
Slide 1

COMP3152/9152

Lecture 7

Knowledge-Based Programs

Ron van der Meyden

Slide 2

A notation for programs

Case of

if φ1 do action1

...

if φn do actionn

end case

means:

repeat forever: nondeterministically choose i such that φi is true, do

actioni

1

Slide 3

Standard programs

Standard programs for agent i are programs in which the φi are

boolean formulas over atomic propositions “local to agent i”

Example:

Case of

if ¬ receivedS(ack,R) do sendS(m,R)

if receivedS(ack,R) do skip

end case

Slide 4

A proposition p is local to agent i according to an interpretation π

over a set of global states G if for all s, t ∈ G, if s ∼i t then

π(s)(p) = π(t)(p).

π is compatible with Pgi if every proposition p that occurs in Pgi is

local to i according to π.

If φ is a boolean combination of propositions local to i according to π

and l is a local state of agent i, define (π, l) |= φ if (π, g) |= φ for all

global states g with gi = l.

2

Slide 5

Knowledge-based programs

Knowledge-based programs for agent i are programs in which the φ

may talk about the knowledge of agent i

E.g., After father says “at least one of you is muddy”, child i behaves

as if running the following knowledge-based program:

Case of

if Ki(muddyi) ∨ Ki(¬muddyi) do Say “Yes”

if ¬(Ki(muddyi) ∨ Ki(¬muddyi)) do Say “No”

end case

Slide 6

A robotics example

. . .

A knowledge-based program:

Case of

if Kr(posn ∈ Goal) do halt

end case

What is the semantics of such programs? (FHMV book version)

3

Slide 7

Joint actions

Let ACTe be a set of actions that the environment can perform

For each agent i, let ACTi be a set of actions that agent i can perform

(examples: say “yes”, send message m to agent j, the “skip/do

nothing” action Λ)

A joint action is a tuple (ae, a1, . . . , an) such that ae ∈ ACTe and

ai ∈ ACTi for each i = 1 . . . n.

Write ACT for the set of joint actions

Slide 8

Let the set of global states be G = Le × L1 × . . . × Ln.

A transition function is a mapping τ : ACT → (G → G)

if a is a joint action and s is a state, then τ(a)(s) is the next state

when a is performed in state s.

Typically, τ((Λ, Λ, . . . , Λ))(s) = s

4

Slide 9

Protocols

A protocol for agent i (with local states Li) is a mapping

Pi : Li → P(ACTi) \ {∅}

Pi(l) = {a1, . . . , an} means that when in local state l, agent i’s next

action is (nondeterministically) one of a1, . . . , an

Pi is deterministic if |Pi(l)| = 1 for all l ∈ Li

A joint protocol is a tuple (P1, . . . , Pn) where each Pi is a protocol of

agent i = 1 . . . n

Slide 10

Admissibility Conditions

We sometimes need to express constraints on the set of runs that

cannot be captures using just initial states and protocols.

E.g. Every message sent is eventually delivered.

Represent these using a set Ψ of runs, called an admissibility

condition.

E.g. Ψ is the set of runs in which all messages sent are eventually

delivered

5

Slide 11

Contexts

A context is a tuple γ = (Pe,G0, τ, Ψ) where

1. Pe : Le → ACTe is a protocol for the environment

2. G0 ⊆ G is a set of initial global states,

3. τ : ACT → (G → G) is a transition function,

4. Ψ is an admissibility condition on runs

An interpreted context is a pair (γ, π) where π is an interpretation of

a set of atomic propositions Prop in the global states G of γ.

Slide 12

A run r is consistent with a joint protocol P = (P1, . . . , Pn) in

context γ = (Pe,G0, τ, Ψ) if

1. r(0) ∈ G0

2. for all m ≥ 0 there exists ae ∈ Pe(re(m)) and ai ∈ Pi(ri(m)) (for

i = 1 . . . n) such that r(m + 1) = τ((ae, a1, . . . , an))(r(m))

3. r ∈ Ψ

Write R
rep(P, γ) for the set of all runs that are consistent with

protocol P in context γ

6

Slide 13

Interpreting Standard Programs as Protocols

Let (γ, π) be an interpreted context and

Pgi = Case of

if φ1 do a1

...

if φn do an

end case

a standard program for agent i such that π is compatible with Pgi.

Define the protocol Pgπ
i by

Pgπ
i (l) =

{ai | (π, l) |= φi, i = 1 . . . n} if this set is not ∅

{Λ} otherwise

Slide 14

For joint programs Pg = (Pg
1
, . . . , Pgn),

Pgπ = (Pgπ
1
, . . . , Pgπ

n)

The interpreted system representing a joint program Pg in the

interpreted context (γ, π) is the system

Irep(Pg, γ, π) = (Rrep(Pgπ, γ), π)

7

Slide 15

Can we give a similar definition Pgπ for knowledge-based programs?

A problem:

to determine the set of runs produced by executing a knowledge

based program, we need to know which actions are enabled at each

point (r, m).

to decide whether an action ai is enabled by a knowledge-based

program at (r, m), we need to evaluate the formula φi.

When φi contains knowledge operators, this means looking at points

(r′, m′) such that (r′, m′) ∼i (r, m)

For that, we need to know the set of runs.

This is circular!

Slide 16

Resolution: provide a way of testing whether a given standard

program/protocol implements a knowledge-based program.....

Given an interpreted system I = (R, π) and a joint knowledge-based

program Pg = (Pg
1
, . . . , Pgn), define a joint protocol

PgI = (PgI
1
, . . . , PgIn), as follows.

8

Slide 17

A knowledge-based formula φ is local to agent i according to π if it is

either a proposition p local to i according to π, a formula of the form

Kiφ, or a boolean combination of these

Let I = (R, π) be an interpreted system. If l is a local state of agent

i and φ is a formula local to i according to π, define (I, l) |= φ by

1. (I, l) |= p if (π, l) |= p (as defined above),

2. (I, l) |= Kiφ if (I, r, m) |= φ for all points (r, m) in I such that

ri(m) = l,

3. (Booleans as usual)

Slide 18

Let I = (R, π) be an interpreted system and

Pgi = Case of

if φ1 do a1

...

if φn do an

end case

a knowledge-based program for agent i such that each φj is local to i

according to π.

Define the protocol PgIi by

PgIi (l) =

{ai | (I, l) |= φi, i = 1 . . . n} if this set is not ∅

{Λ} otherwise

9

Slide 19

A system I represents the knowledge-based program Pg in an

interpreted context (γ, π) if π is compatible with Pg and

I = Irep(PgI , γ, π).

A standard protocol P is an implementation of the knowledge-based

program Pg in an interpreted context (γ, π) if IP = Irep(P, γ, π)

represents Pg in (γ, π).

Note this implies IP = Irep(PgIP , γ, π).

A standard program Pgs is an implementation of the

knowledge-based program Pgk in an interpreted context (γ, π) if the

protocol Pgπ
s is an implementation of Pgk in (γ, π).

Slide 20

Specifications

Let φ be a formula of the language of knowledge and time

A protocol P satisfies φ in context (γ, π) if for all runs

r ∈ R
rep(P, γ), we have

((Rrep(P, γ), π), r, 0) |= φ .

A (knowledge-based) program Pg satisfies φ in (γ, π) if for all systems

I representing Pg in (γ, π), for all runs r of I we have

(I, r, 0) |= φ .

10

Slide 21

Specification of Robot

. . .

Goal = {2, 3, 4}

Safety part: �(halted ⇒ posn ∈ Goal)

Liveness part: ♦halted

Slide 22

Implementations of the robot example

Let PΛ be the deterministic protocol that always does Λ (never halt)

Let γ be a context in which

- the environment nondeterministically moves the position one step,

or none

- the robot’s local state is the sensor reading

- the sensor reading is (nondeterministically) posn+ x, x ∈ {−1, 0, 1}

Then

Irep(PΛ, γ, π) |= Kr(posn ∈ {2, 3, 4}) ⇐⇒ sensor = 3)

11

Slide 23

Let MP be the knowledge-based program

if Kr(posn ∈ {2, 3, 4}) do halt

Let MPs be the standard program

if sensor=3 do halt

Then MPs is an implementation of MP in (γ, π)

MPs satisfies the specification �(halted⇒ posn ∈ {2, 3, 4})

But NOT the liveness part: ♦halted

Slide 24

Let MP ′

s be the standard program

if sensor ∈ {3, 4, 5} do halt

Then MPs is also an implementation of MP in (γ, π)

MPs satisfies the safety specification �(halted⇒ posn ∈ {2, 3, 4})

AND the liveness part: ♦halted

12

Slide 25

A KBP with NO implementations

There are NO implementations of the KBP

if K1(¬♦(bit = 1)) do bit := 1

in a context where the bit is initially 0, agent 1’s local state is the

value of bit, and the environment does nothing

Slide 26

Unique Implementations

The above examples show that we can have 0,1 or many

implementations of a knowledge-based program.

(So knowledge-based programs are more like specifications than like

programs.)

When can we be sure there is a unique implementation?

13

Slide 27

Nonexcluding Admissibility Conditions

The admissibility condition Ψ of a context γ = (Pe,G0, τ, Ψ) is

nonexcluding if for every protocol P and all times m, if

r : [0, . . .m] → G satisfies

1. r(0) ∈ G0 and

2. for all k ∈ [0, . . . , m − 1] and

(ae, a1, . . . , an) ∈ Pe(r(k)) × P1(r1(k)) × . . . × Pn(rn(k)) we have

r(k + 1) = τ((ae, a1, . . . , an))(r(k)),

then there exists a run r′ ∈ R
rep(P, γ) such that

r[0 . . .m] = r′[0 . . .m].

Slide 28

An interpreted system I provides witnesses for Kiφ if for every point

(r, m) of I, if (I, r, m) |= ¬Kiφ then there exists m′ ≤ m such that

(r, m) ∼i (r′, m′) and (I, r′, m′) |= ¬φ.

Lemma: Every synchronous system provides witnesses for every

formula Kiφ.

14

Slide 29

An interpreted context (γ, π) provides witnesses for a

knowledge-based program Pg if every interpreted system I

representing Pg in (γ, π) provides witnesses for every formula Kiφ

that appears as a subformula of a test in Pg.

Slide 30

Theorem: Let Pg be a knowledge-based program in which tests do

not involve temporal operators, let γ be a nonexcluding context, and

assume that the context (γ, π) provides witnesses for Pg. Then there

is a unique interpreted system representing Pg in (γ, π).

(There may still be many protocols/programs implementing Pg, but

these differ only on unreachable states and syntactic details.)

15

