Slide 1	COMP3152/9152 Lecture 5 Dynamics of Common Knowledge Ron van der Meyden	Slide 3	Assume T is serial: $\forall s \in S_e \exists t \in S_e(sTt)$ A run of an environment E is an <i>infinite</i> sequence $\rho = s_0 s_1 \dots$ of states of E such that 1. $s_0 \in I_e$, 2. $s_k T s_{k+1}$ for all $k \ge 0$, A trace of E is a finite sequence $\tau = s_0 \dots s_m$ of states satisfying conditions 1 and 2.
Slide 2	 Environments (transition form) An environment in transition form is a tuple of the form E = ⟨S_e, I_e, T, O, π_e⟩ where 1. S_e is a set of states of the environment. 2. I_e ⊆ S_e, is the set of <i>initial states</i> of the environment. 3. T ⊆ S_e × S_e is a transition relation. 4. O is a tuple ⟨O₁,,O_n⟩ such that for each i = 1n, O_i : S_e → O is an observation function O. 5. π_e : S_e × Prop → {0,1} is a valuation. 	Slide 4	Local state defined wrt a view Let ρ be a run of E . A view associates a local state with each agent at each point of time, determining a mapping $\rho^v : \mathbf{N} \to L^n \times S_e$ In all cases $\rho_e^v(m) = \rho(m)$ Examples: 1. The observational view: $\rho_i^{obs}(m) = O_i(\rho(m)))$ 2. The synchronous perfect recall view: $\rho_i^{spr}(m) = O_i(\rho(0)) \dots O_i(\rho(m))$ 3. The asynchronous perfect recall view: $\rho_i^{pr}(m)$ is $\rho_i^{spr}(m)$ with consecutive repetitions removed.

lide 5	System Generated by an Environment wrt a View Let v be a view of an environment E . Define $\mathcal{I}^v(E) = (\mathcal{R}^v(E), \pi)$ to be the interpreted system with 1. $\mathcal{R}^v(E)$ the set of ρ^v such that ρ is a run of E . 2. $\pi(r(m), p) = \pi_e(r_e(m), p)$ for all $r \in \mathcal{R}^v(E), p \in \Phi$	Slide 7	Let $v \in \{\text{obs}, \text{pr}, \text{spr}\}$ Proposition: Suppose $(r, m), (r', m)$ are points of $\mathcal{I}^v(E)$ and let $\varphi \in \mathcal{L}_{\{K_1, \dots, K_n, C\}}$. If $trace(r, m) = trace(r', m')$ then $\mathcal{I}^v(E), (r, m) \models \varphi$ iff $\mathcal{I}^v(E), (r', m') \models \varphi$. If τ is a trace of E , write $\mathcal{I}^v(E), \tau \models \varphi$ when $\mathcal{I}^v(E), (r, m) \models \varphi$ for some point (r, m) with $trace(r, m) = \tau$.
Slide 6	Recall, for each agent <i>i</i> we define the relation \sim_i on points by $(r,m) \sim_i (r',m')$ if $r_i(m) = r'_i(m)$. Given a point (r,m) of $\mathcal{I}^v(E)$, define $trace(r,m) = r_e(0) \dots r_e(m)$. For two traces τ , τ' , define $\tau \sim_i \tau'$ if there exist points (r,m) , (r',m') such that $trace(r,m) = \tau$ and $trace(r',m') = \tau'$ and $(r,m) \sim_i (r',m')$.	Slide 8	 Consider an environment E in which agent s (sender) can send the single message "hello" to agent r (receiver), but can only do this once agent s observes a variable that records whether or not the message has been sent agent r observes a variable that records whether the message has arrived the channel either delivers the message either immediately, or with a delay of one second the proposition p means "the message has arrived"

Slide 9	$< e:dly, s:send, r:*>$ $< e:*, s:*, r:*>$ $I_e = \{w\}$ $\pi_e(x, p) = \mathbf{true} \text{ iff } x = d.$ $O_s(w) = \bot, \qquad O_s(t) = O_s(d) = sent$ $O_r(w) = O_r(t) = \bot, \qquad O_r(d) = rcvd$	Slide 11	Notation: If $\tau = x_0, \ldots x_k$ is a sequence, then $fin(\tau) = x_n$ is the last element.
ide 10	$\texttt{traces}(E) = \{w^k d^m \mid k > 0, m \ge 0\} \cup \{w^k t d^m \mid k > 0, m \ge 0\}$	Slide 12	Message transmission example (observational view) Suppose agent s sends the message at time 1, and the environment delivers the message immediately, then the agents wait for $n-1$ ticks of the clock, i.e. consider the trace wd^{n-1} Under the observational view, • $wd^{n-1} \sim_r \tau$ implies $fin(\tau) = d$ • $wd^{n-1} \sim_s w^{n-1}t$ Thus $\mathcal{I}^{obs}(E), wd^{n-1} \models K_r p$ but $\mathcal{I}^{obs}(E), wd^{n-1} \models \neg K_s p.$

Given an environment E and view v, define $M_E^v = \langle \texttt{traces}(E), \sim_1, \ldots, \sim_n, \pi \rangle$ where the \sim_i are the equivalence relations on traces defined wrt the view and $\pi(\tau, p) = \pi_e(\texttt{fin}(\tau), p)$.

lide 17

lide 18

Proposition: For $\tau \in traces(E)$ and $\phi \in \mathcal{L}_{\{K_1,\ldots,K_n,C\}}$,

 $M_E^v, \tau \models \phi$ iff $\mathcal{I}^v(E), \tau \models \phi$

Model Checking at a Trace (Observational View) Let $E = \langle S_e, I_e, T, O, \pi_e \rangle$ be a finite state environment. A state $t \in S_e$ is *reachable* if sT^*t for some $s \in I_e$. Define $M = \langle W, \mathcal{K}_1, \dots, \mathcal{K}_n, \pi \rangle$ by 1. W is the set of reachable states of E. 2. $s\mathcal{K}_i t$ iff $O_i(s) = O_i(t)$

3. $\pi = \pi_e$

Proposition: For $\phi \in \mathcal{L}_{\{K_1,...,K_n,C\}}$, we have $\mathcal{I}^{\mathsf{obs}}(E), \tau \models \phi$ iff $M, \texttt{fin}(\tau) \models \phi.$ Slide 19 **Corollary:** For $\varphi \in \mathcal{L}_{\{K_1,\ldots,K_n,C\}}$, determining whether $\mathcal{I}^{obs}(E), \tau \models \varphi$ can be done in time $O(|E| \cdot |\varphi|)$. **Progression Structures** A progression structure for environment E is a pair $\langle M, \sigma \rangle$ consisting of an S5_n Kripke structure $M = \langle W, \mathcal{K}_1, \dots, \mathcal{K}_n, \pi \rangle$ and a *state* mapping $\sigma: W \to S_e$ such that Slide 20 $\pi(w, p) = \pi_e(\sigma(w), p)$ for all $w \in W$ and $p \in Prop$ **Example:** $P_{E,n} = \langle M_n, \texttt{fin} \rangle$, where M_n is the substructure of $M_E^{\texttt{spr}}$ consisting of the traces of length n

ide 21	If $P = \langle M, \sigma \rangle$, Write $P, w \models \phi$ if $M, w \models \phi$.	Slide 23	Proposition: Let $\tau = s_0 \dots s_k$ be a trace of an environment E and let $\phi \in \mathcal{L}_{\{K_1,\dots,K_n,C\}}$. Then $\mathcal{I}^{spr}(E), \tau \models \phi$ iff $P_{E,k}, w_\tau \models \phi$, where $w_\tau = ((\dots (((s_0, s_1), s_2), s_3), \dots, s_k)).$ Proposition: $P_{E,n+1}$ is isomorphic to $P_{E,n} * E$
ide 22	The environment E operates on its progression structures by $\langle M, \sigma \rangle * E = \langle M', \sigma' \rangle$ where $M' = \langle W', \mathcal{K}'_1, \dots, \mathcal{K}'_n, \pi' \rangle$ is the Kripke structure with 1. $W' = \{(w, s) \mid w \in W, s \in S_e, \sigma(w)Ts\}$ 2. $(w, s)\mathcal{K}'_i(v, t)$ iff $w\mathcal{K}_i v$ and $O_i(s) = O_i(t)$ 3. $\pi'((w, s), p) = \pi_e(s)$ 4. $\sigma'((w, s)) = s$	Slide 24	This means we can check $\mathcal{I}^{spr}(E), \tau \models \phi$ as follows: 1. Construct $P_{E,0}$, 2. For $i = 1 \dots k$ construct $P_{E,k} = P_{E,k-1} * E$ 3. Check $P_{E,k}, w_{\tau} \models \phi$ using finite state model checking.

lide 25	References Constructing finite state implementations of knowledge based programs with perfect recall, R.van der Meyden, PRICAI workshop on theorerical and practical foundations of intelligent agents, 1996