The Monty Hall Puzzle

Monty Hall is a television quiz show host. You are the contestant, and have the opportunity to win a prize.

There are three doors. Behind one door is a car. Behind each of the other doors is a goat. You will win whatever is behind the door you pick.

You pick a door, and then Monty opens another door. There is a goat there.

Monty asks: “Would you like to switch doors, or stick with the door that you have picked?”

What should you do?

Probability Spaces

Recall that a probability space is a tuple \((W, \mathcal{F}, \mu)\), where

1. \(W\) is a nonempty set,
2. \(\mathcal{F}\) is an algebra over \(W\), i.e., a set of subsets of \(\mathcal{F}\) that contains \(W\) and is closed under union and complementation: if \(U, V \in \mathcal{F}\) then \(U \cup V \in \mathcal{F}\), \(U \cap V \in \mathcal{F}\) and \(W \setminus U \in \mathcal{F}\).
3. \(\mu : \mathcal{F} \to [0,1]\) satisfies
 (a) \(\mu(W) = 1\)
 (b) \(\mu(U \cup V) = \mu(U) + \mu(V)\) if \(U \cap V = \emptyset\).

If \(W\) is infinite we also require that

1. \(\mathcal{F}\) is a \(\sigma\)-algebra, i.e., if \(U_1, U_2, \ldots \in \mathcal{F}\) then \(\bigcup_{i \in \mathbb{N}} U_i \in \mathcal{F}\),
2. \(\mu\) is countably additive, i.e., if \(U_i \cap U_j = \emptyset\) for \(i \neq j\), then
 \[
 \mu\left(\bigcup_{i \in \mathbb{N}} U_i\right) = \sum_{i \in \mathbb{N}} \mu(U_i)
 \]
Example

Tossing two coins:
\[W = \{HH, HT, TH, TT\} \]
\[\mathcal{F} = \mathcal{P}(W) \]
\[\mu(\{HH\}) = 1/4, \quad \mu(\{HT\}) = 1/4, \]
\[\mu(\{TH\}) = 1/4, \quad \mu(\{TT\}) = 1/4 \]

Note that it follows that, e.g.,
\[\mu(\{HH, TT\}) = \mu(\{HH\}) + \mu(\{TT\}) = 1/4 + 1/4 = 1/2 \]

In general, if \(W \) is finite, \(\mu \) is defined by its values on singletons, and we write \(\mu(w) \) for \(\mu(\{w\}) \) for \(w \in W \).

Multi-agent Probability

A probability structure for \(n \) agents is a tuple \((W, \mathcal{P}R_1, \ldots, \mathcal{P}R_n, \pi) \) where

1. \(W \) is a set of worlds and
2. each \(\mathcal{P}R_i \) is a probability assignment, mapping each world \(w \in W \) to probability space \(\mathcal{P}R_i(w) = (W_{w,i}, \mathcal{F}_{w,i}, \mu_{w,i}) \)
3. \(\pi : W \times \Phi \rightarrow \{0, 1\} \) is an interpretation of atomic propositions \(\Phi \).

Example - Two agent Coin Tossing

Agent 1 and 2 each toss a coin, and see only their own coin toss.
\[W = \{HH, HT, TH, TT\} \]
\[\mathcal{P}R_1(HT) = (\{HH, HT\}, \mathcal{P}(\{HH, HT\}), \mu_{1,HT}) \]
\[\mathcal{P}R_2(HT) = (\{TT, HT\}, \mathcal{P}(\{TT, HT\}), \mu_{2,HT}) \]
where
\[\mu_{1,HT}(HH) = 1/2, \quad \mu_{1,HT}(HT) = 1/2 \]
\[\mu_{2,HT}(TT) = 1/2, \quad \mu_{2,HT}(HT) = 1/2 \]
Conditions on Probability Structures

Uniformity. For all i, v, w, if $PR_i(w) = (W_{w,i}, F_{w,i}, \mu_{w,i})$ and $v \in W_{w,i}$, then $PR_i(v) = PR_i(w)$.

Logic of Probability - Syntax

Let Φ be a set of atomic propositions. The following are formulas:

1. p, where $p \in \Phi$
2. $\phi \land \psi$, where ϕ, ψ are formulas
3. $a_i l_{i_1}(\phi_1) + \ldots + a_k l_{i_k}(\phi_k) > a_{k+1}$, where the a_i are real numbers, i_1, \ldots, i_k are agents, and ϕ_1, \ldots, ϕ_k are formulas.

Logic of Probability, semantics

Let $M = (W, PR_1, \ldots, PR_n, \pi)$ be a probability structure.

Define the semantics using a function $t \mapsto [t]_{M,w}$ (where $w \in W$) whose value is a number if t is a term:

- $[l_i(\phi)]_{M,w} = \mu_{w,i}({u \in W | M, u \models \phi} \cap W_{i,w})$
- $[a \cdot t]_{M,w} = a \cdot [t]_{M,w}$
- $[t_1 + t_2]_{M,w} = [t_1]_{M,w} + [t_2]_{M,w}$

Define satisfaction using:

$M, w \models t > c$ if $[t]_{M,w} > c$
Example
In the two agent coin tossing example, suppose
\(p_{i,x} \) means “agent \(i \) tossed \(x \)”

Then
\[
M, HH \models l_1(p_{1,H}) = 1 \\
M, HH \models l_2(p_{1,H}) = 1/2 \\
M, HT \models l_1(p_{1,H}) = 1/2 \\
M, HH \models l_1(l_2(p_{1,H}) = 1/2) = 1
\]

Axiomatizing the Logic of Probability
Prop. All substitution instances of propositional logic
MP. From \(\phi \) and \(\phi \Rightarrow \psi \) deduce \(\psi \)
QU1. \(l_i(\phi) \geq 0 \)
QU2. \(l_i(\text{true}) = 1 \)
QU3. \(l_i(\phi \land \psi) + l_i(\phi \land \neg \psi) = l_i(\phi) \)
QUGen. From \(\phi \iff \psi \) infer \(l_i(\phi) = l_i(\psi) \).
Ineq. All substitution instances of valid linear inequality formulas.

Examples of valid linear inequality formulas:
\[
x + 3y \geq 0 \Rightarrow 2y + x + y \geq 0 \\
x + y \geq 1 \land 2x + y \geq 0 \Rightarrow 3x + 2y \geq 1
\]

Let \(M_n^{\text{meas}} \) be the set of probability structures for \(n \) agents in which all sets are measurable, i.e., for which for each \(w, i \), there exists a set \(X \) such that \(\mathcal{F}_{w,i} = \mathcal{P}(X) \).

Theorem: The above axiomatization is sound and complete with respect to \(M_n^{\text{meas}} \).
Combining Multi-agent Knowledge and Probability

An epistemic probability structure for n agents is a tuple $(W, K_1, \ldots, K_n, \mathcal{P}R_1, \ldots, \mathcal{P}R_n, \pi)$ where

1. W is a set of worlds and
2. each K_i is an equivalence relation on W,
3. each \mathcal{PR}_i is a probability assignment, mapping each world $w \in W$ to probability space $\mathcal{PR}_i(w) = (W_{w,i}, \mathcal{F}_{w,i}, \mu_{w,i})$
4. $\pi : W \times \Phi \rightarrow \{0, 1\}$ is an interpretation of atomic propositions Φ.

Conditions on Probability Structures

Uniformity. For all i, v, w, if $\mathcal{PR}_i(w) = (W_{w,i}, \mathcal{F}_{w,i}, \mu_{w,i})$ and $v \in W_{w,i}$, then $\mathcal{PR}_i(v) = \mathcal{PR}_i(w)$.

State Dependent Probability. For all i, v, w, if $v \in K_i(w)$, then $\mathcal{PR}_i(v) = \mathcal{PR}_i(w)$.

Consistency. For all i and w, if $\mathcal{PR}_i(w) = (W_{w,i}, \mathcal{F}_{w,i}, \mu_{w,i})$ then $W_{w,i} \subseteq K_i(w)$.

If M satisfies State Dependent Probability and Consistency then it satisfies Uniformity.

A language for knowledge and probability

Extend the language for probability, by adding formulas $K_i\phi$, with the usual semantics...

$M, w \models K_i\phi$ if $M, w' \models \phi$ for all $w' \in K_i(w)$.

Example - Two agent Coin tossing

Extending the previous example...

$K_1(HH) = \{HT, HH\}$ and

$M, HH \models K_1(l_2(p_1, u) = 1/2)$
Example - differing intuitions

Alice has a coin, which she tosses. Bob does not see the outcome. After the toss, what is Bob’s probability of Heads?

Intuition 1: $K_B(l_B(p_{A,H}) = 0) \lor l_B(p_{A,H}) = 1$

$\neg K_B(l_B(p_{A,H}) = 0) \land \neg K_B(l_B(p_{A,H}) = 1)$

Intuition 2: $K_B(l_B(p_{A,H}) = 1/2)$

We can model both intuitions.

Axiomatizing Knowledge and Probability

Theorem: The axiomatic system that combines all the axioms and inference rules for probability with the axioms and inference rules of S5n is sound and complete for measurable epistemic probability structures.

Adding probability to interpreted systems

A probability system is a tuple $(\mathcal{R}, \mathcal{PR}_1, \ldots, \mathcal{PR}_n)$ where

1. \mathcal{R} is a set of runs
2. each \mathcal{PR}_i is a probability assignment that associates each point (r,m) of \mathcal{R} with a probability space $\mathcal{PR}_i(r,m) = (W_{r,m,i}, F_{r,m,i}, \mu_{r,m,i})$.

Generally, $W_{r,m,i}$ will be a set of points of \mathcal{R}.

Assigning probability to runs

Suppose that

1. runs have finite length $k + 1$,
2. there is a probability distribution P_0 on the initial states of the system, and
3. for each run r and time $j < k + 1$, we can assign a probability to each next possible state, i.e., there is a probability distribution $P_{r,j}$ over the set of states $\{r'(j+1) \mid r[0 \ldots j] = r'[0 \ldots j]\}$ at time $j + 1$ in runs that extend $r[0 \ldots j]$.
Then we can assign a run r the probability

$$\mu_R(r) = P_0(r(0)) \cdot P_{r,0}(r(1)) \cdot P_{r,1}(r(2)) \cdots P_{r,k}(r(k + 1))$$

Fact: μ_R is a probability distribution on the set of runs \mathcal{R} of length $k + 1$.

Example - Tossing a coin

Suppose that Alice has a fair (1/2 H, 1/2 T) coin F and biased (1/3 H, 2/3 T) coin B in her pocket. She randomly (1/2, 1/2) picks a coin and tosses it. What is the probability of heads?

Then

$$\mu_R(FH) = P_{FH,0}(F) \cdot P_{FH,1}(FH) = 1/2 \cdot 1/2 = 3/12$$

$$\mu_R(BH) = P_{BH,0}(B) \cdot P_{BH,1}(BH) = 1/2 \cdot 1/3 = 2/12$$

So the probability of obtaining heads in a run is 5/12.

We can draw this as a tree...

Transition Probabilities from Probabilistic Protocols

A *probabilistic protocol* for agent i (or the environment e) is a mapping P that maps each local state s of agent i (or global state s) to a probability space $P_i(s) = (A_i, \mathcal{P}(A_i), \mu_{i,s})$ over the set of actions of agent i (the environment).

Given a transition function τ, and a joint probabilistic protocol P, we define $P_{r,m}$ as follows:

$$P_{r,m}(t) = \sum_{a : \tau(a)(r(m)) = t} \mu_{e,r}(m)(a_e) \cdot \mu_{1,r_i}(m)(a_1) \cdots \mu_{n,r_n}(m)(a_n)$$

From probability on runs to probability on points

If U is a set of points and S a set of runs, both from a set of runs \mathcal{R}, define

$$S(U) = \{ r \in S \mid (r, m) \in U \text{ for some } m \}$$

$$U(S) = \{ (r, m) \in U \mid r \in S \}$$
Suppose that agents are synchronous (this is the easiest case to handle).

We can now assign each agent i a probability space $\mathcal{P}R_i(r, m) = (W_{r,m,i}, F_{r,m,i}, \mu_{r,m,i})$ at each point (r, m) as follows:

\[
W_{r,m,i} = \mathcal{K}_i(r, m) = \{(r', m) \mid \tau_i(m) = \tau_i'(m)\}
\]

\[
F_{r,m,i} = \{\mathcal{K}_i(r, m)(S) \mid S \in \mathcal{F}_R\}
\]

\[
\mu_{r,m,i}(U) = \mu_R(\mathcal{R}(U) \mid \mathcal{R}(\mathcal{K}_i(r, m))) \text{ for } U \in \mathcal{F}_{r,m,i}
\]

Fact: This is a probability space.

If agents have perfect recall, we can understand the evolution of their probabilities as obtained by conditioning...

For U a set of points, define $U^- = \{(r, m) \mid (r, m + 1) \in U\}$

Proposition: If \mathcal{R} is a system with synchronous perfect recall, then for all points (r, m) and agents i, if $U \in \mathcal{F}_{r,m+1,i}$ then $U^- \in \mathcal{F}_{r,m,i}$ and

\[
\mu_{r,m+1,i}(U) = \mu_{r,m,i}(U^- \mid \mathcal{K}_i(r, m + 1)^-)
\]

Analysis of the Monty Hall Problem

Answer: what you should do depends on a number of extra assumptions, in particular on Monty’s protocol.

Assume: the location of the car is uniformly distributed.

Case 1: whatever door you pick, Monty randomly opens another door.

(It doesn’t help to switch)

Case 2: If you pick the door with a car, Monty randomly chooses another door. If you pick a door with a goat, Monty chooses the door with the other goat.

(It helps to switch).