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A Model for Runs of a Distributed System

Consider a system for n agents.

For each agent i let Li be a set of local states of agents i

and let Le be a set of states of the environment

Define the set of global states as G = Le × L1 × . . . × Ln, i.e., a global

state is a is a tuple 〈se, s1, . . . , sn〉.

• for i = 1, . . . , n, the component si represents the local state of

agent i

• se represents the state of the environment
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Runs

A run over global states G is a mapping r : N → G.

If r(m) = (se, s1, . . . , sn), write ri(m) for si, and re(m) for se.

A pair (r, m) consisting of a run r and a natural number m is called a

point.
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Distributed Systems

A system over global states G is a set R of runs over G.

Let Φ be a set of propositional constants.

An interpretation for G is a function π : G × Φ → {0, 1}.

An interpreted system I = (R, π) consists of a system R together

with an interpretation function π.
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Example: Bit Transmission

A sender S has a bit bit that it wants to communicate to a receiver R.

The communications channel is lossy. If a message is sent, it is either

delivered immediately (in the next tick of the clock) or lost forever.

So the sender keeps sending until it receives an acknowledgement

from the receiver.

Once it receives the message, the receiver keeps sending

acknowledgements (forever).
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Local states of Sender S: LS = {0, 1, (0, ack), (1, ack)}

Local states of Receiver R: LR = {λ, 0, 1}.

Local states of the Environment: Le: A sequence of pairs of the

forms: (sendbit, Λ), (Λ, sendack), (sendbit, sendack), recording the

history of actions so far.

Global states: G = {(se, sS , sR) | se ∈ Le, sS ∈ LS , sR ∈ LR}

E.g.:

(, 〈〉, 0, λ)

(〈(sendbit, Λ)〉, 0, λ) (message lost)

(〈(sendbit, Λ)(sendbit, Λ)〉, 0, 0) (1st lost, second delivered)
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The set of runs of the system is the set R of sequences r : N → G

such that r(0) = (〈〉, b, λ), b ∈ {0, 1} and for all m ≥ 0:

1. If r(m) = (s, b, λ) then r(m + 1) = (s · (sendbit, Λ), b, λ) or

r(m + 1) = (s · (sendbit, Λ), b, b) or

2. If r(m) = (s, b, b) then r(m + 1) = (s · (sendbit, sendack), b, b) or

r(m + 1) = (s · (sendbit, sendack), (b, ack), b)

3. If r(m) = (s, (b, ack), b) then

r(m + 1) = (s · (Λ, sendack), (b, ack), b)
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Linear Time Temporal Logic

Extend the language of knowledge and time by the following

operators:

©ϕ — ϕ at the next moment of time

�ϕ — ϕ now and at all times in the future

♦ϕ — ϕ now or at some time in the future

φ1 U φ2 – φ1 until φ2, i.e., eventually φ2, and φ1 at all times until

then.
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Examples:

�(rain ⇒ wet)

�(dark− clouds ⇒ © rain)

�(♦rain)

(= it will rain an infinite number of times)

♦�dead
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(I, r, m) |= p if π(r(m))(p) = 1.

(I, r, m) |= ¬φ1 if not (I, r, m) |= φ1

(I, r, m) |= φ1 ∧ φ2 if (I, r, m) |= φ1 and (I, r, m) |= φ2

(I, r, m) |= ©ϕ if (I(r, m + 1) |= ϕ.
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(I, r, m) |= �ϕ if (I, r, m′) |= ϕ for all m′ ≥ m.

(I, r, m) |= ♦ϕ if (I, r, m′) |= ϕ for some m′ ≥ m.

(I, r, m) |= ϕ1Uϕ2 if there exists n ≥ m with (I, r, n) |= ϕ2

and (I, r, k) |= ϕ1 for all k with m ≤ k < n.
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Two points (r, m) and (r′, m′) are indistinguishable to agent i,

written (r, m) ∼i (r′, m′) just when ri(m) = r′i(m
′).

I, (r, m) |= Kiϕ if I, (r′, m′) |= ϕ for all points (r′, m′) ∼i (r, m)

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o
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Message Passing Systems

Σi - initial states for process i

INTi - internal actions of i (int(a, i))

MSG - messages µ

Message passing actions of i:

send(µ, j, i) - i sends message µ to j

receive(µ, j, i) - i receives message µ from j
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A history for agent i is a sequence consisting of an initial state for i,

followed by a sequence of sets of internal and message passing actions

of i.

Example:

s0{send(0, R, S)}{int(wait, S)}{send(0, R, S)}

{int(wait, S)}{send(0, R, S), receive(ack, R, S)}

is a history for S
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Let ri(m) be a history for i for all m.

Say that an event e is in ri(m) if it occurs in one of the sets in the

sequence ri(m)

Say that event e occurs in round m if e is in ri(m) but not in

ri(m − 1).
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A system R is a message passing system based on the sets Σi, INTi

(i = 1 . . . n) and MSG if for all points (r, m) of R and agents i:

MP1. ri(m) is a history over Σi, INTi and MSG

MP2. For every event receive(µ, j, i) in ri(m) there is an event

send(µ, i, j) in ri(m)

MP3. ri(0) is a sequence of length 1, and for all m, ri(m + 1) = ri(m)

or ri(m + 1) = ri(m) · X where X is a set of events of i.
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A message passing system is reliable if every message is eventually

received, i.e.

MP4. If send(µ, j, i) is in ri(m) then there exists m′ ≥ m such that

receive(µ, i, j) is in rj(m
′).
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Asynchronous Message Passing Systems

In an asynchronous system, there are no relationships between the

rates of progress of different agents: the next action of any agent

could take an arbitrary amount of time to happen (but we still have

that a send must occur before a receive).

Formally, say a set V of histories is prefix-closed if h ∈ V and g a

prefix of h implies g ∈ V .
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Given prefix-closed sets V1, Vn of histories, let R(V1, . . . , Vn) be the

set of all runs r satisfying MP1-MP3 such that for all i and m, we

have ri(M) ∈ Vi.

A system R is an asynchronous message passing system if there exist

sets V1, . . . , Vn such that R = R(V1, . . . , Vn).
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What does an agent know in an a.m.p. system?

if i receives µ from j, then i knows that j sent µ.

But not...

– what time it is

– how long ago j sent µ
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Potential Causality (Lamport)

Assumption: each event (send/receive/internal) occurs at most once

in a run

For events e, e′, define e
r
→ e′ if either

1. e′ is a receive event and e is the corresponding send event

2. for some process i, events e and e′ are both in i’s history and e is

before e′, or

3. for some event e′′ we have e
r
→ e′′ and e′′

r
→ e′.
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Given events e, e′, define a proposition Prec(e, e′) by

π(r(m))(Prec(e, e′)) = true if e, e′ both occur in r by time m and e

occurs no later than e′ in r.

(Assume environment component of global state records all events in

the order they occur.)
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Proposition 4.4.3: Let G be all processes, let R be an a.m.p.

system and I = (R, π) with π as defined above. Then

(I, r, m) |= DG(Prec(e, e′)) iff e, e′ have both occurred in r by time

m and e
r
→ e′.
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Process Chains

Assume in the following that each event set in a history contains at

most one event ...

A run r contains a process chain 〈i1, i2, . . . , ik〉 in (r, m . . . m′) if there

is a causal sequence of events e1 → e2 → . . . → ek between times n to

n′ such that ei is an event local to processor pi.
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Message Chain Theorems

Theorem: (Chandy and Misra) In asynchronous message passing

systems I,

(1) if I, (r, n) |= ¬Kik
ϕ and I, (r, n′) |= Ki1Ki2 . . . Kik

ϕ then there is

a process chain 〈ik, . . . , i1〉 in r in the interval from n to n′.

(2) if I, (r, n) |= Ki1Ki2 . . . Kik
ϕ and I, (r, n′) |= ¬Kik

ϕ

then there is a process chain 〈i1, . . . , ik〉 in r in the interval from n to n′.
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Proof of the message chain theorem uses the following:

If i1 . . . ik is a sequence of agents, define (r, m) ∼i1...ik
(r′, m′)

inductively by

1. k = 1 and (r, m) ∼i1 (r′, m′), or

2. k > 1 and (r, m) ∼i1 (r′′, m′′) and (r′′, m′′) ∼i2...ik
(r′, m′) for

some point (r′′, m′′)

Lemma: Let R be an a.m.p. system, let r ∈ R and let m < m′. For

all sequences of processes i1 . . . ik, either (r, m) ∼i1...ik
(r, m′), or

i1 . . . ik is a process chain in (r, m . . . m′).
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Application: mutual exclusion protocols

Suppose that the code of a process is divided into a critical section

and uncritical sections.

A mutual exclusion protocol gives a way for processes to

communicate that ensures distinct processes are not in their critical

sections simultaneously.

I is a system for mutual exclusion if

I |=
∧

i6=j

¬(criticali ∧ criticalj)

Slide 28

Note criticali depends only on i’s local state

If I is an a.m.p. system for mutual exclusion and m < m′ and i 6= j

and (I, r, m) |= criticali and (I, r, m′) |= criticalj then

(I, r, m) |= KiKj¬criticalj and (I, r, m′) |= ¬Kj¬criticalj

So 〈i, j〉 is a process chain in (r, m . . . m′), and at least one message is

sent in (r, m . . . m′).

Corollary: If processes i1, . . . , ik are in their critical sections in that

order, at least k − 1 messages are sent.
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No gain or loss of common knowledge in a.m.p.
systems

Theorem: Suppose I is an interpreted a.m.p. system and G is a

group of processes with |G| ≥ 2. Then for all formulas φ and times

m ≥ 0 we have (I, r, m) |= CGφ iff (I, r, 0) |= CGφ.
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