L	COMP3152/9152 Lecture 2 Model Checking and Axiomatization Ron van der Meyden Reading, FHMV Ch 3	Slide 3	Model Checking Problem: Given a structure M , a world w of M and a formula ϕ , decide if $M, w \models \phi$. Theorem: For finite M , and $\phi \in \mathcal{L}_{\{K_1,,K_n,C_G\}}$ there exists an algorithm that solves the problem in time linear in $ M \cdot \phi $, where $ M $ and $ \phi $ are the amount of space needed to write down M and ϕ , respectively.
2	Axioms for Reasoning about Knowledge Write $\mathcal{L}_{\{X\}}$ for the language based on a set of operators X. E.g. $\mathcal{L}_{\{K_1,,K_n\}}$ $\mathcal{L}_{\{K_1,,K_n,C_G\}}$ $\mathcal{L}_{\{K_1,,K_n,C_G,D_G\}}$	Slide 4	Subformulas The set of subformulas subformulas(ϕ) of a formula are defined as follows: subformulas(p) = { p } subformulas($\neg \phi$) = { $\neg \phi$ } \cup subformulas(ϕ) subformulas($\phi_1 \land \phi_2$) = { $\phi_1 \land \phi_2$ } \cup subformulas(ϕ_1) \cup subformulas(ϕ_2) subformulas($K_i \phi$) = { $K_i \phi$ } \cup subformulas(ϕ) subformulas($C_G \phi$) = { $C_G \phi$ } \cup subformulas(ϕ) subformulas($D_G \phi$) = { $D_G \phi$ } \cup subformulas(ϕ)

Slide 1

Slide

Slide 5	Examples: The subformulas of $K_j(K_ip) \wedge C_G q$ are: $K_j(K_ip) \wedge C_G q$ $K_j(K_ip), C_G q$ K_ip, p, q	Slide 7	 If φ_j = C_Gα, 1. Label all worlds w that are labelled by ¬α by ¬C_Gα 2. Do a depth first search from these worlds, label all worlds reached by ¬C_Gα 3. Label all worlds not labelled in the depth first search by C_Gα.
Slide 6	Algorithm Input: A finite structure $M = \langle W, \pi, \mathcal{K}_1, \dots, \mathcal{K}_n \rangle$ and a formula $\phi \in \mathcal{L}_{\{K_1, \dots, K_n, C_G\}}$. Order subformulas(ϕ) as $\phi_1, \phi_2, \dots, \phi_k$ where $\phi_k = \phi$ and subformulas(ϕ_j) $\subseteq \{\phi_1, \dots, \phi_j\}$ for $0 < j$. For $j = 1 \dots k$, For all worlds $w \in W$, label w by either ϕ_j or $\neg \phi_j$, as follows: if $\phi_j = p$ then label w by p iff $\pi(w)(p) = \texttt{true}$ if $\phi_j = \alpha \wedge \beta$ then label w by ϕ_j iff w is labelled by both α and β if $\phi_j = K_i \alpha$ then 1. label w by $\neg \phi_j$ if w is labelled by $\neg \alpha$ 2. if $w' \mathcal{K}_i w$ and w has been labelled by $\neg \phi_j$ then label w' by $\neg \phi_j$ 3. label all other worlds by ϕ_j	Slide 8	This algorithm can be implemented to run in time linear in $ M \cdot \phi $. Exercise: Extend this to an algorithm for $\mathcal{L}_{\{K_1,\ldots,K_n,C_G,D_G\}}$. What is the complexity of the extension?

Slide 9	Validity A formula ϕ is <i>valid</i> if for all Kripke structures M and all states w of M , we have $M, w \models \phi$. Write $\models \phi$ if ϕ is valid. Question: how can we prove that/decide if a given formula ϕ is valid?	Slide 11	Rules of inference Nec. (Necessitation) If φ then $K_i \varphi$ MP. (Modus Ponens) If φ and $\varphi \Rightarrow \psi$ then ψ .
lide 10	Axioms for Knowledge K0. all substitution instances of valid formulas of propositional logic K1. $K_i \varphi \wedge K_i (\varphi \Rightarrow \psi) \Rightarrow K_i \psi$ K2. $K_i \varphi \Rightarrow \varphi$ K3. $K_i \varphi \Rightarrow K_i K_i \varphi$ K4. $\neg K_i \varphi \Rightarrow K_i \neg K_i \varphi$	Slide 12	 Proofs A proof of a formula \$\phi\$ is a sequence of formulas \$\phi_1, \phi_2, \ldots, \phi_k\$ such that \$\phi_k = \phi\$ and for all \$j = 1 \ldots k\$, either 1. \$\phi_j\$ is an axiom, or 2. \$\phi_j\$ follows from \$\phi_1, \ldots, \phi_{j-1}\$ using a rule of inference. Write \$\dots\$ \$\phi\$ if there exists a proof of \$\phi\$.

Example A proof of $p \Rightarrow K_i \neg K_i \neg p$: 1. $K_i \neg p \Rightarrow \neg p$ (K2) Example (incorrect deduction): 2. $(K_i \neg p \Rightarrow \neg p) \Rightarrow (p \Rightarrow \neg K_i \neg p)$ 1. p (assumption) (K0, instance of $(A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A)$ 2. $K_i p$ (from 1 using Nec.) lide 13 Slide 15 3. $p \Rightarrow \neg K_i \neg p$ (1,2, MP) 3. $p \Rightarrow K_i p$ (using Deduction Theorem) 4. $\neg K_i \neg p \Rightarrow K_i \neg K_i \neg p$ (K4) But $p \Rightarrow K_i p$ is NOT valid. 5. $(p \Rightarrow \neg K_i \neg p) \Rightarrow ((\neg K_i \neg p \Rightarrow K_i \neg K_i \neg p) \Rightarrow (p \Rightarrow K_i \neg K_i \neg p))$ (Exercise - construct a structure in which it fails.) (K0, instance of $(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C)$ 6. $(\neg K_i \neg p \Rightarrow K_i \neg K_i \neg p) \Rightarrow (p \Rightarrow K_i \neg K_i \neg p)$ (4.5, MP) 7. $p \Rightarrow K_i \neg K_i \neg p$ (3.6, MP) Warning re the Deduction Theorem

lide 14

For propositional logic, the following pattern of reasoning is sound: If, assuming ϕ , ψ can be proved, then $\phi \Rightarrow \psi$ can be proved.

I.e., $\phi \vdash \psi$ implies $\vdash \phi \Rightarrow \psi$

This does not hold for the logic of knowledge!

e 17	 Proving Soundness Suppose that φ₁, φ₂,, φ_k is a proof of φ. Show that ⊨ φ by induction on k, using 1. If ψ is an axiom then ⊨ ψ 2. If the inputs to a rule of inference are valid then so is the output. 	Slide 19	Define $\operatorname{subformulas}^+(\phi)$ to be $\operatorname{subformulas}(\phi) \cup \{\neg \psi \mid \psi \in \operatorname{subformulas}(\phi)\}.$ Given a set $X \subseteq \operatorname{subformulas}^+(\phi)$, define $\phi_X = \bigwedge_{\psi \in X} \psi$ Define $X \subseteq \operatorname{subformulas}^+(\phi)$ to be an <i>atom</i> if 1. ϕ_X is consistent 2. for all larger sets $Y \subseteq \operatorname{subformulas}^+(\phi)$ such that $X \subset Y$, ϕ_Y is not consistent.
le 18	Proving Completeness Define ϕ to be consistent if not $\vdash \neg \phi$. Define ϕ to be satisfiable if there exists a structure M and world w such that $M, w \models \phi$. To prove: $\models \phi$ then $\vdash \phi$. We prove: if ϕ is consistent then ϕ is satisfiable. (*) This suffices: if not $\vdash \phi$ then not $\vdash \neg \neg \phi$ so $\neg \phi$ is satisfiable (by (*)) so not $\models \phi$.	Slide 20	Now construct the structure $M = \langle W, \pi, \mathcal{K}_1, \dots, \mathcal{K}_n \rangle$ where 1. W is the set of atoms of ϕ 2. $\pi(w)(p) = \texttt{true}$ iff $p \in w$ 3. $w\mathcal{K}_i w'$ iff $w/K_i = w'/K_i$ where $w/K_i = \{\psi \mid K_i \psi \in w\}$

de 21	Lemma 1: Let $X_1 \ldots, X_k$ be the set of all atoms of ϕ . Then $\vdash \phi_{X_1} \lor \ldots \lor \phi_{X_k}$. Proof idea: if X is an inconsistent subset of $subformulas^+(\phi)$, then $\vdash \neg \phi_X$. Lemma 2: For all $\psi \in subformulas^+(\phi)$ and worlds w of M, we have $M, w \models \psi$ iff $\psi \in W$. Proof idea: induction on the complexity of ψ So: if ϕ is consistent, then there exists an atom w containing ϕ , so there $M, w \models \phi$.	Slide 23	Axioms for Common Knowledge Adding the following axioms and rule of inference gives a sound and complete axiomatization for $\mathcal{L}_{\{\mathcal{K}_1,,\mathcal{K}_n,C_G\}}$. C1. $M \models E_G \varphi \iff \bigwedge_{i=1}^m K_i \varphi$ C2. $M \models C_G \varphi \Rightarrow E_G(\varphi \land C_G \varphi)$ Rules of Inference RC. If $\vdash \varphi \Rightarrow E_G(\psi \land \varphi)$ then $\vdash \varphi \Rightarrow C_G \psi$
ide 22	Deciding Validity Note that the proof actually shows that if ϕ is satisfiable iff there exists a model for ϕ with $2^{ \phi }$ worlds. This implies that there is an algorithm that decides if ϕ is satisfiable: Construct all structures of size $2^{ \phi }$. Test if any of these satisfies ϕ , if so, return "yes", else return "no".	Slide 24	In the completeness proof, the same construction of M works when we add common knowledge. For the proof of Lemma 2, we use Lemma: Let R be the set of atoms w' such that $w \sim_G w'$ in M . Then $\vdash \phi_w \Rightarrow C_G(\bigvee_{w' \in R}(\phi_{w'}))$.

