular
value contributes almost only noise information. To obtain
the clean signal, we should keep the largest P singular val-
ues and discard the remaining singular values which are
viewed as the noise components. To explain this, we plot
the singular values of a series of voltage signal in Fig. 4a.
We can see that the first 3 components contributes to
93 percent of the original signal, and the rest components
are viewed as noise and should be discarded. Therefore, we
adjust the singular values as follows:

�X ¼

d1 0 � � � 0 0 � � �
0 d2 � � � 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

.

0 0 � � � dP 0 � � �
0 0 � � � 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

.

0 0 � � � 0 0 0

2
6666666664

3
7777777775
I�J

: (7)

After this step, the signal after noise reduction can be
obtained by:

Hsignal ¼ U
�X
V T : (8)

Fig. 4b shows the raw voltage signal and the denoised signal.

3.2.2 Gait Cycle Segmentation

In order to recognize a gait signal, it is essential that we sepa-
rate the time series of walking periods into segments, such
that each segment contains a complete gait cycle. The gait
cycle can be obtained by combining two successive step
cycles together as technically the gait cycle is across a stride
(two steps). As mentioned in [29], typical step frequencies
are around 1-2 Hz, we apply a band-pass Butterworth fil-
ter [30] on the sampled data to eliminate out-band

interference. The lower and upper cutoff frequency is set as 1
Hz and 2 Hz separately (filter order is 4). After filtering, the
step cycles are separated by finding peaks associated with
the heel strike as shown in Fig. 5a. Thereafter, the gait cycle is
obtained by combining two consecutive step cycles together.

After gait cycle extraction, the output voltage data are
segmented into short gait cycles based on the peak detec-
tion. Fig. 5b presents the distribution of cycle duration (i.e.,
time length of stride) for 20 healthy subjects walking at their
normal speed. We can see that most of the gait cycle ranges
between 0.8-1.3s (80-130 samples at 100 Hz sampling rate).
This results in turn can be used to omit unusual gait cycles
and exclude the cycles not produced by walking, i.e., the
cycles which last less than 0.8s and exceed 1.3s are dropped.

3.2.3 Linear Interpolation

Detected cycles are normalized to equal length by linear
interpolation because the classifier requires vectors of equal
length as input vector. As mentioned above, normal gait
duration lies between 80 and 130 samples, we apply linear
interpolation on the samples to ensure that they achieve the
same length of 130 samples.

3.3 Offline Training
The training data are also passed to gait cycle segmentation
and linear interpolation to obtain gait cycles with same
length. In addition, we delete unusual cycles and optimize
projection matrix to further improve recognition accuracy.

3.3.1 Deletion of Unusual Cycles

Unusual cycles caused by occasional abnormalities like tem-
porary walking pauses or turning contains much noise that
will deteriorate the recognition accuracy. Apart from deleting
unusual cycles using cycle durations, the detected cycles
are also passed to a function which further deletes unusual
cycles [31]. This function uses Dynamic Time Warping
(DTW) distance scores to remove outliers from a set of cycles.
Specifically, we first compute the DTW distance between the
detected cycle and typical cycle. Thereafter, we delete
unusual cycles by a simple threshold method, i.e., if the DTW
distance of detected cycle and typical cycle is higher than a
predefined value (12 in the proposed system), the detected
cycle will be dropped. The typical cycle is the one which is
assumed to represent the subject’s gait signal. This is obtained
by computing the the average of all cycles in the training data.

3.3.2 Dictionary Construction

After unusual cycles removal, the remaining gait cycles
obtained from training data are used to construct the train-
ing dictionary. Recent research shows that learning a dictio-
nary by fitting a set of overcomplete basis vectors to a

Fig. 4. (a) Weights of singular values. (b) After noise reduction. Fig. 5. (a) Step detection. (b) Distribution of cycle duration.
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collection of training samples can generate more compact
and informative representation from given data and achieve
better recognition accuracy [32]. We construct the training
dictionary by dictionary learning technique. In particular,
we first learn one single dictionary for each subject, which is
formed by a set of basis vectors learned by solving a sparse
optimization problem. Then we construct the full dictionary
by concatenating single dictionaries together.

Note that because training examples and test samples are
vectors, we will also refer to them as training vectors and
test vectors. Suppose we have K classes indexed by
i ¼ 1; . . . ; K and each class i contains N training examples
which are denoted as Si ¼ fs1; s2; s3; . . . ; sNg. Each training
example is assumed to be a column vector with q elements
(i.e., feature dimension). For class k, we aim to find an over-
complete dictionary matrix Ak 2 Rq�N over which a test
vector has a sparse representation Xk ¼ fx1; x2; . . . ; xNi

g.
After that, the raw training examples Si can be linearly
expressed by nk vectors in Ak where nk � N . The optimiza-
tion problem of training a dictionary can be formulated as:

argmin
Ak;Xk

kSk �AkXkk22 subject to kxik0 	 nk: (9)

There are several dictionary learning algorithms that can be
used to train a dictionary such as MOD [33], K-SVD [32]
and NMF [34]. In this study, we choose K-SVD because it is
efficient, flexible and works in conjunction with any pursuit
algorithms. The dictionary learning algorithm is detailed in
Algorithm 1. After constructing a dictionary for each sub-
ject, we concatenate single dictionaries together to form the
initial training dictionary A0 ¼ ½A1; A2; . . . ; AK �.

Algorithm 1. Subject-Specific Dictionary Learning

1: Input: Training samples S ¼ fs1; s2; s3; . . . ; sNg, initial dic-
tionary A0 2 Rq�N , target sparsity t.

2: Output: Dictionary A and sparse coefficients matrix X.
3: Initialization: set dictionary A ¼ A0.
4: while != stopping criteria do
5: xi ¼ argminxksi � xk22 s.t. 8i kAxk0 	 t

6: for j ¼ 1; . . . ; N do
7: J ¼ f indices of the columns of X orthogonal to wj (jth

column ofDÞg
8: wj ¼ argminwkwTAJk22 s.t. kwk2 ¼ 1
9: Aðjth rowÞ ¼ wT

j ;
10: end for
11: end while

3.3.3 Column Reduction and Projection Optimization

According to the formation of ‘1�Homotopy, the computa-
tional complexity is Oðt3 þ tqðN �KÞÞ, where t is the spar-
sity of the solution (t � N �K), q is the number of
equations, and N �K is the number of unknowns, i.e., the
number of columns in the training dictionary. We can see
that the computation of ‘1 optimization is also proportional
to the number of columns ðN �KÞ in the dictionary A0. The
gait cycles in the same class are highly correlated and lead
to intra class redundancy. To reduce the intra class redun-
dancy in the dictionary while retaining the most informative
columns, we apply the columns reduction approach [26] to
improve the efficiency and obtain an optimised dictionary
A. Furthermore, motivated by a recent work [27], we apply
the projection matrix optimization method proposed in [27]

to reduce the dimensionality of SRC while retaining the
high classification accuracy.

3.4 PMSSRC
SRC proposed in [35] aims to solve the classification prob-
lem of one test vector, however, the evaluation results in
Section 5.3 show that the recognition accuracy of using
one gait cycle can achieve 86 percent (PEH dataset) and
75 percent (EEH dataset) only. To overcome this limitation,
we propose a novel probabilistic fusion model which fuses
the information from multiple consecutive gait cycles to
further improve recognition accuracy.

Suppose we have acquired a set of M gait cycles
Y ¼ fy1; y2; . . . ; yMg from the test signal. Following the sin-
gle test vector approach described in [35], we can obtain a set
of estimated coefficients vectors X̂ ¼ fx̂1; x̂2; . . . ; x̂Mg by
solving the ‘1 optimization problem for each gait cycle. Then
we calculate the residual for each gait cycle as [35] and obtain
< ¼ fr1; r2; . . . ; rMg. The probability of themth test gait cycle
belonging to the ith class is defined pðf ¼ ijymÞ where f is
used to denote the identity of ym. Taking the elements of Y as
independent observations, the probability of allM gait cycles
belonging to ith class can be denoted by pðf ¼ ijY Þ.

As discussed in [35], the magnitude of ri represents the
similarity between the test sample and ith subject. With this
knowledge, we use the ‘1-norm of the residual ri to define
the posterior probability ofm ¼ i given ym as follows:

pðf ¼ ijymÞ ¼ expð��krik1ÞPM
j¼1 expð��krjk1Þ

2 ½0; 1�; (10)

where � is a constant parameter (0.3 in the proposed system).
For the ith subject, we define ui as

ui ¼
X
y2Y

lnpðf ¼ ijyÞ: (11)

Since we have no prior knowledge of y, it should normally
follow a uniform distribution over 1; 2; . . . ;M, say
pðf ¼ iÞ ¼ 1=M. We can obtain the probability of all M gait
cycles belonging to ith class pðf ¼ ijY Þ as follows:

pðf ¼ ijY Þ ¼ expðfiÞPM
j¼1 expðfjÞ

2 ½0; 1�: (12)

With the knowledge of pðf ¼ ijY Þ, the final classification
result is obtainedbyfinding themaximumposterior probability:

Identity ¼ max
i

pðf ¼ ijY Þ: (13)

To identify whether the walker is the genuine user or
imposter, we can make decision based on a threshold as:

p
� Pth genuine user
< Pth imposter:

�

where Pth is a threshold we set empirically. An appropriate
threshold can be chosen by data-driven approach to make
the recognition system robust to imposters.

4 HARDWARE PLATFORM AND DATA COLLECTION

4.1 Proof-of-Concept Prototype
To this end, we built two data loggers to collect KEH volt-
age signals. One is based on piezoelectric energy harvester
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(PEH) and the other is based on electromagnetic energy har-
vester (EEH). We encourage the reader to refer to [20] for
background of PEH and EEH. The PEH data logger includes
a vibration energy harvesting product from the MIDE Tech-
nology, which implements the transducer to provide AC
voltage as its output. An Arduino Uno has been used as a
microcontroller device for sampling the data from the Vol-
ture. The EEH data logger contains a harvesting circuit,
through which energy is generated by moving a magnet
through an inductor. A Tmote Sky board has been used as a
microcontroller device for sampling the data from the
inductor. In each prototype, we design a small amplification
circuit to increase the range of output voltage (the original
voltage range is 0.06-0.12V). Our hardware also includes a
3-axis accelerometer to record the acceleration signals,
simultaneously with the voltage signal. For both KEH and
accelerometer, a sampling rate of 100Hz has been used for
data collection. The hardware platforms are shown in Fig. 6.

4.2 Data Collection
The dataset used to evaluate the performance of the pro-
posed system consists of 20 healthy subjects (14 males and 6
females).2 During the data collection phase, the participants
were asked to hold the data logger in their preferred hand
andwalk at their normal speed (0.7-1.1m/s). The data collec-
tion is performed in several environments (indoor and out-
door) in order to capture the influence of different terrains.
An illustration of indoor environment and outdoor environ-
ment is shown in Figs. 7a and 7b. The terrain of the chosen
outdoor environment varies including plain, grass and
asphalt. Each volunteer participated in two data collection
sessions that was separated by one week. During each
session, the participants were asked to hold the device
(see Figs. 7c and 7d) and walked along the specific route
shown in Figs. 7a and 7b for approximately 5minutes. Based
on the above description, the gait dataset is close to a realistic
environment as it includes the natural gait changes over time
and different environments (indoor and outdoor). In total,
we collect over 600 seconds of samples for each subject from
the EH devices as well as the accelerometer. We collect two
voltage datasets by using the PEH and EEH devices, respec-
tively, and perform gait cycle segmentation and unusual gait
cycle deletion on both of the datasets, and finally we extract
200 gait cycles from each subject for evaluation.

5 EVALUATION

5.1 Goals, Metrics and Methodology
In this section, we evaluate the performance of the proposed
system based on the collected dataset. The goals of the

evaluation are threefold: 1) investigate the relation between
recognition accuracy and sampling rate of accelerometer
data; 2) compare the recognition accuracy of KEH-Gait with
that of using accelerometer data; 3) compare the proposed
classification method in KEH-Gait with several state-of-the-
art classification algorithms.

The recognition accuracy of KEH-Gait is obtained by
using output voltage in one gait cycle as a test vector. For
fair comparison, we perform the same signal processing
and classification method on acceleration data. The only dif-
ference is the test vector is obtained by concatenating accel-
eration data along three axes in one gait cycle together. In
the evaluation, we compare MSSRC with Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and Naive
Bayes (NB). The parameters in SVM, KNN and NB are well
tuned to give highest accuracy. Specifically, we first sepa-
rate the whole dataset into two parts: the training set which
is used for parameter tuning, and validation set which is
used for performance evaluation. We apply grid search to
optimize hyperparameters via running internal 10-fold
cross-validation on training set. For example, the range of
penalty parameter C for Linear kernel SVM classifier is
1; 10; 100; 1000f g. Then we perform 10-fold cross-validation
on the validation set to obtain the evaluation results using
optimized parameters. For KNN classifier the number of
nearest neighbors is 10. For SVM classifier, the best perfor-
mance is obtained using linear kernel function (C ¼ 10).
The best performance of NB classifier is obtained using nor-
mal Gaussian distribution. In the evaluation, we let k denote
the number of gait cycles fused to perform classification and
r denote the compression rate. The compression rate means
the number of projections/features over the dimension of
original testing vector. We plot the results of the average
values and 95 percent confidence level of the recognition
accuracy obtained from 10 folds cross-validation.

5.2 Recognition Accuracy versus Sampling Rate
In the first experiment, we evaluate the impact of sampling
rate on the gait recognition accuracy of acceleration data. The
goal is to investigate the relation between recognition accu-
racy and the consumed power of accelerometer, as the power
consumption is directly related to the sampling rate. We use
PMSSRC as the classifier and calculate the recognition accu-
racy at different sampling rates by subsampling the accelera-
tion data from 100 Hz to 1 Hz. As shown in Fig. 3, the
recognition accuracy increases with growing sampling rate.

Fig. 6. (a) PEH data logger and (b) EEH data logger.

Fig. 7. The illustration of data collection.

2. Ethical approval for carrying out this experiment has been
granted by the corresponding organization (Approval Number
HC15304 and HC15888).
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This is intuitive as the more measurements are sampled, the
more information is available, and thus, enabling more accu-
rate classification. However, the improvement diminishes
after the sampling rate is greater than 40 Hz. The results indi-
cate that to achieve high recognition accuracy, a sampling rate
of at least 40 Hz is required. In the rest of the evaluation, we
limit our discussion on sampling at 40Hz.

As we will discuss in Section 6.2.1, the power consump-
tion of accelerometer-based system will increase signifi-
cantly with the rising sampling frequency. Based on our
measurement results, the accelerometer-based system con-
sumes approximately 300 mW with 40 Hz to achieve accu-
rate recognition. However, this consumption requirement is
far beyond the actual power generated by the energy har-
vester (neither PEH, nor EEH). According to a recent theo-
retical study of energy harvesting from human activity [12],
assuming 100 percent conversion efficiency, the power can
be harvested from walking is only 155 mW . Unfortunately,
in practical, according to our measurement results, the aver-
age power produced from walking is 19.17 mW using EEH,
and approximately 1 mW using PEH which is not tuned
specifically for human activity energy harvesting. In this
case, due to the limited amount of power that is available to
power the system, its sampling frequency will decrease
below 40Hz. According to our measurements, the acceler-
ometer can at most sample at 25Hz with 155 mW and 2 Hz
with 19.17 mW . As a result, the recognition accuracy will
dramatically decrease accordingly. The results highlight the
necessity of using kinetic voltage signal to achieve gait rec-
ognition directly, instead of using the accelerometer signal.

5.3 KEH-Gait versus Accelerometer-Based System
In this section, we investigate whether KEH-Gait can
achieve comparable accuracy compared to accelerometer
signal. In case of using accelerometer signal, we calculate
the recognition accuracy at two different sampling rates: 1)
raw sampling rate (100 Hz) of the data logger; and 2) the
highest achievable sampling rate of the accelerometer if it is
powered by the energy harvester. From our dataset, the
EEH can generate 19.17 mW on average from walking.
Thus, according to the handbook of MPU9250 which is used
in our prototypes, it can sample at most 8 Hz if it is powered
by the energy harvester.

In this experiment, we set k ¼ 1 and calculate the recog-
nition accuracy by varying compression rate r from 15 to
100 percent, and the results are plotted in Fig. 8b. We can
see that the recognition accuracy of using voltage signal is
significantly higher than that of using accelerometer at sam-
pling rate of 8 Hz. This suggests that the harvested power
cannot support the accelerometer to sample at a high fre-
quency which leads to low recognition accuracy; instead,
using the voltage signal itself is able to achieve higher recog-
nition accuracy. However, the recognition accuracy of using

voltage signal is still approximately 6 percent (PEH) and
17 percent (EEH) below than that of using raw accelerome-
ter signal when r ¼ 100 percent.

We now demonstrate that the recognition accuracy of
using harvested power signal can be improved significantly
by the proposed PMSSRC, and it reaches a comparable rec-
ognition accuracy compared to using the raw accelerometer
signal. In this experiment, we set r ¼ 75 percent as the accu-
racy improvement diminishes when the number of projec-
tions/features increased to 200 as shown in Fig. 8b. Then
we calculate the recognition accuracy of KEH-Gait using
accelerometer signal and voltage signal, while increasing k
from 1 to 8. From the results in Fig. 8c, we notice that the
recognition accuracy is improved significantly when more
gait cycles are fused together. The result is intuitive as more
information can be obtained to identify the subject by using
more gait cycles. We also find that by using voltage signal
of PEH, we can achieve a comparable accuracy compared to
using raw accelerometer signal when k � 5, and the recog-
nition accuracy of EEH is slightly lower (2 percent) than
using raw accelerometer signal. In the real application, k
can be tuned by the healthcare company to satisfy their own
needs. For example, a larger k makes the system more
secure to the imposters while it sacrifices user experience
because it will take more time to collect required steps.

5.4 Comparison with Other Classification Methods
We now evaluate whether PMSSRC outperforms other
state-of-the-art classification algorithms. Specifically, we
compare MSSRC with SVM, KNN, and NB. We perform
comparison on two datasets separately.

Performance on PEH Dataset. We follow the same experi-
mental procedure in Section 5.3 to evaluate the recognition
accuracy of different methods under different d (number of
projections/features). From Fig. 9a, we find that KEH-Gait
improves recognition accuracy by up to 11.7 percent com-
pared to the second best classification method (i.e., NB). We
further evaluate the recognition accuracy of SVM, KNN and
NB by combining several gait cycles together. As KEH-Gait
utilizes multiple gait cycles to find the final classification
result, we apply the majority voting scheme to achieve a fair
comparison. Specifically, we first obtain the identity of each
gait cycle by using SVM, KNN and NB, then we apply
majority voting scheme to combine the results together, the
subject with the highest voting is declared to be the recog-
nized person. Again, we set r ¼ 75 percent and calculate
the recognition accuracy of different methods by varying k
from 1 to 5 (number of gait cycles). From the results in
Fig. 9b, we find that KEH-Gait consistently achieves the
best performance and is up to 15 percent more accurate
than the second best approach (i.e., NB). The improvement
of PMSSRC over other methods is because it exploits the
sparsity information from multiple gait cycles.

Fig. 8. (a) Recognition accuracy vs. sampling rate. (b) Recognition accuracy under different compression rate when k=1. (c) Recognition accuracy
under different number of gait cycles when r ¼ 75 percent.
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Performance on EEH Dataset. We perform the same steps
as above on EEH dataset and plot the results in Figs. 9c and
9d. The results show that KEH-Gait is 15.8 percent better
than NB when r ¼ 75 percent, k ¼ 1, and 7.7 percent better
than NB when r ¼ 75 percent, k ¼ 5. We also find that the
overall performance on EEH dataset is lower than that on
PEH dataset. We believe the drop on recognition accuracy
is caused by the fact that the magnet is not sensitive to slight
vibrations and motions.

The results in this section suggest that the proposed
PMSSRC in KEH-Gait can improve recognition accuracy sig-
nificantly by fusing several steps together and outperformS
several state-of-the-art classification algorithms. Another
straightforward method to apply SRC on multiple steps is
to first apply SRC on each step and then obtain the final
results bymajority voting scheme.We found that PMSSRC is
approximately 5–9 percent more accurate than direct major-
ity voting on our dataset since it exploits the sparsity infor-
mation of multiple measurements. Due to limited space, we
do not plot the results of direct major voting in this paper.

5.5 Robustness to Gait Variations
To evaluate the robustness of KEH-Gait to gait variations,
we conduct the following two experiments: different day
evaluation and different environment evaluation. In this
experiment, same day evaluation means the training set
and test set are chosen from the sessions of the same day
while different days evaluation chooses the sessions from
two different days separated by 1 week. Similarly, in differ-
ent environment evaluations, indoor evaluation means the
training set and test set are chosen from indoor environment
while outdoor evaluation chooses training data and test
data from outdoor environment. We conduct this evaluation
on PEH dataset and EEH dataset respectively. As the results
in Figs. 10a and 10b, the accuracy of different day is lower
than the same day evaluation as the different days evalua-
tion tends to produce more changes to gait. However, KEH-
Gait can still achieve the accuracy of 96 and 91 percent on
the two dataset respectively when more than 4 steps are
used. This observation holds in the different environment
evaluation. From Figs. 10c and 10d, we can see outdoor

environment achieves lower accuracy than indoor environ-
ment because it includes several different terrains such as
grass path and asphalt road. Gait changes can be caused
many other factors such as speed and shoes etc. We have
discussed the influence of these factors in [20].

5.6 Robustness against Attackers
As mentioned in Section 2, we assume the presence of a pas-
sive adversary and an active attacker during an authentica-
tion session. We evaluate the robustness of the proposed
system against the eavesdropper and active attacker by con-
ducting the following two imposter attempt experiments.

� A passive imposter attempt is an attempt when an
imposter performs authentication using his own
walking pattern. This attack happens when the gen-
uine user passes his device to another person to
spoof the healthcare system.

� An active imposter attempt means the imposter
mimics the gait of the genuine user with the aim to
spoof the healthcare system. This attack happens when
the several users collude to fool the healthcare system.

In the passive imposter experiment, we separate the 20
participants into two groups: 10 of them are candidate users
and the rest 10 subjects are attackers. We use the raw volt-
age signal from other subjects as passive imposter attempts.
Therefore, there are 10 
 100 ¼ 1000 training samples and
10 
 100ðpositiveÞ þ 10 
 200ðnegativeÞ ¼ 3000 test samples.
To evaluate the robustness against the second imposter
attack scenario, we group the 20 subjects into 10 pairs. Each
subject was told to mimic his/her partner’s walking style
and try to imitate him or her. First, one participant of the pair
acted as an imposter, the other one as a genuine user, and
then the roles were exchanged. The genders of the imposter
and the user were the same. They observed the walking style
of the target visually, which can be easily done in a real-life
situation as gait cannot be hidden. Every attacker made 5
active imposter attempts and each imposter attempt contains
20 gait cycles. Therefore, there are 10 
 100 ¼ 1000 training
samples and 10 
 100ðpositiveÞ þ 10 
 5 
 20ðnegativeÞ ¼ 2000
test samples. We set k ¼ 5 and vary the confidence threshold
P th to plot DET curve in Fig. 10.

Fig. 9. Comparison with other classification methods on two datasets (sample rate 40Hz).

Fig. 10. Robustness to gait variations.
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The results on two dataasets are plotted in Figs. 11a and
11b respectively. The crossover (marked as a diamond) of the
red dash line and FPR-FNR curve stands for the location of
the EER.Wenotice that EER ofKEH-Gait is 6 and 12.1 percent
on the two datasets respectively, whichmeans out of 100 pas-
sive imposter trials 6 are wrongfully accepted by using PEH
and 12 are wrongfully accepted by using EEH. We also
find that an imposter does benefit from mimicking the genu-
ine user’s walking style. The EER increases to 11.2 and
14.1 percent on the two datasets respectively. For the acceler-
ometer-based system, the EER of a passive attacker and an
active attacker are 4.8 and 9.4 percent, respectively. The
results indicate that the PEH-based system can achieve com-
parable EER compared to the accelerometer-based system.
The individual nature of gait provides our scheme security
against impersonation attackers and the evaluation results
are encouraging. The false positives occur when the gait pat-
terns of the imposter and user are close.

6 ENERGY CONSUMPTION PROFILE

In this section, we will conduct an extensive energy consump-
tion profiling to analyze the energy consumption of our system
and accelerometer-based system. The energy consumption of
our system consists of three parts: sensor sampling, memory
reading/writing, and data transmission. We find that memory
reading/writing consumes significant less energy compared to
the other two parts. A recent study [36] also investigates the
energy consumption of different Random Access Memory
(RAM) technologies, and their findings support our measure-
ment results. According to their measurement, it only con-
sumes 203pJ to write to (or read from) Static Random Access
Memory (SRAM)which is used in SensorTag. Thatmeans if we
collect 4s gait data at 40Hz, it only takes 4� 40� 203 ¼ 32.48 nJ
to read or write data. Compared to the energy consumption of
other parts, the energy consumedbySRAMisnegligible. There-
fore, we only consider the energy consumption of sensor sam-
pling anddata transmission in our evaluation.

6.1 Measurement Setup
The Texas Instrument SensorTag is selected as the target
device, which is embedded with the ultra-low power ARM

Cortex-M3 MCU that is widely used by today’s mainstream
wearable devices such as FitBit. The SensorTag is running
with the Contiki 3.0 operating system. The experiment setup
for the power measurement is shown in Fig. 12a. In order to
capture both the average current and the time requirement
for each sampling event, the Agilent DSO3202A oscillo-
scope is used. As shown in the figure, we connect the Sen-
sorTag with a 10V resistor in series and power it using a 3V
coin battery. The oscilloscope probe is then connected
across the resistor to measure the current going through.

6.2 Energy Consumption of Sensor Sampling

6.2.1 Power Consumption of Sampling Accelerometer

The SensorTag includes 9-axis digital MPU9250 motion sen-
sor combining gyroscope, digital compass, and accelerome-
ter. During the power measurements, we only enable the
3-axis accelerometer and leave all the other sensors turned
off. The acceleration signal is sampled using the Inter-
Integrated Circuit (I2C) bus with a sampling frequency of
25 Hz. Note that, it is also possible for the wearable devices
to use analog accelerometers, which can be sampled
through analog-to-digital converter (ADC) instead of I2C
bus. Sampling analog accelerometers could avoid power
consumption and additional time requirement due to the
I2C bus, but at the expense of some processing costs in
analog to digital converting. While it is not immediately
obvious whether analog accelerometer sampling would be
less or more power consuming relative to the digital coun-
terpart, a detailed measurement study [37] indicates that
digital accelerometer is more power efficient than the com-
parable analog ones from the same manufacturers.

Fig. 12b shows the details of accelerometer sampling
energy profile. As shown, each accelerometer sampling
event can be divided into six states. At the beginning of
each event, the MCU is waked up by the software interrupt
from the power-saving deep-sleep mode (S_sleep), and it
boots the accelerometer (S1) before going back to sleep. Dur-
ing S2, the accelerometer starts to power up while the MCU
is in sleep mode. Then, after one software clock tick (7.8 ms
in Contiki OS), the MCU wakes up again by the interrupt to
initialize the accelerometer (S3) and then goes back to sleep.
The accelerometer starts initializing in S4 and turning on in
S5. Finally, MCU wakes up in S6 to sample the acceleration
signal and then goes back to deep-sleep again. The average
power consumption and time requirement for each state
are shown in Table 1.

6.2.2 Power Consumption of Sampling KEH

In this section, we investigate the power consumption in
sampling the voltage signal of the power source. During the
measurement, MCU is programmed to periodically sample

Fig. 11. Robustness against attackers.

Fig. 12. Measurement setup and results.
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the voltage of the lithium coin battery with 25Hz sampling
rate. The MCU reads voltage signal through ADC. Fig. 12
shows the details of voltage sampling. Similar to the acceler-
ometer, the MCU goes back to deep-sleep mode after each
sampling event. However, sampling the voltage takes only
0.6 ms, which is much shorter than the 17.2 ms required by
the accelerometer sampling. This is because the MCU can
read the voltage signal directly without having to prepare
the hardware to be powered-up, and the voltage signal to
be prepared by the power source. The details of power con-
sumption and time duration for voltage sampling event are
shown in Table 2.

6.2.3 Energy Consumption Comparison

Wenow compare the energy consumption of sampling accel-
erometer and KEH. In general, for the duty-cycled gait-rec-
ognition system, the average power consumption in data
sampling, Psense, can be obtained by the following equation:

Psense ¼
TS�n
1000 Psample þ ð1� TS�n

1000 ÞPsleep if 0 	 n 	 1000
TS

;

Psample if 1000
TS

< n:

(

(14)

where, Psample is the average power consumption in the
sampling event (either sampling acceleration or KEH sig-
nal), and Psleep is the average power consumption when the
MCU is in deep-sleep mode (with all the other system com-
ponents power-off). n is the sampling frequency, and TS is
the duration of time (in milli-second) spent in a single sam-
pling event. Based on the measurement results given in
Tables 1 and 2, we can obtain the average power consump-
tion for the accelerometer sampling event equals to 322 mW
with a time requirement of 17.2 ms, and 480 mW with a
duration of 0.6ms for the KEH sampling event. Then, based
on Equation (14), we get the power consumption in data
sampling for both accelerometer-based and KEH-based
gait-recognition systems with different sampling frequen-
cies. The results are compared in Fig. 13. It is clear to see
that the proposed KEH-Gait achieves significant power sav-
ing in data sampling, comparing with the conventional
accelerometer-based gait-recognition system. More specifi-
cally, given the analysis shown in Fig. 8a, a sampling rate
higher than 40 Hz is needed to achieve high recognition
accuracy. With a 40 Hz sampling frequency, in case of data

sampling, KEH-Gait consumes 17.38 mW, while the power
consumption of accelerometer-based system is 230.74 mW.

As can be seen fromFig. 8c, to achievemore than 95 percent
accuracy, it needs to collect 3 gait cycles for the accelerometer-
based system and 4 gait cycles for the KEH-based system. If
we assume one gait cycle takes 1s (the average time of one
gait cycle is between 0.8s-1.2s), this results in 69.52 mJ and
692.22 mJ energy consumption in data sampling for KEH-Gait
and accelerometer-based system, respectively.

6.3 Energy Consumption of Data Transmission
Next, we evaluate the energy consumption of transmitting
acceleration and KEH voltage data via Bluetooth. We con-
duct power measurement of the Bluetooth Low Energy
(BLE) beacon using the embedded CC2650 wireless MCU in
the SensorTag. With the 40 Hz sampling rate, KEH-Gait
generates 160 voltage samples every four seconds. If we set
compression rate to 75 percent, this results in 240 bytes data
to be transmitted in total (2 bytes for each of the 12-bits
ADC voltage reading). This consumes an average power of
1.99 mWwith a transmission time of 44.28 ms, which results
in 88.12 mJ of energy consumption. On the other hand, as
3-axis acceleration data is collected for 3s, it results in
540 bytes of data and the energy consumption of transmit-
ting those data is 190.94 mJ.

After obtaining the energy consumption of sensor sam-
pling and data transmission, we investigate the potential
of KEH-Gait for energy saving. Based on the measured
results, the energy consumption of KEH-Gait to complete
one authentication is approximately 157.64 mJ, which has
reduced the energy consumption of the accelerometer-
based system (883.16 mJ) by 82.15 percent. In the proposed
system, the time-consuming classification task will be exe-
cuted in the server; therefore, we do not need to evaluate
the processing time and latency of the system.

7 DISCUSSION

Many factors exist that may impact the accuracy of a gait-
based recognition system, such as shoe, clothes, walking
speed and terrain. Previous studies have shown that the
accuracy will decrease when the test and training samples
of the person’s walking are obtained using different shoe
types and clothes [38]. Indeed, as shown in Section 5.5, the
accuracy of KEH-Gait decreases when session 1 is used for
training and session 2 is used for testing. The dataset used
in the experiment is challenging as it includes the natural
gait changes over time (two sessions separated by 1 week),
as well as gait variations due to changing in clothes, terrain
and shoes. However, KEH-Gait can still achieve the accu-
racy of 95 and 89 percent on the two dataset respectively by
the proposed MSSRC, which in turn demonstrate the
robustness of KEH-Gait to gait variations. The focus of our

TABLE 1
States of Accelerometer Sampling

State Time (ms) Power (uW)

S1 0.6 768
S2 7.2 72
S3 0.6 480
S4 3.2 72
S5 4 480
S6 1.6 1440
S_sleep null 6

TABLE 2
States of Voltage Sampling

State Time (ms) Power (mW)

S1 0.6 480
S_sleep null 6

Fig. 13. Power consumption comparison.
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study is to demonstrate the feasibility of gait recognition
using KEH and improve its performance. Due to space
limitation, we defer the analysis of different factors to our
future work. In fact, there has been several attempts to
study the relationship between recognition performance
and different factors [31], [38]. For example, in terms of
walking speed, Muaaz and Nickel [31] found that normal
walk has best results and fast walk is a bit better than
slow walk. As for different types of terrains, they
reported that gravel walk has better results than grass
and inclined walk. We encourage the reader to refer
to [31], [38], [39] for more details. One major limitation of
our work is that we only collect data from hand due to
hardware limitation. As wearable devices can be worn in
many other positions like waist, foot and pocket, our
future work will focus on evaluating the performance of
the system on different positions.

8 RELATED WORK

Gait Recognition. Gait recognition has been well studied in
the literature. From the way how gait is collected, gait recog-
nition can be categorized into three groups: vision based,
floor sensor based, and wearable sensor based. In vision
based gait recognition system, gait is captured from a remote
distance using video-camera. Then, video/image processing
techniques are employed to extract gait features for further
recognition. A large portion in the literature belong to this
category [40], [41], [42], [43]. In floor sensor based gait recog-
nition, sensors (e.g., force plates), which are usually installed
under the floor, are used for capturing gait features, such as
ground reaction force (GRF) [44] or heel-to-toe ratio [45].

Comparedwith vision-based and other non-accelerometer
based gait measurements, acceleration can reflect the dynam-
ics of gait more directly and faithfully. The first work of
accelerometer based gait recognition is proposed by Ailisto
et al. [9] and further developed by Gafurov et al. [46]. In the
initial stages, dedicated accelerometers were used and worn
on different body positions, such as lower leg [46], waist [9],
hip [47], hip pocket, chest pocket and hand [48].With the pre-
vailing of smartphone, researchers have proposed several
gait-based authentication systems by utilizing the built-in
accelerometer [6], [49], [50]. In a previous work, the research-
ers analyzed human gait by a shoe-embedded piezoelectric
energy harvester [51].

Recognition can be performed in two ways: (a) by pattern
similarity matching based on gait template or (b) by
machine-learning (ML) approaches where gait recognition
is represented as classification problem. Approaches that
are based on template matching usually rely on simple met-
rics that measure dissimilarity of compared gait patterns,
including histogram similarity [46], euclidean distance [52]
and DTW distance [53]. Approaches where gait recognition
is carried out as a classification problem, rely on commonly
used classification techniques, including k-NN [54], SVM
[55], decision trees [56], random forests [57] and neural net-
works [58]. In this paper, we propose PMSSRC and the eval-
uation results show that it outperforms classic classifiers.

Biometric Cryptosystems (BCS). Our work is also closely
related to biometric cryptosystems (BCS) which are devel-
oped for the purpose of either securing a cryptographic key
using biometric features or directly generating a crypto-
graphic key from biometric features. Recently there are
several studies using gait to generate secret keys. For

example, Hoang et al. used gait to encrypt a cryptographic
key through a fuzzy commitment scheme [25]. In a similar
work [59], Xu et al. proposed an automatic key generation
system for on-body devices by using gait. After that,
Sch€urmann et al. proposed a device-to-device authentica-
tion system for body area network using natural gait [60].
Revadigar et al. proposed a group key generation protocol
for on-body devices by fuzzy vault [61].

Studies on KEH: Recently researchers are investigating to
use the output signal from KEH to achieve a wide range of
applications in activity tracking [62], transportation mode
detection [63], and acoustic communication [64]. In [62], the
authors proposed the idea of using the energy harvesting
power signal for human activities recognition. In [63], the
authors proposed to use KEH to detect different transporta-
tion mode. Following this trend of study, the proposed
KEH-Gait utilizes the voltage signal generated by the
kinetic energy harvester from walking to perform gait rec-
ognition. We also discuss the limitations and advantages of
using KEH for gait recognition in [20].

9 CONCLUSION

In this paper, we explore the feasibility of using KEH to
address the problem of user spoofing attacks in emerging
mobile healthcare systems. Compared to accelerometer-
based system, KEH-Gait is able to achieve comparable recog-
nition accuracy when multiple steps are used and reduce
energy consumption by 82.15 percent.Moreover, the security
analysis shows that the EER of KEH-Gait against an active
spoofing attacker is 11.2 and 14.1 percent on the two data-
sets respectively. Our study results show that the output
voltage signal of energy harvester is a promising informa-
tive signal for wearable authentication system. Although
health monitoring was used as the main motivating sce-
nario for this work, we believe the proposed KEH-based
gait detection could be influential to many other scenar-
ios. For example, KEH can be used in consumer electron-
ics to enable many other applications due to the nature of
energy savings.
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