Using ILP to Improve Planning in Hierarchical Reinforcement Learning, Reid M.D., Ryan, M.R.K, In Proceedings of The Tenth International Conference on Inductive Logic Programming, London, UK, July 2000.

Hierarchical reinforcement learning has been proposed as a solution to the problem of scaling up reinforcement learning. The RL-TOPs hierarchical reinforcement learning system is an implementation of this proposal which structures an agents sensors and actions into various levels of represenetation and control. Disparity between levels of representation means actions can be misused by the planning algorithm in the system. This paper reports on how ILP was used to bridge these representation gaps and shows empirically how this improved the system's performance. Also discussed are some of the problems encountered when using an ILP system in what is inherently a noisy and incremental domain.

Download full paper (compressed postscript)


Malcolm Ryan - malcolmr@cse.unsw.edu.au
Mark Reid - mreid@cse.unsw.edu.au