ölide 1	COMP3152/9152 Lecture 6 Model Checking Knowledge and Time Ron van der Meyden	Slide 3	CTL - a restricted fragment of branching time temporal logic We defined branching time temporal logic so that if ϕ is a formula then $A\phi$ and $E\phi$ are formulas So, e.g., $A((\bigcirc p) \lor p \ U \ q)$ is a formula CTL is the logic in which the branching operators A, E apply only to formulas in which the outermost operator is a temporal (not boolean) operator: E.g. $A((\bigcirc p) \lor p \ U \ q)$ is not a CTL formula But $A(p \ U \ q), E \bigcirc p \ A \Box E \Diamond p$ are CTL formulas
Slide 2	Problem: Given a finite state environment E , and a formula ϕ , determine if $E, (r, 0) \models \phi$ for all runs r of E .	Slide 4	Model Checking CTL + Knowledge, Observational View Theorem: Model Checking of $\phi \in \mathcal{L}_{\{K_1,,K_n,C,\forall \bigcirc,\forall \ U, \exists \ U\}}$ in E with respect to obs is in PTIME.

1

Slide 5

Slide 6

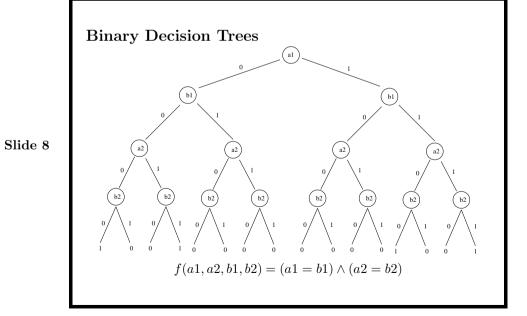
It's not necessary to construct every state to run this algorithm, it can be done symbolically.....

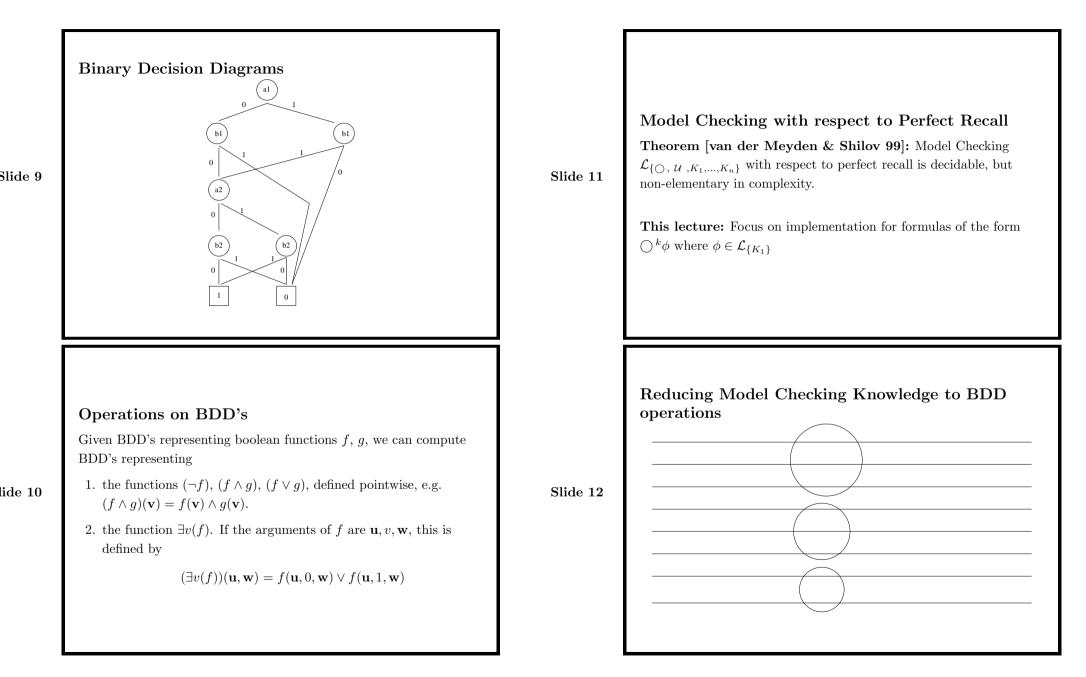
Step 1: represent each state s as a Boolean assignment to a set of state variables $V = \{v_1, \ldots, v_n\}$: $s: V \to \{0, 1\}$

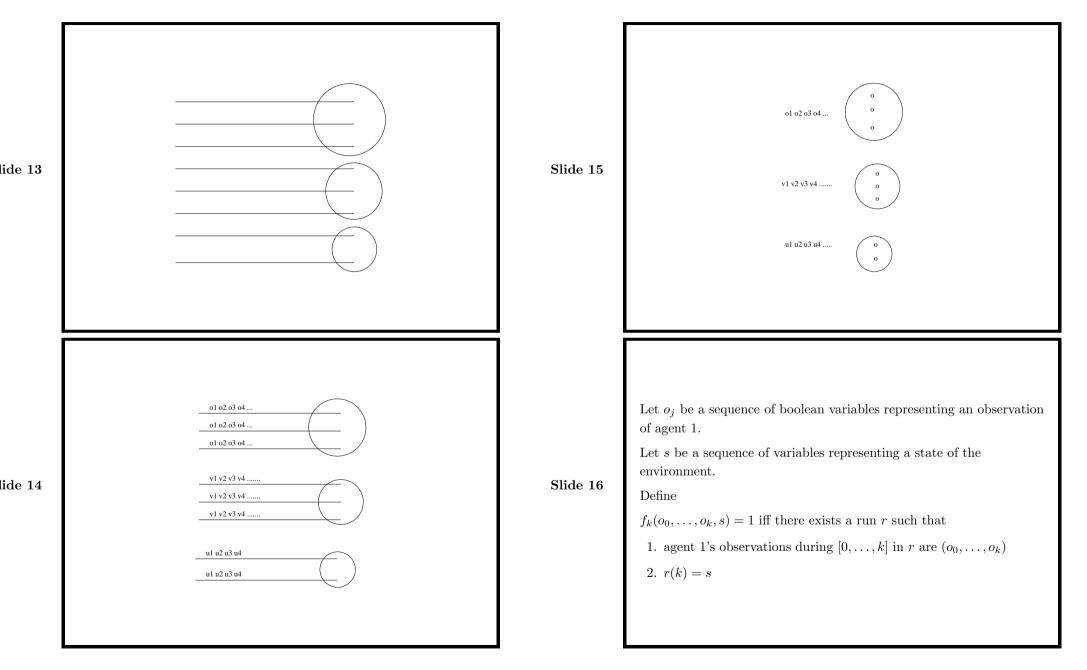
Step 2: represent a set X of states as a Boolean function $f_X : \{0, 1\} \times \ldots \times \{0, 1\} \rightarrow \{0, 1\}$ with n arguments x_1, \ldots, x_n , so that $f_X(x_1, \ldots, x_n) = 1$ iff $s \in X$ where s is the state with $s(v_1) = x_1, \ldots, s(v_n) = x_n$.

Slide 7

Step 3: Compute the set $[\phi] = \{s \in S \mid E, s \models \phi\}$ using the above rule *setwise*, using this representation: e.g., $f_{[\phi_1 \land \phi_2]} = f_{[\phi_1]} \land f_{[\phi_2]}$. Step 4: represent these functions as binary decision diagrams....







17	Computing f_k recursively $f_{k+1}(o_0, \ldots, o_{k+1}, s) = \exists t(f_k(o_0, \ldots, o_k, t) \land T(t, s) \land O_i(s) = o_{k+1})$	Slide 19	MCK: a model checker for the logic of knowledge and time A system developed at UNSW. It can be downloaded from http://www.cse.unsw.edu.au/~mck You can also run it (preferably on williams) from /import/kamen/1/peteg/bin/mck-cudd
18	$\begin{aligned} Sat_p(o_0, \dots, o_k, s) &= \pi_e(p, s) \\ Sat_{\neg \phi}(o_0, \dots, o_k, s) &= \neg Sat_{\phi}(o_0, \dots, o_k, s) \\ Sat_{\alpha \land \beta}(o_0, \dots, o_k, s) &= Sat_{\alpha}(o_0, \dots, o_k, s) \land Sat_{\beta}(o_0, \dots, o_k, s) \\ Sat_{K_1\alpha}(o_0, \dots, o_k, s) &= \forall s'(f_k(o_0, \dots, o_k, s) \Rightarrow Sat_{\alpha}(o_0, \dots, o_k, s')) \\ \text{Model checking} \bigcirc {}^k \phi : \\ \forall o_0 \dots o_k s(f_k(o_0, \dots, o_k, s) \Rightarrow Sat_{\phi}(o_0, \dots, o_k, s)) \end{aligned}$	Slide 20	Clock View If $\rho = s_0, s_1, \ldots$ is a run of an environment, the clock view is the (synchronous) local state assignment defined by $\rho_i^{clock}(m) = (m, O_i(\rho(m)))$

lide

lide

CK: Current	Capabilit	ÿ	
	Observational	Clock	Perfect Recall
$\mathbf{X}^n \phi, \ \phi \in \mathcal{L}_{\{K_i\}}$	spec_obs_ltl	spec_clk_xn	spec_spr_xn
$\mathcal{L}_{\{\mathbf{X},K_1,\ldots,K_n\}}$	spec_obs_ltl		spec_spr_ltl_nested
	spec_obs_ctl	spec_clk_ctl_nested	
	spec_obs_ctl		
$\mathcal{L}_{\{LTL,K_n,\ldots,K_n,C\}}$	spec_obs_ltl		
$\mathcal{L}\{\mathbf{X}, K_1, \dots, K_n\}$ $\mathcal{L}_{\{\mathbf{X}, K_1, \dots, K_n\}}$ $\mathcal{L}_{\{CTL, K_1, \dots, K_n, C\}}$ $\mathcal{L}_{\{LTL, K_n, \dots, K_n, C\}}$ or = synchronous	spec_obs_ctl spec_obs_ctl spec_obs_ltl		spec-spr-m-re

lide 21