







lide 13

| ide 17 | Another Security Protocol Example:<br>Oblivious Transfer<br>Specification:<br>Alice has two messages $m_0, m_1 \in \{0, 1\}^k$ , unknown to Bob.<br>Bob selects whether he wants to receive $m_0$ or $m_1$ .<br>Bob should learn only the message he selected.<br>Alice should not learn which message Bob selected.                                                                                                                                                                                                                                                                                                                  | Slide 19 | <b>Intransitive Noninterference</b><br>What, indeed, is intransitive noninterference?, R. van der Meyden,<br>Proc. European Symposium on Research in Computer Security,<br>Dresden, Sept 2007, LNCS Vol. 4734, pp. 235-250.                                                                                                                                           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ide 18 | <ol> <li>Rivest's solution,<br/>using an offline trusted third party</li> <li>Setup. Ted chooses r<sub>0</sub>, r<sub>1</sub> ∈ {0,1}<sup>k</sup> randomly and sends these<br/>values to Alice.<br/>Ted chooses d ∈ {0,1} and sends d and r<sub>d</sub> to Bob.</li> <li>Request. Bob computes e = c ⊕ d, where ⊕ denotes exclusive or,<br/>and sends it to Alice.</li> <li>Reply. Alice computes f<sub>0</sub> = m<sub>0</sub> ⊕ r<sub>e</sub> and f<sub>1</sub> = m<sub>1</sub> ⊕ r<sub>1-e</sub> and<br/>sends f<sub>0</sub> and f<sub>1</sub> to Bob.</li> <li>Result. Bob computes m = f<sub>c</sub> ⊕ r<sub>d</sub>.</li> </ol> | Slide 20 | Noninterference<br>Proposed by Goguen and Meseguer 1982<br>Context: Multi-level secure systems<br>partially ordered security levels ⇒ transitive policies<br>Haigh and Young 87: extension to intransitive policies, deterministic<br>systems<br>Rushby 1992: further results and corrections to Haigh and Young<br>van der Meyden 2007: improvement of Rushby theory |

| ide 21 | <b>Noninterference policies</b><br>Let <i>D</i> be a set of security domains.<br>A noninterference policy is a reflexive relation $\mapsto \subseteq D \times D$<br>$u \mapsto v$ means<br>"actions of domain <i>u</i> are permitted to interfere with domain <i>v</i> ",<br>or<br>"information is permitted to flow from domain <i>u</i> to domain <i>v</i> " | Slide 23 | Semantics for Transitive Policies<br>For each $u \in D$ define the function $\operatorname{purge}_u : A^* \to A^*$ such that<br>$\operatorname{purge}_u(\alpha)$ is the subsequence of all actions $a$ in $\alpha$ such that<br>$\operatorname{dom}(a) \to u$ .<br>The system $M$ is said to be secure with respect to the policy $\to$ when<br>for all $\alpha \in A^*$ and domains $u \in D$ , we have<br>$\operatorname{obs}_u(s_0 \cdot \alpha) = \operatorname{obs}_u(s_0 \cdot \operatorname{purge}_u(\alpha))$ .<br>An equivalent formulation:<br>For all sequences $\alpha, \alpha' \in A^*$ such that $\operatorname{purge}_u(\alpha) = \operatorname{purge}_u(\alpha')$ , we<br>have $\operatorname{obs}_u(s_0 \cdot \alpha) = \operatorname{obs}_u(s_0 \cdot \alpha')$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ide 22 | <b>Example</b><br>Public $\rightarrowtail$ Secret $\rightarrowtail$ Top-Secret<br>Public $\rightarrowtail$ Top-secret<br>but<br>Secret $\not$ Public, Top-Secret $\not$ Secret, Top-Secret $\not$ Public                                                                                                                                                       | Slide 24 | Motivation for Intransitive Policies<br>Downgrading:<br>$H \rightarrow D \rightarrow L$ Channel Control:<br>$\underbrace{freeder}_{(rodder)} \bigoplus \underbrace{PYPASS}_{(rotp)} \underbrace{FF}_{(rotp)} $ |



#### 



# Slide 31 Let $\alpha_1 = h_1 h_2 d_1 d_2$ Then $obs_L(\alpha_1) = [ipurge_L(\alpha_1)] = [\alpha_1]$ Let p= "there was an $h_1$ before an $h_2$ " p is a fact about $H_1, H_2$ . $\alpha_1 \models K_L p$

# But $view_{D_1}(\alpha_1)$ $= view_{D_1}(h_1h_2d_1d_2)$ $= [\epsilon] \circ [h_1] \circ [h_1] \circ d_1 \circ [h_1d_1] \circ [h_1d_1]$ $= [\epsilon] \circ [\epsilon] \circ [h_1] \circ d_1 \circ [h_1d_1] \circ [h_1d_1]$ $= view_{D_1}(h_2h_1d_1d_2)$ Similarly, $view_{D_2}(\alpha_1) = view_{D_2}(h_2h_1d_1d_2)$ So $\alpha_1 \models K_L p \land \neg D_{\{D_1, D_2\}} p$

| ide 33 | An alternative definition - TA security<br>Given a policy $\rightarrow$ , define, for each agent $u \in D$ , the function $\mathtt{ta}_u$ ,<br>with domain $A^*$ , inductively by $\mathtt{ta}_u(\epsilon) = \epsilon$ , and, for $\alpha \in A^*$ and<br>$a \in A$ ,<br>$\mathtt{ta}_u(\alpha a) = \begin{cases} \mathtt{ta}_u(\alpha) & \text{if } \mathtt{dom}(a) \not\succ u \\ (\mathtt{ta}_u(\alpha), \mathtt{ta}_{\mathtt{dom}(a)}(\alpha), a) & \text{if } \mathtt{dom}(a) \rightarrow u \end{cases}$<br>Define a system $M$ to be TA-secure with respect to a policy $\rightarrow$ if for<br>all agents $u$ and all $\alpha, \alpha' \in A^*$ such that $\mathtt{ta}_u(\alpha) = \mathtt{ta}_u(\alpha')$ , we have<br>$\mathtt{obs}_u(s_0 \cdot \alpha) = \mathtt{obs}_u(s_0 \cdot \alpha')$ . | Slide 35 | Unwinding and Access Control Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ide 34 | <ul> <li>How these definitions are related</li> <li>Theorem 1</li> <li>1. P-secure ⇒ TA-secure ⇒ IP-secure.</li> <li>2. If → is transitive then P-secure = TA-secure = IP-secure.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Slide 36 | <ul> <li>Access Control</li> <li>A system with structured state is a machine ⟨S, s<sub>0</sub>, A, →, obs, dom⟩ together with</li> <li>1. a set N of names,</li> <li>2. a set V of values, and functions</li> <li>3. contents : S × N → V, with contents(s, n) interpreted as the value of object n in state s,</li> <li>4. observe : D → P(N), with observe(u) interpreted as the set of objects that domain u can observe, and</li> <li>5. alter : D → P(N), with alter(u) interpreted as the set of objects whose values domain u is permitted to alter.</li> </ul> |

lide 37

For a system with structured state, when  $u \in D$  and s is a state, define  $\mathtt{state}_u(s) : \mathtt{observe}(u) \to V$  by  $state_u(s)(n) = contents(s, n)$  for  $n \in observe(u)$ .

Define a binary relation  $\sim_u^{oc}$  of observable content equivalence on S for each domain  $u \in D$ , by  $s \sim_u^{oc} t$  if  $\mathtt{state}_u(s) = \mathtt{state}_u(t)$ .

## **Rushby's Reference Monitor Assumptions**

RM1. If  $s \sim_u^{oc} t$  then  $obs_u(s) = obs_u(t)$ .

```
RM2. If s \sim_{dom(a)}^{oc} t and either contents(s \cdot a, n) \neq \text{contents}(s, n) or
        contents(t \cdot a, n) \neq contents(t, n) then
        contents(s \cdot a, n) = contents(t \cdot a, n)
```

lide 38

RM3. If contents $(s \cdot a, n) \neq$ contents(s, n) then  $n \in$ alter(dom(a)).

RM2 is equivalent to the following: For all states s, either

1. for all  $t \sim_{dom(a)}^{oc} s$ , we have contents $(t \cdot a, n) = \text{contents}(t, n)$ , or 2. for all  $t \sim_{dom(a)}^{oc} s$ , we have contents $(s \cdot a, n) = \text{contents}(t \cdot a, n)$ 

| Slide 39 | Consistency of an access control system with a policy:<br>AOI. If $alter(u) \cap observe(v) \neq \emptyset$ then $u \mapsto v$ .                     |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | <b>Proposition 1</b> (Rushby 92) Suppose M is a system with structured state that satisfies RM1-RM3 and AOI. Then M is IP-secure for $\rightarrow$ . |  |  |

#### A weaker notion of Access Control

[RM2'] For all actions a states s, t and names  $n \in \texttt{alter}(dom(a)), \text{ if } s \sim^{oc}_{\texttt{dom}(a)} t \text{ and}$ contents(s, n) = contents(t, n) we have  $contents(s \cdot a, n) = contents(t \cdot a, n).$ 

Slide 40

Example: n is a block of memory, a writes to a single location

Say M a system with structured states is a weak access control system compatible with  $\rightarrow$  if it satisfies RM1, RM2', RM3 and AOI.

| lide 41         | <b>Proposition 2</b> If M is a weak access control system compatible with $\rightarrow$ then M is TA-secure (hence IP-secure) for $\rightarrow$ .                                                                                                                                                                                                                                                                                                                                 | Slide 43 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| lide 4 <b>2</b> | Unwinding Conditions<br>Suppose we have for each domain $u$ an equivalence relation $\sim_u$ on<br>the states of $M$ .<br>OC: If $s \sim_u t$ then $O_u(s) = O_u(t)$ . (Output Consistency)<br>SC: If $s \sim_u t$ then $s \cdot a \sim_u t \cdot a$ . (Step Consistency)<br>LR: If not dom $(a) \rightarrow u$ then $s \sim_u s \cdot a$ . (Left Respect)<br>If these conditions are satisfied then $M$ is secure with respect to a<br>transitive policy (Goguen & Meseguer 84). | Slide 44 |

#### Completeness of Unwinding (Transitive Policies)

**Proposition 3** (Rushby 92) Suppose M is P-secure with respect to the transitive policy  $\rightarrow$ . Then there exist equivalence relations  $\sim_u$  on the states of M with respect to which M satisfies OC, SC and LR.

(Specifically,  $s \approx_u t$  if for all strings  $\alpha$  in  $A^*$  we have  $O_u(s \cdot \alpha) = O_u(t \cdot \alpha).$ )

### Unwinding Intransitive Noninterference

WSC: If  $s \sim_u t$  and  $s \sim_{dom(a)} t$  then  $s \cdot a \sim_u t \cdot a$ . (Weak Step Consistency)

**Proposition 4** (Rushby 92) Suppose that  $\sim_u$  are equivalence relations on the states of a system M that satisfy OC, WSC and LR. Then M is IP-secure for  $\rightarrow$ .

(But no completeness result.)

### Unfolding a system

Given a system  $M = \langle S, s_0, \rightarrow, \mathsf{obs}, \mathsf{dom} \rangle$  with actions A, define the system  $uf(M) = \langle S', s'_0, \rightarrow', \mathsf{obs'}, \mathsf{dom} \rangle$  with actions A by

1.  $S' = A^*$ 

2 8

lide 45

lide 46

2.  $s'_0 = \epsilon$ 3.  $\rightarrow' (\alpha, a) = \alpha a$ , for  $\alpha \in S'$  and  $a \in A$ 

4.  $obs'_u(\alpha) = obs_u(s_0 \cdot \alpha)$  (RHS in M)

uf(M) is bisimilar to M (in the expected sense)

Say that a system M with states S admits a weak access control interpretation compatible with  $\rightarrow$  if there exists

1. a set of names N

2. a set of values V and functions

3. observe:  $D \times S \to \mathcal{P}(N)$ ,

4. alter :  $D \times S \to \mathcal{P}(N)$  and

5. contents :  $N \times S \rightarrow V$ 

with respect to which M is a weak access control system compatible with  $\rightarrowtail.$ 

|          | Theorem 2 The following are equivalent                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------|
|          | 1. M is TA-secure with respect to $\rightarrow$                                                                                  |
|          | <ol> <li>uf(M) admits a weak access control interpretation compatible<br/>with →;</li> </ol>                                     |
| Slide 47 | 3. there exist equivalence relations $\sim_u$ on the states of $uf(M)$<br>satisfying OC, WSC and LR;                             |
|          | (So, weak unwinding incomplete for IP-security on two counts:<br>unwinding is complete for the stronger TA-security, wrt $uf(M)$ |

rather than M).

#### 23