Problem:
Given a finite state environment E, and a formula ϕ, determine if $E,(r,0) \models \phi$ for all runs r of E.

CTL - a restricted fragment of branching time temporal logic
We defined branching time temporal logic so that if ϕ is a formula then $A\phi$ and $E\phi$ are formulas
So, e.g., $A((\bigcirc p) \lor p \bigvee q)$ is a formula
CTL is the logic in which the branching operators A, E apply only to formulas in which the outermost operator is a temporal (not boolean) operator:
E.g. $A((\bigcirc p) \lor p \bigvee q)$ is not a CTL formula
But $A(p \bigvee q), E \bigcirc p A\Box E p$ are CTL formulas

Model Checking CTL + Knowledge, Observational View

Theorem: Model Checking of $\phi \in \mathcal{L}(K_1,\ldots,K_n,C,\forall \bigcirc, \forall \bigvee, \exists \bigvee)$ in E with respect to obs is in PTIME.
Let S' be the set of reachable states of E

label states of $M = \langle S', K_1, \ldots, K_n, \pi_e \rangle$ by subformulas of ϕ

1. label s by $K_i \psi$ ($C\psi$) if sK_it ($sK_tC t$) implies t labelled ψ

2. label s by $\forall \psi$ if sTt implies t labelled by ψ

3. label s by $\exists (\psi_1 U \psi_2)$ if there exists a sequence $s = s_0, s_1, \ldots, s_k$
 such that s_k labelled ψ_2 and for $l < k$ s_lTs_{l+1} and s_l is labelled ψ_1

4. label s by $\neg \forall (\psi_1 U \psi_2)$ if there exists a sequence $s = s_0, s_1, \ldots, s_k, \ldots s_m$
 of states such that
 (a) s_lTs_{l+1} for all $l < m$
 (b) $s_k = s_m$
 (c) $\{s_k, \ldots, s_m\} \cap \alpha \neq \emptyset$
 (d) either s_l is not labelled ψ_2 for all $l \leq m$, or, for the least l
 such that s_l is labelled ψ_2 there exists $l' < l$ such that $s_{l'}$ is not labelled ψ_1

It’s not necessary to construct every state to run this algorithm, it can be done symbolically.

Step 1: represent each state s as a Boolean assignment to a set of state variables $V = \{v_1, \ldots, v_n\}$: $s: V \rightarrow \{0, 1\}$

Step 2: represent a set X of states as a Boolean function $f_X : \{0, 1\} \times \ldots \times \{0, 1\} \rightarrow \{0, 1\}$ with n arguments x_1, \ldots, x_n, so that $f_X(x_1, \ldots, x_n) = 1$ iff $s \in X$ where s is the state with $s(v_1) = x_1, \ldots s(v_n) = x_n$.

Step 3: Compute the set $[\phi] = \{s \in S | E, s \models \phi\}$ using the above rule setwise, using this representation: e.g., $f_{[\phi_1 \land \phi_2]} = f_{[\phi_1]} \land f_{[\phi_2]}$.

Step 4: represent these functions as binary decision diagrams....
Operations on BDD’s
Given BDD’s representing boolean functions \(f, g \), we can compute BDD’s representing

1. the functions \(\neg f, (f \land g), (f \lor g) \), defined pointwise, e.g.
 \((f \land g)(v) = f(v) \land g(v) \).

2. the function \(\exists v(f) \). If the arguments of \(f \) are \(u, v, w \), this is defined by
 \((\exists v(f))(u, w) = f(u, 0, w) \lor f(u, 1, w) \).

Model Checking with respect to Perfect Recall
Theorem [van der Meyden & Shilov 99]: Model Checking \(\mathcal{L}_{\{\bigcirc, u, K_1, \ldots, K_n\}} \) with respect to perfect recall is decidable, but non-elementary in complexity.

This lecture: Focus on implementation for formulas of the form \(\bigcirc^k \phi \) where \(\phi \in \mathcal{L}_{\{K_1\}} \).
Let o_j be a sequence of boolean variables representing an observation of agent 1.

Let s be a sequence of variables representing a state of the environment.

Define

$$f_k(o_0, \ldots, o_k, s) = 1 \text{ iff there exists a run } r \text{ such that}$$

1. agent 1’s observations during $[0, \ldots, k]$ in r are (o_0, \ldots, o_k)
2. $r(k) = s$
Computing f_k recursively

$$f_{k+1}(o_0, \ldots, o_{k+1}, s) = \exists t(f_k(o_0, \ldots, o_k, t) \land T(t, s) \land O_i(s) = o_{k+1})$$

\[Sat_p(o_0, \ldots, o_k, s) = \pi_e(p, s) \]
\[Sat_{\neg \phi}(o_0, \ldots, o_k, s) = \neg Sat_{\phi}(o_0, \ldots, o_k, s) \]
\[Sat_{\alpha \land \beta}(o_0, \ldots, o_k, s) = Sat_{\alpha}(o_0, \ldots, o_k, s) \land Sat_{\beta}(o_0, \ldots, o_k, s) \]
\[Sat_{K_1\alpha}(o_0, \ldots, o_k, s) = \forall s'(f_k(o_0, \ldots, o_k, s) \Rightarrow Sat_{\alpha}(o_0, \ldots, o_k, s')) \]

Model checking $\bigcirc^k \phi$:

$$\forall o_0 \ldots o_k s(f_k(o_0, \ldots, o_k, s) \Rightarrow Sat_{\phi}(o_0, \ldots, o_k, s))$$

MCK: a model checker for the logic of knowledge and time

A system developed at UNSW. It can be downloaded from

http://www.cse.unsw.edu.au/~mck

You can also run it (preferably on williams) from

/import/kamen/1/peteg/bin/mck-cudd

Clock View

If $\rho = s_0, s_1, \ldots$ is a run of an environment, the clock view is the (synchronous) local state assignment defined by

$$\rho^\text{clock}_i(m) = (m, O_i(\rho(m)))$$
MCK: Current Capability

<table>
<thead>
<tr>
<th></th>
<th>Observational</th>
<th>Clock</th>
<th>Perfect Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^\phi, \phi \in L{K_i})</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
</tr>
<tr>
<td>(L(X, K_1, \ldots, K_n))</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
</tr>
<tr>
<td>(L(\text{CTL}, K_1, \ldots, K_n, C))</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
</tr>
<tr>
<td>(L(\text{LTL}, K_1, \ldots, K_n, C))</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
<td>(\text{spec}_{\text{ltl}})</td>
</tr>
</tbody>
</table>

(sp = synchronous perfect recall)