
A Program Refinement Framework Supporting
Reasoning about Knowledge and Time

Kai Engelhardt, Ron van der Meyden, and Yoram Moses

1 School of Computing Sciences
University of Technology, Sydney, Australia

[ke|ron]@socs.uts.edu.au
2 Department of Electrical Engineering

Technion, Haifa, Israel
moses@ee.technion.ac.il

Abstract. This paper develops a highly expressive semantic framework for pro-
gram refinement that supports both temporal reasoning and reasoning about the
knowledge of a single agent. The framework generalizes a previously developed
temporal refinement framework by amalgamating it with a logic of quantified
local propositions, a generalization of the logic of knowledge. The combined
framework provides a formal setting for development of knowledge-based pro-
grams, and addresses two problems of existing theories of such programs: lack
of compositionality and the fact that such programs often have only implemen-
tations of high computational complexity. Use of the framework is illustrated by
a control theoretic example concerning a robot operating with an imprecise posi-
tion sensor.

1 Introduction

The knowledge-basedapproach to the design and analysis of distributed systems, in-
troduced by Halpern and Moses [6] involves the use of modal logics of knowledge.
One of the key contributions of this approach is the notion ofknowledge-based pro-
grams [5, 4], which generalize standard programs by allowing the tests in conditional
constructs to be formulas in the logic of knowledge. Such programs contain statements
of the form “if you know thatX then doA elseB”. This provides a high level abstrac-
tion of distributed programs that allows for perspicuous descriptions of how an agent’s
actions are related to its state of information (which, in a distributed system, is typically
incomplete) about its environment.

In its current state of development, the knowledge-based approach has a number of
limitations, among them that:

1. The formal methodology for developing and reasoning about knowledge-based pro-
grams is at present only weakly developed.

2. The existing semantics for knowledge-based programs is based on a particular in-
terpretation of knowledge that requires a complete description of the implementing
program. This prevents the compositional development of program fragments.

3. Knowledge-based programs often have only implementations of unacceptably high
computational complexity.

2 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

This paper is a step in the direction of the formulation of the knowledge-based approach
that addresses these limitations.

One of the starting points for our work is the observation that knowledge-based
programs are in one respect more like specifications than like standard programs. They
cannot be directly executed — instead, their meaning is defined by a relation of “im-
plementation” between knowledge based programs and standard programs: a given
knowledge-based program may have no, one, or many concrete programs as its im-
plementations. As a specification formalism, however, knowledge-based programs are
unbalanced, abstracting only the tests performed by agents, but providing no abstraction
mechanism for their actions [11].

Action abstraction is handled much better inrefinement calculi[1, 9, 10], also known
as “broad spectrum” languages. Such calculi view programs and specifications as hav-
ing the same semantic type, and support a formal methodology for the development
of programs that are “correct by design”, where one begins with a specification and
transforms it to an implementation by means of a sequence of correctness preserving
refinement steps. The focus in this area has been on sequential programs and atemporal
assertions but recently some approaches to refinement admitting the expressive power
of temporal logics have been developed [13, 7].

A first step in the direction of a refinement calculus suited to the knowledge-based
development of programs was taken in van der Meyden and Moses [17, 15], where it
is shown how to develop a refinement approach capturing certain types of temporal
reasoning that will be critical in knowledge-based program development. We further
develop these ideas in the present paper, by showing how they may be extended to ac-
commodate knowledge-based reasoning. Significantly, the framework we define admits
compositional program development.

In developing the extension, we also seek to address the final limitation of knowl-
edge-based programs alluded to above. To implement the statement “if you know that
X then doA elseB”, a concrete program must doA exactly when it is in a local state
(captured by the values of the variables and storage it maintains locally) that carries the
information thatX is true. The difficulty with this is that computing whether a local
state bears the information thatX may have very high computational complexity [12,
14, 18]. As argued by Engelhardt, van der Meyden and Moses [3], in practice, it may
often be sufficient to use conditions on the agent’s state of information that are sound,
but not complete, tests of its knowledge. Such tests may be expressed in theLogic of
Local Propositions(LLP) [3].

The present paper integrates the temporal refinement framework of van der Mey-
den and Moses [15] with the logic of local propositions. Although our ultimate aim is
a framework for the development of distributed systems, we deal in this paper with a
single agent operating synchronously with its environment: asynchrony and multiple
agents introduce complexities that we plan to address in the future. The main novelty
is the introduction of a programming/specification construct that resembles a quantifi-
cation over local propositions. This construct makes it possible to write specifications
stating that the agent conditions its behaviour on alocal test for some property of in-
terest, without stating explicitly what test is used. The introduction of this construct
necessitates an adaptation of the semantics of the temporal refinement of [15].

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 3

The paper is structured as follows. Section 2 defines an assertion language that
adapts the LLP semantics to the richer temporal setting required for reasoning about
programs. Section 3 defines the syntax and semantics of our broad spectrum program-
ming and specification language that incorporates the assertion language from Sect. 2.
Section 4 defines the semantic refinement relation we use for this class of programs
and develops a number of refinement rules valid for this relation. Section 5 illustrates
the use of the framework by presenting a formal development of a control theoretic
example previously treated informally in the literature on knowledge-based programs.

2 A Semantics for Reasoning about Knowledge and Time

We begin by presenting a semantic framework for a single agent and its environment,
inspired by [4], to which we refer the reader for motivation.

Let Le be a set of possible states for the environment and letL1 be a set of possible
local states for agent 1. We takeG = Le×L1 to be the set ofglobal states. Let A1 andAe

be nonvoid sets ofactionsfor agent 1 and for the environment, respectively. (These sets
usually contain a specialnull actionΛ.) A joint action is a pair(ae,a1) ∈A = Ae×A1.
A run overG andA is a pairr = (h,α) of infinite sequences: astate history h:N−→ G,
and anaction historyα : N −→ A. Intuitively, for c∈ N, h(c) is the global state of the
system at timec andα(c) is the joint action occurring at timec. (We say more about the
transition relation connecting states and actions later.) AsystemoverG andA is a set of
runs overG andA, intuitively representing all possible histories. A pair(r,c) consisting
of a runr (in systemS) and a timec ∈ N is called apoint (in S). We write Points(S)
for the set of points ofS. Let Propbe a set of propositional variables. Aninterpretation
of a systemS is a mappingπ : Prop−→ 2Points(S) associating a set of points with each
propositional variable. Intuitively, propositionp ∈ Prop is true exactly at the points
contained inπ(p). An interpreted system (overG andA) is a pairI = (S,π) whereS is
a system overG andA andπ is an interpretation ofS.

The structure in the above definitions supports the following notions used to define
the agent’s knowledge. We say two points(r,c),(r ′,c′) in a systemS are 1-indistin-
guishable, denoted(r,c)∼1 (r ′,c′), if the local components of the global states at these
points are equal, i.e., if there exists a local states1 ∈ L1 and states of the environment
se,s′e such thath(c) = (se,s1) andh′(c′) = (s′e,s1), wherer = (h,α) andr ′ = (h′,α′). A
setP of points ofSis 1-local if it is closed under∼1, in other words, when for all points
(r,c),(r ′,c′) of S, if (r,c) ∈ P and(r,c) ∼1 (r ′,c′) then(r ′,c′) ∈ P. Intuitively, 1-local
sets of points correspond to properties that the agent is able to determine entirely on the
basis of its local state. Ifπ andπ′ are interpretations andp∈ Prop, thenπ′ is said to be
a 1-local p-variantof π, denotedπ'1

p π′, if π andπ′ differ at most in the value ofp and
π′(p) is 1-local. IfI = (S,π) andI = (S′,π′) are two interpreted systems overG andA,
thenI′ is said to be 1-local p-variantof I, denotedI'1

p I′, if S= S′ andπ'1
p π′.

The logical languageL we use in this paper resembles a restricted monadic second
order logic with two additions: (a) an S5-modality for necessity and (b) operators from
the linear time temporal logic LTL [8]. Its syntax is given by:

L 3 φ ::= p | ¬φ | φ∧φ | Necφ | ∀1p(φ) | 2φ | φ U φ | �φ | φ S φ

4 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

where p ∈ Prop. Intuitively, Necφ says thatφ is true at all points in the interpreted
system, and its dualPossφ = ¬Nec¬φ states thatφ is true at some point. The formula
∀1p(φ) says thatφ is true for all assignments of a 1-local proposition (set of points)
to the propositional variablep. We write∃1p(φ) for its dual¬∀1p(¬φ). The remain-
ing connectives have their standard interpretations from linear time temporal logic:2

(“next”), U (“until”), � (“previously”) andS (“since”). We employ parenthesis to in-
dicate aggregation and use standard abbreviations such astrue, false, ∨, and definable
future time operators like0 (“henceforth”) and1 (“eventually”), as well as their past
time counterparts̀ (“until now”) andQ (“once”).

Formulae ofL are interpreted at a point(r,c) of an interpreted systemI = (S,π) by
means of the satisfaction relation|=, defined inductively by:

– I,(r,c) |= p iff (r,c) ∈ π(p).
– I,(r,c) |= ¬φ iff I,(r,c) 6|= φ.
– I,(r,c) |= φ∧ψ iff I,(r,c) |= φ andI,(r,c) |= ψ.
– I,(r,c) |= Necφ iff I,(r ′,c′) |= φ, for all (r ′,c′) ∈ Points(S).
– I,(r,c) |= ∀1p(φ) iff I′,(r,c) |= φ for all I′ such thatI'1

p I′

– I,(r,c) |=2φ iff I,(r,c+1) |= φ
– I,(r,c) |= φ U ψ iff there exists ad≥ c such thatI,(r,d) |= ψ andI,(r,e) |= φ for

all ewith c≤ e< d.
– I,(r,c) |=�φ iff c> 0 andI,(r,c−1) |= φ
– I,(r,c) |= φ S ψ iff there exists ad ≤ c such thatI,(r,d) |= ψ andI,(r,e) |= φ for

all ewith d< e≤ c.

Given these constructs, it is possible to express many operators from the literature
on reasoning about knowledge. For example, consider the standard knowledge opera-
tor K1, defined byI,(r,c) |= K1φ if I,(r ′,c′) |= φ for all (r ′,c′) ∈ Points(S) such that
(r,c)∼1 (r ′,c′). This is expressible as∃1p(p∧Nec(p→ φ)). We refer to [3] for further
examples and discussion.

3 Sequential Programs with Quantification over Local
Propositions

In this section we define our wide spectrum programming language, and discuss its
semantics. We also define a refinement relation on programs.

3.1 Syntax

The programming language describes the structure of segments of runs. LetCV be a set
of constraint variablesandPVa set ofprogram variables. Define the syntactic category
Prg of programsby

Prg3 P ::= ε | Z | a | P∗P | P+P | Pω | ∃1p(P) | [φ,ψ]X | [φ]X | {φ}C

whereZ ∈ PV, a∈ A1, p∈ Prop, φ,ψ ∈ L, X ∈ CV, andC⊆ CV. The intuitive mean-
ing of these constructs is as follows. The symbolε denotes theempty program, which

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 5

takes no time to execute, and has no effects. Program variablesZ are placeholders used
to allow substitution of programs. Note that a program may refer directly to actionsa
of the agent, but the actions of the environment are left implicit. The operation∗ repre-
sentssequential composition. The symbol+ denotes nondeterministic choice, whilePω

denotes zero or more (possibly infinitely many) repetitions ofP. The construct∃1p(P)
can also be understood as a kind of nondeterministic choice: it states thatP runs with
respect to some assignment of a 1-local proposition to the propositional variablep. The
last three constructs are like certain constructs found in refinement calculi. Intuitively,
thespecification[φ,ψ]X states that some program runs in this location that has the prop-
erty that, if started at a point satisfyingφ, eventually terminates at a point satisfyingψ.1

Thecoercion[φ]X is a program that takes no time to execute, but expresses a constraint
on the surrounding program context: this must guarantee thatφ holds at this location.
The constraint variableX in specifications and coercions acts as a label that allows
references by other pieces of program text. Specifically, this is done in theassertions
{φ}C, which act like program annotations: such a statement takes no time to execute,
and, intuitively, asserts thatφ can be proved to hold at this program location, with the
proof depending only on concrete program fragments and on specification and coercion
statements whose labels are inC. We may omit the constraint variables when it is not
necessary to make such references.

In programs we employ parentheses to indicate aggregation wherever necessary and
tend to omit∗ near coercions and assertions. Moreover, we use the following abbrevia-
tions.

if X φ then P elseQ fi def= ([φ]X P)+([¬φ]X Q)

whileX φ do P od def= ([φ]X P)ω [¬φ]X

3.2 Semantics

We note that the semantics presented in this section treats assertions{φ}C as equivalent
to the null programε — the role of assertions in the framework will be explained later.
Our semantics will treat programs like specifications of certain sets of run segments in a
system, intuitively, the sets of run segments that can be viewed as having been generated
by executing the program. We first define execution trees, which represent unfoldings
of the nondeterminism in a program.

It is convenient to represent these trees as follows. Abinary tree domainis a prefix-
closed subset of the set{0,1}∗ ∪{0,1}ω. So, each nonvoid tree domain contains the
empty sequenceλ. Let A be a set. AnA-labelled binary treeis a functionT from a
binary tree domainD to A. Thenodesof T are the elements ofD. The nodeλ is called
theroot of T. If n∈ D we callT(n) the label at noden. If n∈ D then thechildren of n
in T are the nodes ofT (if any) of the formn · i wherei ∈ {0,1}. Finite maxima in the
prefix order onD are calledleavesof T.

1 In refinement calculi, such statements are typically associated withframe variables, represent-
ing the variables allowed to change during the execution - we could add these, but omit them
for brevity.

6 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

An execution treeis aPrg-labelled binary tree, subject to the following constraints
on the nodesn:

1. If n is labelled byε, a program variableZ ∈ PV, a basic actiona, a specification
[φ,ψ]X, a coercion[φ]X, or an assertion{φ}C, thenn is a leaf.

2. If n is labelled by∃1p(P) thenn has exactly one childn·0, labelled byP.
3. If n is labelled byP∗Q or P+Q thenn has exactly two childrenn·0,n·1, labelled

by P andQ respectively.
4. If n is labelled byPω thenn has exactly two children,n ·0,n ·1, labelled byε and

P∗ (Pω), respectively.

With each programP we associate a particular execution tree,TP, namely the unique
execution tree labelled withP at the rootλ.

We now define the semantic constructs specified by programs. Aninterval over
a system Sis a triple r[c,d] consisting of a runr of S and two elementsc and d of
N+ = N∪{∞} such thatc≤ d. We say that the interval isfinite if d < ∞. A set I of
intervals isrun-uniqueif r[c,d], r[c′,d′] ∈ I implies c = c′ andd = d′. An interpreted
interval set over S(or iis for short) is a pair(π, I) consisting of an interpretationπ of S
and a run-unique setI of intervals overS.

We will view programs as specifying, or executing over, interpreted interval sets, by
means of certain mappings from execution trees to interpreted interval sets. To facilitate
the definition in the case of sequential composition, we introduce a shorthand for the
two sets obtained by splitting each interval in a given setI of intervals ofS in two.
Say that f : I −→ N+ divides I wheneverc≤ f (r[c,d]) ≤ d holds for all r[c,d] ∈ I .
Given somef dividing I , we write fJ(I) for the set of intervalsr[f (r[c,d]),d] such that
r[c,d] ∈ I . Analogously, we writefI(I) for { r[c, f (r[c,d])] | r[c,d] ∈ I }.

Let Sbe a system, let(π, I) be an iis w.r.t.S, and letP be a program. A functionθ
mapping each noden of TP to an iis(πθ(n), Iθ(n)), respectively, is anembeddingof TP

in (π, I) w.r.t. Swhenever the following conditions are satisfied:

1. θ(λ) = (π, I).
2. If n is labelledε or {φ}C, thenc = d for all r[c,d] ∈ Iθ(n).
3. If n is labelleda then, for all(h,α)[c,d] ∈ Iθ(n), if c< ∞ then bothd = 1+ c and

a = a1, whereα(c) = (ae,a1).
4. If n is labelled[φ,ψ], then, for allr[c,d]∈ Iθ(n), wheneverc<∞ and(S,πθ(n)),(r,c) |=

φ, then bothd< ∞ and(S,πθ(n)),(r,d) |= ψ.
5. If n is labelled[φ], thenc< ∞ implies thatc = d and(S,πθ(n)),(r,c) |= φ, for all

r[c,d] ∈ Iθ(n).
6. If n is labelled∃1p(Q) thenπθ(n)'1

p πθ(n·0) andIθ(n·0) = Iθ(n).
7. If n is labelledQ1 + Q2, thenπθ(n ·0) = πθ(n ·1) = πθ(n) andIθ(n) is the disjoint

union ofIθ(n·0) andIθ(n·1).
8. If n is labelledQ1∗Q2, thenπθ(n·0) = πθ(n·1) = πθ(n) and there is anf dividing

Iθ(n) such thatIθ(n·0) = fI(Iθ(n)) andIθ(n·1) = fJ(Iθ(n)).
9. If n is labelledQω thenπθ(n ·0) = πθ(n ·1) = πθ(n) andIθ(n) is the disjoint union

of Iθ(n·0) andIθ(n·1) (as in case 7) and, for allr[c,d] ∈ Iθ(n):

d =
⊔{

d′
∣∣ r[c′,d′] ∈ Iθ(n·m) for some leafn·m of TP belown

}
.

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 7

We writeS,(π, I) θ P wheneverθ is an embedding ofTP in (π, I) w.r.t. S. Say thatP
occurs over(π, I) w.r.t. Sif there exists aθ such thatS,(π, I) θ P.

Clauses 1 to 8 formalize the intuitive understanding given above for each of the
program constructs. Concerning clause 9 of this definition, we remark that, by run-
uniqueness and the other clauses, ifn ·m0,n ·m1 . . . are the leavesn ·m below n for
which Iθ(n ·m) contains an interval onr, in left to right order, and these intervals are
r[c0,d0], r[c1,d1], . . . , respectively, then we havedi = ci+1 for each indexi in the se-
quence. (We may haveci = di .) If d were not the least upper boundd′ of thedi , then
this sequence of intervals would amount to an execution ofQω over r[c,d′] rather than
overr[c,d].

3.3 Refinement

The semantics just presented can be shown to be a generalization of the semantics of
[15] for a similar language without the local propositional quantifier. That semantics,
however, dealt withsingle intervals where we have used a set of intervals. The mo-
tivation for the change is that certain undesirable refinement rules involving the local
propositional quantifier would be valid under the earlier semantic approach. We now
present two definitions of refinement and an example that motivates the richer seman-
tics.

Intuitively, a programP refinesQ if, wheneverP executes, so doesQ. A refinement
relation of this type, when transitive and preserved under program composition, allows
us to start with a high level specification and derive a concrete implementation through
a sequence of refinement steps.

One refinement relation definable using our semantics as is follows:P refinesQ,
denotedPv Q when for all systemsS, and interpreted interval sets(π, I) over S, if
S,(π, I) P thenS,(π, I) P. For the semantics using single intervals, the correspond-
ing relation would be defined byPvrun Q when for all systemsS, interpretationsπ and
intervalsr[c,d] of S, if S,(π,{r[c,d]}) P thenS,(π,{r[c,d]}) P. Clearly, if Pv Q
thenPvrun Q. As the following example demonstrates, the converse is false.

Example 1.Let φ ∈ L be any formula and consider the following two programs.

P = if φ then a elsea∗a fi

Q = ∃1p(if p then a elsea∗a fi)

We shall first show thatP vrun Q and then argue that this is not desirable. Suppose
S,(π,{r[c,d]}) P. Recall that anif statement abbreviates a non-deterministic choice.
Thus, there are two cases to be considered:

Case 1: S,(π,{r[c,d]}) [φ] a. Define the 1-localp-variantπ′ of π by π′(p) = Points(S),
that is, p is everywhere true underπ′. It follows thatS,(π′,{r[c,d]}) [p] a, and
thus,S,(π′,{r[c,d]}) if p then a elsea∗a fi. By definition,S,(π,{r[c,d]}) Q.

Case 2: S,(π,{r[c,d]}) [¬φ] a∗a. This is handled analogously by definingπ′(p) = /0.

To see that it is not the case thatPv Q, takeφ to be a propositional variableq. It is
straightforward to construct a systemS, finite intervalsi = r[c,d] andi′ = r ′[c′,d′], and

8 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

interpretationπ such thatS,(π,{i}) [q] aandS,(π,{i′}) [¬q] a∗a (henceS,(π,{i, i′})
if q then a elsea∗a fi), but(r,c) and(r ′,c′) are 1-indistinguishable. If we were to have
S,(π,{i, i′}) ∃1p(if p then a elsea∗a fi), then we would have a 1-localp-variantπ′
of π such thatS,(π′,{i, i′}) if p thenaelsea∗afi. But by assumption(r,c)∈ π′(p) iff
(r ′,c′) ∈ π′(p), so we have eitherS,(π′,{i, i′}) a or S,(π′,{i, i′}) a∗a. But neither
of these is possible, since one or the other interval has the wrong length.

Our intuition in writing Q is that it specifies a program that chooses to do either
a or a∗ a on the basis of some locally computable testp. The refinementPvrun Q is
contrary to this intuition: it states thatQ may be implemented by using in place ofp
any test, even one not locally computable. Intuitively, this result is obtained by using
a different 1-local test in different executions of the program. Our semantics has been
designed so as to avoid this: it ensures that auniform testp is used in every execution
of the program. Thereby, the undesirable refinement is blocked.

We remark that a slight variant of the example is a valid, and desired refinement:
[∃1p(Nec(p≡ φ))] Pv Q. Here, the coercion states thatφ is in fact equivalent to a 1-
local proposition. We will use this rule below. ut

4 Validity and Valid Refinement

We now briefly discuss the role of assertions{φ}C in the framework and define the as-
sociated semantic notions. The reader is referred to [15] for a more detailed explanation
of these ideas in a simpler setting.

Intuitively, an assertion{φ}C is like an annotation at a program location stating that
φ is guaranteed to hold whenever the program execution reaches this location. More-
over, such an assertion states that this fact “depends” only on constraints in the program
(specifications and coercions) labelled with constraint variables in the setC, as well as
on concrete program fragments. (We do not include labels for these because they cannot
be “refined away”.) The reason we include the justificationC for the assertion is that
it proves to be necessary to track such information in order to be able to formulate a
number of desirable refinement rules. These rules refine a program fragment in ways
that depend upon the larger program context within which the fragment occurs.

One typical example of this is a rule concerning the elimination of coercions. Sup-
pose a coercion[φ] occurs at a program location whereφ is guaranteed to hold. Intu-
itively, we would like to say that the coercion can be eliminated (replaced byε) in such
circumstances. However, the attempt to formulate this by the refinement ruleε≤{φ} [φ]
is not quite correct, for the reason the assertion holds could be the very coercion we seek
to eliminate. (It may seem a little odd at first to say that the justification for the assertion
is some part of the program text that follows, but consider the case ofφ =1ψ. See [15]
for an example that makes essential use of assertions justified by later pieces of program
text.) The use of justifications enables us to formulate the rule asε ≤ {φ}C [φ]X, pro-
vided X is not inC, i.e., provided the assertion does not rely upon the coercion. This
blocks the circular reasoning.

The semantics of assertions is formalized as follows. In order to capture constraint
dependencies, we first define for each programP and constraint setC ⊆ CV a pro-
gram relax(P,C) that is likeP, except that only constraints whose labels are inC are

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 9

enforced: all other constraints are relaxed. Formally, we obtain relax(P,C) from P by
replacing each occurrence of a coercion[φ]X whereX /∈C by ε, and also replacing each
occurrence of a specification[φ,ψ]X whereX /∈C by [false, true]X in PC.

We may now define a programP to bevalid with respect to a set of interpreted
systemsS when for all assertions{φ}C in P, all interpreted systems(S,π) ∈ S and all
intervals setsI overS, all embeddingsθ of Trelax(P,C) into S,(I ,π) have the property that
for all nodesn of Trelax(P,C) labelled with{φ}C in P, we haveS,θ(n) [φ]. Intuitively, the
embedding represents an execution ofP in which only constraints inC are enforced, and
we check that the associated assertions hold at the appropriate points in the execution.
Note that whenn is labelled by an assertion,Iθ(n) must be a set of intervals of length
0. Moreover, the semantics ofS,(I ,π) [φ] checksφ only at finite points in this set.
Thus, validity can be understood as a kind of generalized partial correctness. We define
validity with respect to a set of interpreted systemsS to allow assumptions concerning
the environment to be modelled: e.g.,S might be the set of all interpreted systems in
which actions have specific intended interpretations. We give an example of this in the
next section.

Clearly, we want to avoid programs that are not valid (such as[p]X {¬p}{X}). Thus,
we would now like a notion of refinement that preserves validity, so that we derive only
valid programs from valid programs by refinement. The refinement relationv defined
above does not have this property. We now define a notion that does. In order to do so,
we first need to define a technical notion. Ajustification transformationis a mapping
η : 2CV −→ 2CV that is increasing, i.e., satisfiesC⊆ η(C) for all C⊆ CV. The result
of applying a justification transformationη to a programP is the programPη obtained
by replacing each instance of an assertion{φ}C in P by the assertion{φ}η(C). When
R(Z) is a program containing a program variableZ andP is a program, we writeRη(P)
for the result of first applyingη to R(Z) and then substitutingP for Z. We need such
transformations for refinements such as replacing{φ}C[φ]X by ε whenX /∈ C within
some large program context. Intuitively, when we do this, any assertion in the larger
context that depended on the coercion labelledX is still valid, but its justification should
now includeC in place ofX.

The identity justification transformation is denoted byι. We will also represent
justification transformations using expressions of the form[X ↪→ S], whereX ∈ CV
andS⊆ CV. Such an expression denotes the justification transformationη such that
η(C) = C∪S if X ∈C andη(C) = C otherwise.

Let S be a set of interpreted systems, letη be a justification transformation and let
P andQ be programs. Say thatP validly refines Q inS underη, and writeP≤S

η Q,
if for all programsR(Z) with Z a program variable, ifR(Q) is valid with respect toS
thenRη(P) is valid with respect toS, and for all(S,π) ∈ S and interval setsI overS, if
S,(I ,π) Rη(P) thenS,(I ,π) R(Q).

We remark that other definitions of valid refinement are possible. In particular, the
definition above is very sensitive to the syntax of the programming language. We con-
sider some more semantic alternatives elsewhere.

10 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

4.1 Valid Refinement Rules

We now present a number of rules concerning valid refinement that are sound with
respect to the semantics just presented. making no attempt at completeness. We focus
on rules concerning the existential quantifiers, and refer to [15] for additional rules
concerning the other constructs, which are also sound in the framework of the present
paper.2

The following rules make it possible for refinement to broken down into a sequence
of steps that operate on small program fragments. (Only justification transformation
operates globally, but this can also be managed locally by means of appropriate data
structures.)

P≤S
η Q, Q≤S

η′ R

P≤S
η◦η′ R

trans

P≤S
η Q

Rη(P)≤S
η R(Q)

mon

Reducing the amount of nondeterminism and introducing a coercion are sound refine-
ment steps.

P≤S
ι P+Q red-ndet

[φ] ≤S
ι ε i-coerc

Quantification over local propositional variables can be introduced, extracted from a
coercion, and lifted to contexts.

∃1p(P)≤S
ι P if p not free in P i-lq

∃1p([φ])≤S
ι [∃1p(φ)] ext-lq

∃1p(R(P))≤S
ι R(∃1p(P)) if p not free in R(Z) lift-lq

Let Pφ denote the program obtained fromP by substituting formulaφ for all free occur-
rences ofp in P, while taking the usual care of free variables inφ by renaming clashing
bound variables inP.

[∃1p(Nec(φ≡ p))] Pφ ≤S
ι ∃1p(P) inst-lp

4.2 Single-Stepping Programs and Loops

Reasoning about termination of a loop, say,while g do P od becomes easier when strict
bounds on the running time ofP are known. We present here a simple example of this
phenomenon that is useful for the example we present next. More general rules can be
formulated than the one we develop here.

2 For the benefit of the reviewer, these rules are included in the appendix.

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 11

Say that programP is single-stepping, if S,(π, I) P and r[c,d] ∈ I and c < ∞
imply thatd = 1+ c, for all S, π, andI . Syntactically, the fact thatP is single-stepping
is expressed by:

P≤S
η ∃p([2first p] [true,first p]) .

wherefirstφ is an abbreviation forφ∧¬�Qφ, which holds exactly at the first point in
a run that makesφ true. This can be combined with the usual pre/post-condition style
of specifyingP’s behaviour, e.g., to specify thatP is single-stepping and terminates in
points satisfyingψ when started in points satisfyingφ:

P≤S
η ∃p

(
[2first p]X [true,first p∧ (�φ→ ψ)]X

)
Call the RHS of the abovess[φ,ψ]X. Observe thatss[φ,ψ]X takes a single step regard-
less of whetherφ holds initially. Adding the single-stepping requirement yields a valid
refinement:

ss[φ,ψ]X ≤S
η [φ,ψ]X ss-imp

The following for single-stepping loop bodies will be used in Section 5.

whileX g do ss[α∧g,α]X od≤S
Z↪→C∪{X} {1¬g}C ∗ [α,α∧¬g]Z if Z /∈C i-ss-loop

5 Example: Autonomous Robot

In this section we discuss an example that closely resembles Example 7.2.2 in [4] which
in turn has been inspired by the 1994 conference version of [2].

A robot travels along an endless corridor, which in this example is identified with
the natural numbers. The robot starts at 0 and has the task to stop in the goal region
{2,3,4}. To judge when to stop the robot has a sensor that reads the current position.
(See Fig. 1.) Unfortunately, this sensor is not very accurate, i.e., the readings may be

. . .
0 1 2 3 4 5 6

goal region

Fig. 1.Autonomous Robot

wrong by at most 1. The only action the robot can actively take is halting, the effect
of which is instantaneous stopping. Unless this action is taken, the robot may move by
steps of length 1 to higher numbers. Unless it has taken its halting action it is beyond
its control whether it moves in a step. Our task is now to design a control program for
the robot that initiates the halting action such that:

12 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

(safety) The robot only stops in the goal region.
(liveness) The robot is guaranteed to stop eventually.

A modest assumption about the environment is needed for the latter to be achievable.
We insist that it is not the case that the robot sits still forever without moving forward
or taking the halting action.

To model these assumptions we introduce a system constraint reflecting the follow-
ing conditions. Strictly speaking, our specification languageL only contains variables
that are interpreted as Boolean values but none for natural numbers. It is possible to
present this example only using propositions by sacrificing legibility. An extension of
our framework to typed variables is straightforward and omitted here for brevity.

1. Initially, the robot’s positionx is zero: init → x = 0, whereinit abbreviates the
formula¬�true, which holds exactly in the initial points of runs.

2. Propositionh is initially false and it is becomes true once the robot has halted.
Halting is an irreversible action (h→2h) and means that the robot does not move
anymore:h→ x =2x.

3. Propositionm is true iff the robot moves in the current step. Moving means that
the robot’s position is increased by one, otherwise it is unchanged:(m→ x+ 1 =
2x)∧¬m→ x =2x.

4. If the robot has not halted it should move eventually:(¬h) U (h∨m).
5. The robot’s sensor reading iss (an integer) and off by at most one fromx, the actual

position:x−1≤ s≤ x+1.
6. Only the robot’s basic actionhalt immediately halts the robot.

Let S be the set of pairs(S,(π, I)) such thatS andπ satisfy these constraints. In the
full paper we introduce syntactic representation for such system constraints, give a for-
mal semantics, and introduce valid refinement rules that exploit these constraints. These
rules fall into two classes: assertion introduction rules and rules for specification imple-
mentation by basic actions. A typical assertion introduction rule is

[init]X {x = 0∧¬h}{X} ≤
S
ι ε (1)

which allows to assert properties of initial states. For the halting action we would have

halt≤S
ι ss[true,h∧x =�x] .

For lack of space we simplified and pruned the set-up to the above. We refer to “use
S” instead of proper refinement rules at points of our derivation that suffer from these
limitations.

In [4] a run-based specification of the system is given by a temporal logic formula
equivalent to0(h→ g)∧1h, whereg abbreviates being in the goal region, i.e., 2≤
x≤ 4. The two conjuncts respectively formalize the safety and liveness property from
above. The main problem in finding the robot’s protocol is to derive a suitable local
condition for halting.

We formally derive a protocol for the robot from an as abstract as possible specifi-
cation of the protocol. The point of departure of our derivation below merely states that
the robot must eventually halt in the goal region when started in an initial state.

[init,g∧h]X

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 13

≥S
ι (sequential composition [15])

[init,g∧¬h]X ∗ [g∧¬h,g∧h]X

≥S
ι (useS andss-imp to establishhalt≤S

ι [g∧¬h,g∧h])

[init,g∧¬h]X ∗halt

≥S
ι (i-lq with local propositionp not free in[init,g∧¬h]X)

∃1p
(
[init,g∧¬h]X

)
∗halt

Next we introduce a coercion that enforces suitability ofp as a test for halting the robot
in the goal region.

≥S
ι (i-coercwith stp abbreviatingNec(first(p)→ g), strengthen spec [15])

∃1p
(

[stp∧1p∧¬h]Y ∗ [init,g∧ first(p)∧stp∧¬h]X
)
∗halt

≥S
ι (propagate coercion into precondition [15])

∃1p
(

[stp∧1p∧¬h]Y ∗ [init ∧stp∧¬h,g∧ first(p)∧stp∧¬h]X
)
∗halt

≥S
ι (introduce assertion from coercion [15])

∃1p
(

[stp∧1p∧¬h]Y ∗{1p}{Y} ∗ [init ∧stp∧¬h,g∧ first(p)∧stp∧¬h]X
)
∗halt

≥S
ι (strengthen spec [15] with¬�true→¬�Qp valid)

∃1p
(

[stp∧1p∧¬h]Y ∗{1p}{Y} ∗ [¬�Qp∧stp∧¬h,g∧ first(p)∧stp∧¬h]X
)
∗halt

≥S
[X↪→{Y}] (i-ss-loop)

∃1p

(
[stp∧1p∧¬h]Y ∗
whileX ¬p do ss[¬�Qp∧stp∧¬h∧¬p,¬�Qp∧stp∧¬h]X od

)
∗

halt

≥S
ι (useS establishΛ≤S

ι ss[. . . , . . .]X)

∃1p
(

[stp∧1p∧¬h]Y whileX ¬p do Λ od
)
∗halt

≥S
ι (inst-lp but how did we finds> 2?)

[∃1p(Nec(p≡ (s> 2)))]Y ∗ [sts>2∧1(s> 2)∧¬h]Y ∗
whileX ¬(s> 2) do Λ od∗halt

≥S
ι (useS and coercion elimination [15])

[sts>2∧1(s> 2)∧¬h]Y whileX s≤ 2 do Λ od∗halt

To eliminate the coercion later we first assertsts>2, which states thats> 2 is a sound
test for exiting the loop and executing thehalt action. We prove thatsts>2 holds in
every single point of an element ofS. By definition ofst and the semantics ofNec, it
suffices to prove thatfirst(s> 2)→ g follows from the description ofS. Let (S,(π, I)) ∈
S and supposeI,(r,c) |= first(s> 2) for some point(r,c) in I . By definition of first,

14 Kai Engelhardt, Ron van der Meyden, and Yoram Moses

alsoI,(r,c) |= (s> 2)∧�(s≤ 2) holds. The invariant guarantees that the sensor is
off the current position by at most 1, thus,I,(r,c) |= (x≥ 2)∧�(x≤ 3). Moreover,
if the positionx changes at all during a step, then it increases by one. Consequently
I,(r,c) |= (x≤ 4).

≥S
ι (useS according to the discussion above and weaken assertion)

{sts>2} /0 ∗ [sts>2∧1(s> 2)∧¬h]Y whileX s≤ 2 do Λ od∗halt

≥S
ι (use coercion elimination [15] to get rid of one conjunct)

[1(s> 2)∧¬h]Y whileX s≤ 2 do Λ od∗halt

≥S
ι (strengthen and split coercion [15])

[init]Y ∗ [1(s> 2)]Y whileX s≤ 2 do Λ od∗halt

How can we eliminate the coercion[1(s> 2)]Y? It certainly does not follow fromS
alone, since that allows runs in which the robot halts too early, i.e., outside the goal
region and without a sensor readings> 2 . Therefore the reasoning that allows to elim-
inate the coercion necessarily involves the program derived thus far.

From the initial state predicate it follows that the loop begins in a state satisfying
¬h. The only action executed in the loop isΛ, which, according tosc preserves the
value ofh. On termination of the loop the guard must be false, i.e.,s> 2. In (the purely
hypothetical) case the loop diverges the run satisfies0¬h, which together with point 4,
(¬h) U (h∨m), allows us to conclude that the robot moves infinitely often. Actually,
four times is enough, since that already guarantees a sensor reading of at least 3.

≥S
ι (useS and the loop)

[init]Y ∗ [1(s> 2)]Y ∗{1(s> 2)}X whileX s≤ 2 do Λ od∗halt

≥S
ι (eliminate coercion)

[init]Y whileX s≤ 2 do Λ od∗halt

Finally, the rule

[φ] P≤S
η [φ,ψ]X

P≤S
η [φ,ψ]X

coerc-elim1

proves thatwhileX s≤ 2 do Λ od∗halt≤S
X↪→{Y} [init,g∧h]X.

6 Conclusion and Future Work

Keywords:add labels to model knowledge-based programs with their fixed-point char-
acterization of knowledge, asynchronous case, multi-agent case, tool support.

A Program Refinement Framework Supporting Reasoning about Knowledge and Time 15

References

1. R.-J. Back and J. von Wright.Refinement Calculus: A Systematic Introduction. Graduate
Texts in Computer Science. Springer-Verlag, 1998.

2. R. I. Brafman, J.-C. Latombe, Y. Moses, and Y. Shoham. Applications of a logic of knowl-
edge to motion planning under uncertainty.Journal of the ACM, 44(5):633–668, Sept. 1997.

3. K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of local propo-
sitions. In I. Gilboa, editor,Theoretical Aspects of Rationality and Knowledge, Proceedings
of the Seventh Conference (TARK 1998), pages 29–41. Morgan Kaufmann, July 1998.

4. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning About Knowledge. MIT-Press,
1995.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based programs.Distributed
Computing, 10(4):199–225, 1997.

6. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environ-
ment.Journal of the ACM, 37(3):549–587, July 1990.

7. I. Hayes. Separating timing and calculation in real-time refinement. In J. Grundy,
M. Schwenke, and T. Vickers, editors,International Refinement Workshop and Formal Meth-
ods Pacific 1998, Discrete Mathematics and Theoretical Computer Science, pages ??–??
Springer-Verlag, 1998.

8. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, 1992.

9. C. C. Morgan.Programming from Specifications. Prentice Hall, 1990.
10. J. M. Morris. A theoretical basis for stepwise refinement and the programming calculus.

Science of Computer Programming, 9(3):287–306, Dec. 1987.
11. Y. Moses and O. Kislev. Knowledge-oriented programming. InProceeding of the 12th

Annual ACM Symposium on Principles of Distributed Computing (PODC 93), pages 261–
270, New York, USA, Aug. 1993. ACM Press.

12. Y. Moses and M. R. Tuttle. Programming simultaneous actions using common knowledge.
Algorithmica, 3:121–169, 1988.

13. M. Utting and C. Fidge. A real-time refinement calculus that changes only time. In H. J.,
J. Cooke, and P. Wallis, editors,BCS-FACS Seventh Refinement Workshop. Springer-Verlag,
1996.

14. R. van der Meyden. Knowledge based programs: On the complexity of perfect recall in finite
environments. In Y. Shoham, editor,Proceedings of the Sixth Conference on Theoretical
Aspects of Rationality and Knowledge, pages 31–50. Morgan Kaufmann, Mar. 17–20 1996.

15. R. van der Meyden and Y. Moses. On refinement and temporal annotations. Submitted to
TACAS 2000. A progress report on this subject appeared as [16].

16. R. van der Meyden and Y. Moses. Issues for a temporal refinement calculus. In J. Grundy,
M. Schwenke, and T. Vickers, editors,International Refinement Workshop and Formal Meth-
ods Pacific 1998, Discrete Mathematics and Theoretical Computer Science, pages ??–??
Springer-Verlag, 1998.

17. R. van der Meyden and Y. Moses. Top-down considerations on distributed systems. In
Proceedings 12th International Symposium on Distributed Computing, DISC’98, volume
1499 ofLNCS, pages 16–19, Sept. 1998. Springer-Verlag.

18. M. Y. Vardi. Implementing knowledge-basd programs. In Y. Shoham, editor,Proceedings
of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge, pages 15–30.
Morgan Kaufmann, Mar. 17–20 1996.

