COMP3152/9152

Lecture 12

Knowledge and Probability
Ron van der Meyden

Probability Spaces

Recall that a probability space is a tuple (W, \mathcal{F}, μ), where

1. W is a nonempty set,
2. \mathcal{F} is an algebra over W, i.e., a set of subsets of \mathcal{F} that contains W and is closed under union and complementation: if $U, V \in \mathcal{F}$ then $U \cup V \in \mathcal{F}, U \cap V \in \mathcal{F}$ and $W \backslash U \in \mathcal{F}$.
3. $\mu: \mathcal{F} \rightarrow[0,1]$ satisfies
(a) $\mu(W)=1$
(b) $\mu(U \cup V)=\mu(U)+\mu(V)$ if $U \cap V=\emptyset$.

If W is infinite we also require that

1. \mathcal{F} is a σ-algebra, i.e., if $U_{1}, U_{2}, \ldots \in \mathcal{F}$ then $\bigcup_{i \in \mathbf{N}} U_{i} \in \mathcal{F}$, 2. μ is countably additive, i.e., if $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$, then

$$
\mu\left(\bigcup_{i \in \mathbf{N}} U_{i}\right)=\sum_{i \in \mathbf{N}} \mu\left(U_{i}\right)
$$

Example

Tossing two coins:
$W=\{H H, H T, T H, T T\}$
$\mathcal{F}=\mathcal{P}(W)$

Multi-agent Probability

A probability structure for n agents is a tuple $\left(W, \mathcal{P} \mathcal{R}_{1}, \ldots, \mathcal{P} \mathcal{R}_{n}, \pi\right)$ where
$\mu(\{H H\})=1 / 4, \quad \mu(\{H T\})=1 / 4$,
$\mu(\{T H\})=1 / 4, \quad \mu(\{T T\})=1 / 4$

Note that it follows that, e.g.,
$\mu(\{H H, T T\})=\mu(\{H H\})+\mu(\{T T\}))=1 / 4 /+1 / 4=1 / 2$

Slide 7

1. W is a set of worlds and
2. each $\mathcal{P} \mathcal{R}_{i}$ is a probability assignment, mapping each world $w \in W$ to probability space $\mathcal{P} \mathcal{R}_{i}(w)=\left(W_{w, i}, \mathcal{F}_{w, i}, \mu_{w, i}\right)$
3. $\pi: W \times \Phi \rightarrow\{0,1\}$ is an intrerpretation of atomic propositions Φ.

Slide 8

Example - Two agent Coin Tossing

Agent 1 and 2 each toss a coin, and see only their own coin toss.
$W=\{H H, H T, T H, T T\}$
$\mathcal{P} \mathcal{R}_{1}(H T)=\left(\{H H, H T\}, \mathcal{P}(\{H H, H T\}), \mu_{1, H T}\right)$
$\mathcal{P} \mathcal{R}_{2}(H T)=\left(\{T T, H T\}, \mathcal{P}(\{T T, H T\}), \mu_{2, H T}\right)$
where

$$
\begin{aligned}
& \mu_{1, H T}(H H)=1 / 2, \quad \mu_{1, H T}(H T)=1 / 2 \\
& \mu_{2, H T}(T T)=1 / 2, \quad \mu_{2, H T}(H T)=1 / 2
\end{aligned}
$$

Conditions on Probability Strctures

Uniformity. For all i, v, w, if $\mathcal{P} \mathcal{R}_{i}(w)=\left(W_{w, i}, \mathcal{F}_{w, i}, \mu_{w, i}\right)$ and $v \in W_{w, i}$, then $\mathcal{P R}_{i}(v)=\mathcal{P} \mathcal{R}_{i}(w)$.

Logic of Probability - Syntax

Let Φ be a set of atomic propositions. The following are formulas:

1. p, where $p \in \Phi$
2. $\phi \wedge \psi, \neg \phi$, where ϕ, ψ are formulas
3. $a_{1} l_{i_{1}}\left(\phi_{1}\right)+\ldots+a_{k} l_{i_{k}}\left(\phi_{k}\right)>a_{k+1}$, where the a_{i} are real numbers, i_{1}, \ldots, i_{k} are agents, and $\phi_{1}, \ldots, \phi_{k}$ are formulas.

Other sorts of inequalities can be defined, e.g.,
$l_{i}(\phi)>l_{i}(\psi)$ by $l_{i}(\phi)-l_{i}(\psi)>0$
$a l_{i}(\phi)+b l_{j}(\psi) \geq c$ by $\neg\left(a l_{i}(\phi)+b l_{j}(\psi)<c\right)$
Examples:

$$
l_{1}(p)+l_{1}(\neg p)=1
$$

$$
l_{1}(p \wedge q)+2 l_{2}(p \vee q)>1
$$

Logic of Probability, semantics

Let $M=\left(W, \mathcal{P} \mathcal{R}_{1}, \ldots, \mathcal{P} \mathcal{R}_{n}, \pi\right)$ be a probability structure
Define the semantics using a function $t \mapsto[t]_{M, w}$ (where $w \in W$)
whose value is a number if t is a term:
$\left[l_{i}(\phi)\right]_{M, w}=\mu_{w, i}\left(\{u \in W \mid M, u \models \phi\} \cap W_{i, w}\right)$
$[a \cdot t]_{M, w}=a \cdot[t]_{M, w}$
$\left[t_{1}+t_{2}\right]_{M, w}=\left[t_{1}\right]_{M, w}+\left[t_{2}\right]_{M, w}$
Define satisfaction using:
$M, w \models t>c$ if $[t]_{M, w}>c$

Example

In the two agent coin tossing example, suppose
$p_{i, x}$ means "agent i tossed x "
Then

Slide 15

Slide 16

Examples of valid linear inequality formulas:

$$
\begin{gathered}
x+3 y \geq 0 \Rightarrow 2 y+x+y \geq 0 \\
x+y \geq 1 \wedge 2 x+y \geq 0 \Rightarrow 3 x+2 y \geq 1
\end{gathered}
$$

Let $\mathcal{M}_{n}^{\text {meas }}$ be the set of probability structures for n agents in which all sets are measurable, i.e., for which for each w, i, there exists a set X such that $\mathcal{F}_{w, i}=\mathcal{P}(X)$.

Theorem: The above axiomatization is sound and complete with respect to $\mathcal{M}_{n}^{\text {meas }}$.

Combining Multi-agent Knowledge and Probability

An epistemic probability structure for n agents is a tuple
$\left(W, \mathcal{K}_{1}, \ldots, \mathcal{K}_{n}, \mathcal{P} \mathcal{R}_{1}, \ldots, \mathcal{P} \mathcal{R}_{n}, \pi\right)$ where

1. W is a set of worlds and
2. each \mathcal{K}_{i} is an equivalence relation on W,
3. each $\mathcal{P} \mathcal{R}_{i}$ is a probability assignment, mapping each world $w \in W$ to probability space $\mathcal{P} \mathcal{R}_{i}(w)=\left(W_{w, i}, \mathcal{F}_{w, i}, \mu_{w, i}\right)$
4. $\pi: W \times \Phi \rightarrow\{0,1\}$ is an interpretation of atomic propositions Φ.

Conditions on Probability Structures

Uniformity. For all i, v, w, if $\mathcal{P} \mathcal{R}_{i}(w)=\left(W_{w, i}, \mathcal{F}_{w, i}, \mu_{w, i}\right)$ and $v \in W_{w, i}$, then $\mathcal{P R}_{i}(v)=\mathcal{P R}_{i}(w)$.

State Dependent Probability. For all i, v, w, if $v \in \mathcal{K}_{i}(w)$, then $\mathcal{P} \mathcal{R}_{i}(v)=\mathcal{P} \mathcal{R}_{i}(w)$.

Consistency. For all i and w, if $\mathcal{P} \mathcal{R}_{i}(w)=\left(W_{w, i}, \mathcal{F}_{w, i}, \mu_{w, i}\right)$ then $W_{w, i} \subseteq \mathcal{K}_{i}(w)$.

If M satisfies State Dependent Probability and Consistency then it satisfies Uniformity.

Slide 19
A language for knowledge and probability
Extend the language for probability, by adding formulas $K_{i} \phi$, with the usual semantics...
$M, w \models K_{i} \phi$ if $M, w^{\prime} \models \phi$ for all $w^{\prime} \mathcal{K}_{i} w$.

Example- Two agent Coin tossing

Extending the previous example...
$\mathcal{K}_{1}(H H)=\{H T, H H\}$ and
$M, H H \models K_{1}\left(l_{2}\left(p_{1, H}\right)=1 / 2\right)$

Example - differing intuitions

Alice has a coin, which she tosses. Bob does not see the outcome. After the toss, what is Bob's probability of Heads?

Intuition 1: $K_{B}\left(l_{B}\left(p_{A, H}\right)=0 \vee l_{B}\left(p_{A, H}\right)=1\right.$
$\neg K_{B}\left(l_{B}\left(p_{A, H}\right)=0\right) \wedge \neg K_{B}\left(l_{B}\left(p_{A, H}\right)=1\right)$

Intuition 2: $K_{B}\left(l_{B}\left(p_{A, H}\right)=1 / 2\right)$

We can model both intuitions.

Adding probability to interpreted systems

A probability system is a tuple $\left(\mathcal{R}, \mathcal{P} \mathcal{R}_{1}, \ldots \mathcal{P} \mathcal{R}_{n}\right)$ where

1. \mathcal{R} is a set of runs
2. each $\mathcal{P} \mathcal{R}_{i}$ is a probability assignment that associates each point (r, m) of \mathcal{R} with a probability space $\mathcal{P} \mathcal{R}_{i}(r, m)=\left(W_{r, m, i}, \mathcal{F}_{r, m, i}, \mu_{r, m, i}\right)$.
Generally, $W_{r, m, i}$ will be a set of points of \mathcal{R}.

Assigning probability to runs

Suppose that

1. runs have finite length $k+1$,
2. there is a probability distribution P_{0} on the initial states of the system, and
3. for each run r and time $j<k+1$, we can assign a probability to each next possible state, i.e., there is a probability distribution $P_{r, j}$ over the set of states

$$
\left\{r^{\prime}(j+1) \mid r[0 \ldots j]=r^{\prime}[0 \ldots j]\right\}
$$

at time $j+1$ in runs that extend $r[0 \ldots j]$.

Then we can assign a run r the probability

$$
\mu_{\mathcal{R}}(r)=P_{0}(r(0)) \cdot P_{r, 0}(r(1)) \cdot P_{r, 1}(r(2)) \cdot \ldots \cdot P_{r, k}(r(k+1))
$$

Fact: $\mu_{\mathcal{R}}$ is a probability distribution on the set of runs \mathcal{R} of length $k+1$.

Example- Tossing a coin

Suppose that Alice has a fair $(1 / 2 \mathrm{H}, 1 / 2 \mathrm{~T})$ coin F and baised $(1 / 3$ $\mathrm{H}, 2 / 3 \mathrm{~T})$ coin B in her pocket. She randomly $(1 / 2,1 / 2)$ picks a coin and tosses it. What is the probability of heads?
Then

$$
\begin{aligned}
& \mu_{\mathcal{R}}(F H)=P_{F H, 0}(F) \cdot P_{F H, 1}(F H)=1 / 2 \cdot 1 / 2=3 / 12 \\
& \mu_{\mathcal{R}}(B H)=P_{B H, 0}(B) \cdot P_{B H, 1}(B H)=1 / 2 \cdot 1 / 3=2 / 12
\end{aligned}
$$

So the probability of obtaining heads in a run is $5 / 12$
We can draw this as a tree...

Transition Probabilities from Probabilistic Protocols

A probabilistic protocol for agent i (or the environment e) is a mapping P that maps each local state s of agent i (or global state s) to a probability space $P_{i}(s)=\left(A_{i}, \mathcal{P}\left(A_{i}\right), \mu_{i, s}\right)$ over the set of actions of agent i (the environment).
Given a transition function τ, and a joint probabilistic protocol \mathbf{P}, we define $P_{r, m}$ as follows:

$$
P_{r, m}(t)=\sum_{\mathbf{a}: \tau(\mathbf{a})(r(m))=t} \mu_{e, r(m)}\left(\mathbf{a}_{e}\right) \cdot \mu_{1, r_{i}(m)}\left(\mathbf{a}_{1}\right) \cdot \ldots \mu_{n, r_{n}(m)}\left(\mathbf{a}_{n}\right)
$$

From probability on runs to probability on points

If U is a set of points and \mathcal{S} a set of runs, both from a set of runs \mathcal{R} define

$$
\begin{gathered}
\mathcal{S}(U)=\{r \in \mathcal{S} \mid(r, m) \in U \text { for some } m\} \\
U(\mathcal{S})=\{(r, m) \in U \mid r \in \mathcal{S}\}
\end{gathered}
$$

Suppose that agents are synchronous (this is the easiest case to handle).
We can now assign each agent i a probability space
$\mathcal{P} \mathcal{R}_{i}(r, m)=\left(W_{r, m, i}, \mathcal{F}_{r, m, i}, \mu_{r, m, i}\right)$. at each point (r, m) as follows:
$W_{r, m, i}=\mathcal{K}_{i}(r, m)=\left\{\left(r^{\prime}, m\right) \mid r_{i}(m)=r_{i}^{\prime}(m)\right\}$
$\mathcal{F}_{r, m, i}=\left\{\mathcal{K}_{i}(r, m)(\mathcal{S}) \mid \mathcal{S} \in \mathcal{F}_{\mathcal{R}}\right\}$
$\mu_{r, m, i}(U)=\mu_{\mathcal{R}}\left(\mathcal{R}(U) \mid \mathcal{R}\left(\mathcal{K}_{i}(r, m)\right)\right)$ for $U \in \mathcal{F}_{r, m, i}$

Fact: This is a probability space.

Analysis of the Monty Hall Problem

Answer: what you should do depends on a number of extra assumptions, in particular on Monty's protocol.
Assume: the location of the car is uniformly distributed.

Case 1: whatever door you pick, Monty randomly opens another door.
(It doesn't help to switch)

Case 2: If you pick the door with a car, Monty randomly chooses another door. If you pick a door with a goat, Monty chooses the door with the other goat.
(It helps to switch).

