
A Knowledge Based Analysis of Cache
Coherence?

Kai Baukus1 and Ron van der Meyden2

School of Computer Science and Engineering
University of New South Wales{1,2}, and

National ICT Australia2

{kbaukus,meyden}@cse.unsw.edu.au

Abstract. This paper presents a case study of the application of the
knowledge-based approach to concurrent systems specification, design
and verification. A highly abstract solution to the cache coherence prob-
lem is first presented, in the form of a knowledge-based program, that
formalises the intuitions underlying the MOESI [Sweazey & Smith, 1986]
characterisation of cache coherency protocols. It is shown that any con-
crete implementation of this knowledge-based program, which relates a
cache’s actions to its knowledge about the status of other caches, is a cor-
rect solution of the cache coherence problem. Three existing protocols in
the MOESI class are shown to be such implementations. The knowledge-
based characterisation furthermore raises the question of whether these
protocols are optimal in their use of information available to the caches.
This question is investigated using by the model checker MCK, which is
able to verify specifications in the logic of knowledge and time.

1 Introduction

Reasoning about knowledge [FHMV95] provides an approach to concurrent sys-
tem specification, development, and verification that focuses on information flow
in the system and how information relates to action. The approach promises a
number of advantages: a high level of abstraction in specification, ease of verifi-
cation and a methodology for the development of protocols that make optimal
use of information. This paper presents a case study of the approach in a recently
developed formulation, and uses for part of the effort a new tool that enables
model checking specifications in the logic of knowledge and time [GM04].

The focus of the case study is cache coherence protocols for multi-processor
systems. Numerous cache coherency solutions have been proposed [AB86], and
the area has been a popular target for the application of model checking sys-
tems [CGH+95]. Often, the literature on verification of such protocols has con-
centrated on verifying specific concrete protocols rather than a more abstract

? Work supported by an Australian Research Council Discovery Grant. National ICT
Australia is funded through the Australian Government’s Backing Australia’s Ability
initiative, in part through the ARC.



design level. One exception is the work of Sweazey and Smith [SS86], who have
given an abstract characterisation of a class of cache coherency protocols in or-
der to show that these protocols can be implemented on the FutureBus. They
show that several of the protocols in the literature can be implemented as con-
crete instances of their general scheme. However, their presentation is informal
and does not provide a rigorous relationship between their intuitions and the
concrete transition tables by which they present the concrete protocols.

We show in this paper that the knowledge-based approach provides the means
to formalise the abstract intuitions of Sweazey & Smith, enabling their relation-
ship to the concrete protocols to be precisely defined and justified. We describe
how this implementation relationship can be verified. Our characterisation clar-
ifies some aspects of Sweazey and Smith’s intuitions. Moreover, our formulation
raises the interesting question of whether these concrete protocols make optimal
use of the information generated in running them. We investigate this question
using a newly developed tool, MCK, a model checker for the logic of knowledge
and time [GM04]. In some cases, we find that the protocols do make optimal use
of information, but we also identify ways in which they do not. In some cases,
this is because our analysis takes into account aspects not considered by the
protocol designers. In one case, however, the Synapse protocol, this is much less
clear, and our analysis points to a way to optimize the protocol.

2 Framework: Syntax and Semantics

In this section we recall some definitions from the literature on reasoning about
knowledge, and sketch the process notation we use in the paper. For more de-
tailed exposition and motivation on reasoning about knowledge, we refer the
reader to [FHMV95].

2.1 Reasoning about Knowledge

Consider a concurrent system comprised of a set of processes. Each process is
associated with a set of variables that we call its local variables. A global state is
an assignment of values to each of the local variables of each process. Executing
the processes from some initial state produces a run, a mapping from natural
numbers to global states. If r is a run and n ∈ N a time, then r(n) denotes the
global state at time n. A point is a pair (r, n) consisting of a run r and a time
n ∈ N.

A system is a set of runs. If Prop is a set of atomic propositions, an interpre-
tation of Prop in a system R is a mapping π associating each point in R with
the set of p ∈ Prop it satisfies. An interpreted system is a pair (R, π) where R
is a system and π is an interpretation for R.

The logic of knowledge contains a modal operator Ki, intuitively representing
the expression “process i knows that”, as well as the usual boolean operators. If
φ is a formula then so is Kiφ, where i is a process. The semantics of the logic of
knowledge is usually defined in interpreted systems as follows. First, each process



i is associated with a local state at each point (r, n) — this local state is denoted
by ri(n), and intuitively captures all the information available to the process for
determining what it knows at that time. Two points (r, n) and (r′, n′) are said
to be indistinguishable to process i, written (r, n) ∼i (r′, n′), if ri(n) = ri(n′).
Formulas are given semantics by means of a relation of satisfaction of a formula
φ at a point (r, n) in an interpreted system I, written I, (r, n) |= φ. If I = (R, π),
this relation is defined inductively by

1. I, (r, n) |= p, for p ∈ Prop, if p ∈ π(r, n),
2. I, (r, n) |= Kiφ, if I, (r′, n′) |= φ for all points (r′, n′) ∼i (r, n) in R,

and the obvious clauses for the boolean operators. Intuitively, this definition says
that process i knows φ if φ holds at all points it is unable to distinguish from the
current point. We write I |= φ if φ is valid in the structure I, i.e, I, (r, n) |= φ
for all points (r, n) in I.

The local state can be defined in a number of ways. One, which we call
the observational interpretation of knowledge, defines ri(n) to be the restriction
r(n) � Varsi of the global state r(n) to the set Varsi of local variables of process i.
(We could furthermore restrict to a smaller set of variables if the question of what
information is carried by that smaller set of variables is of interest). Another,
the asynchronous perfect recall semantics inductively defines the local state as a
sequence of assignments as follows: ri(0) = r(0) � Varsi and ri(n + 1) = ri(n)
if r(n) � Varsi = r(n + 1) � Varsi and ri(n + 1) = ri(n) · (r(n + 1) � Varsi)
otherwise. Intuitively, in this interpretation, process i remembers its complete
history of observations except that due to asynchrony it is unable to distinguish
stuttering equivalent sequences of observations.

The semantics above has formed the basis of much of the literature on the
knowledge-based approach, but has been generalised [EMM98] in order to pro-
vide a framework that provides greater flexibility. The generalisation uses the
notion of sound local propositions. We formulate this here as follows. Introduce a
set of atomic propositions of the form kiφ, where φ is a formula, with the seman-
tics of these atomic propositions given by the first of the two clauses above. To
retain some of the key aspects of the usual semantics of the knowledge operator,
we impose the following constraints:

Locality: If ri(n) = r′i(n
′), then kiφ ∈ π(r, n) iff kiφ ∈ π(r′, n′).

Soundness: I |= kiφ⇒ φ

Intuitively, locality says that the proposition kiφ is a function of process i’s local
state. Sound local propositions generalise the logic of knowledge: it can be seen
that soundness and locality implies that I |= kiφ⇒ Kiφ, so if an interpretation
of the extended set of atomic propositions also satisfies

Completeness: I |= Kiφ⇒ kiφ

then we have I |= kiφ⇔ Kiφ.
It has been noted [EMM98] that much of the work of knowledge formulas in

the knowledge-based approach can be done with sound local propositions, and



a formal refinement calculus embodying this generalisation of the approach is
under development [EMM01,Eng02]. We use some ideas from this calculus in
the present paper.

2.2 Process Notation

We will describe systems at a number of levels of abstraction. Most concretely, we
use a process algebraic notation to describe the implementation level. Variables
may be updated by assignments. We use standard nondeterministic program-
ming constructs, and a parallelism operator ||, the semantic details of which
we omit for space reasons. The overall semantics is non-deterministic and asyn-
chronous in the sense that at any time, up to one of the possible events is
nondeterministically selected for execution. The choice is fair, in the sense that
a continuously enabled event is eventually selected.

The communication mechanism in the notation is by a synchronous hand-
shake between some set of processes. This may be a two-way handshake passing
a value v from process A to B, which we represent by having A perform the
event B!v and having B perform A?x, writing the value v into B′s variable x.
This handshake event is treated as causing a single transition in the global state
of the system. In order to model communication on the bus, we also need a
handshake involving more than two processes. Such handshake events also cause
a single transition in the system state, and may change any of the local variables
of the participating processes. We define the semantics of such handshakes by
providing sequential code used by each of the participating processes to update
its local variables: this code is interpreted to run atomically.

3 The Cache Coherence Problem

We study cache coherence protocols in the standard setting of several processors
that access their data indirectly through caches, connected via a bus to each other
and the main memory. The situation is depicted in Figure 1. The processors
access memory locations via read and write requests. In a system without
caches, the requests would be queued to access the main bus sequentially. Caches
are fast memories introduced to speed up access to frequently used locations.
The direct communication between processor and cache is much faster than the
main bus serving all parties connected to it. When the requested data value
exists as a valid copy in the cache, the cache answers the request immediately.
Otherwise, the cache has to request the corresponding location via the main
bus. A cache coherence protocol is a protocol run by the caches on the main bus
in order to guarantee consistency between the copies of data values that they
maintain.

A variety of different cache coherence protocols have been designed, that have
been placed into a general framework by Sweazey and Smith [SS86], who identify
the following attributes as being of relevance in the family of cache-coherence
protocols they consider:



Mem

Cache 1 Cache n

Proc 1 Proc n

• • •

Fig. 1. Caches connected via a bus

1. Ownership/Modification: The owner of a memory line is responsible for
the value of that line. When the owner is a cache, it is the owner just when
it holds a modified value of the memory line.

2. Exclusiveness: Copies of the memory line may be held simultaneously by
a number of caches. If it is held by just one, that cache holds it exclusively.
A non-exclusive line is said to be shared.

3. Validity: The copy held by a cache may be valid (equal to the copy of the
owner) or invalid.

These three attributes give 8 possible states, but ownership and exclusivity are
not of interest for invalid memory lines, so [SS86] aggregate the four invalid cases
into one, leaving five states, which they call M (exclusive modified), O (shared
modified), S (shared unmodified), E (exclusive unmodified) and I (invalid).
These states are updated as a result of bus communications, where in addition
to the memory value, six different boolean signals are communicated across the
bus: each is associated with an intuitive meaning, and the possible patterns of
communication of these signals in each of the MOESI states and the resulting
state updates are described in a set of tables. The tables allow for some choice of
action in a number of states, and [SS86] show that a number of existing cache-
coherency protocols can be modelled by appropriate choice of a subset of the
MOESI states and a choice of the associated actions.

The MOESI states are not given a formal specification in [SS86], and the
associated tables are justified only by some text that provides some informal
motivation. We propose here a higher level view of the MOESI states and the
associated protocols, by describing a knowledge-based program that captures
the underlying reasons for correctness of the MOESI protocols. This will have
the benefit not just of providing a clearer exposition of the protocol, but also
of opening the way for an investigation of whether the existing protocols make
optimal use of the information being communicated across the bus (something
we investigate by model checking some particular cases) and permitting the
exploration of alternative implementations that make greater use of the pattern
of communication across the bus.



4 Knowledge-based Specification

We now give an abstract, knowledge-based specification of cache coherence. We
consider a single memory line, which we model using a single bit. The abstract
behaviour of the processors is to non-deterministically choose between modi-
fying the value arbitrarily and reading/writing of the value back to memory,
represented by the following term:

Pi ≡ do value := 0
[] value := 1
[] Ci!write(value); Ci?ack
[] Ci! read; Ci? value
od

We denote the set of caches by Cache. Each cache i ∈ Cache has associated
with it the following variables:

1. a variable ci denoting the value i has for the memory line. This might be ⊥
if the cache does not have any value registered. It is convenient to denote
the main memory by m and the value of the main memory by cm, but this
variable will never take the value ⊥.

2. a variable pending i which has as value either the action that process i has
requested to be performed (read or write(v), for v ∈ {0, 1}), or the value
⊥, indicating that all requests have been processed.

At each moment of time, either one of the caches or the main memory is desig-
nated as the owner of the memory line; we represent the current owner by the
variable o, with domain Cache ∪ {m}. Exactly how the owner is determined at
each moment of time is a matter of implementation detail - we provide some
examples of particular implementations later.

A cache’s actions in response to its processors read and write requests depend
on what the cache knows about the state of the system, in particular, what it
knows about the three attributes identified above. We represent this knowledge
by means of three atomic propositions: ki(excli), ki(o = i) and ki(ci = co),
which we will require to be given a sound interpretation local to cache i (see
Section 2). The meaning of the formulas in these proposition names is as follows:

1. We write excli for ci 6= ⊥∧
∧

j∈Cache\{i} cj = ⊥, i.e., cache i is the only cache
with a copy of the line; thus ki(excli) intuitively says that cache i knows
that it has an exclusive copy;

2. o = i says that cache i is the owner, hence ki(o = i) intuitively says that
cache i knows that it is the owner;

3. ci = co says that cache i’s copy of the data value is equal to the owner o’s
copy, hence ki(ci = co) intuitively says that cache i knows that its copy is
valid.

We relate these local propositions to the cache’s actions by the following
specification of the cache’s behaviour, in the form of a guarded do loop that



runs forever. The clauses of this do loop have been labelled for reference, e.g.
the first is labelled “{Get request}”. Intuitively, the treatment of the variable
pending i ensures that this variable acts as a flag indicating whether there exists
a pending request from the processor. Requests to read are cleared by the cache
by executing the {Read Hit} or {Read Miss} clauses and requests to write are
cleared by executing the clause {Write Local} or {Write Bus}. The memory line
is cleared from the cache by executing the {Copy back} or {Flush} clause. The
reason we have two clauses to achieve each effect is that one involves a bus event
and the other can be achieved locally.

Ci ≡ do
{Get request}
pending i = ⊥ → Pi?pending i

[] {Read Hit}
pending i = read ∧ ki(ci = co) → Pi! ci ; pending i := ⊥

[] {Read Miss}
pending i = read ∧ ¬ki(ci = co) → [co = X, co = X ∧Ki(ci = co)]B ;

Pi! ci ; pending i := ⊥
[] {Write Local}

pending i = write(v) ∧ ki(excli) → [True, ci = v ∧ o = i]L;
Pi!ack; pending i := ⊥

[] {Write Bus}
pending i = write(v) ∧ ¬ki(excli) → [True, co = v ∧ ci = v]B ;

Pi!ack; pending i := ⊥
[] {Copy Back}

pending = ⊥ ∧ ki(o = i) → [ci = X, i 6= o ∧ co = X∧
pending i = ⊥]B

[] {Flush}
pending = ⊥ ∧ ¬ki(o = i) → [i 6= o, ci = ⊥ ∧ pending i = ⊥]L;

[] {Bus Observation}
[pending i = X, pending i = X]B

od

This specification is in the spirit of knowledge-based programs in the sense of
[FHMV95,FHMV97], in that it relates the cache’s actions to its knowledge. How-
ever, it also draws on elements of the knowledge based refinement calculus under
development [EMM98,MM00,EMM00,EMM01,Eng02]. One of these elements is
the use of sound local propositions kiφ as guards, where the [FHMV95,FHMV97]
knowledge-based programs would require use of sound and complete guards Kiφ.
As we will show in the next section, soundness of the guards suffices for correct-
ness of the specification. This makes our specification more general. (The astute
reader may have noticed that we do use the classical notion of knowledge in the
{Read Miss} clause. We comment on the reasons for this later.)

Another difference from the knowledge-based programs of [FHMV95,FHMV97]
is that in addition to having concrete actions in the clauses, we also make use of
specification statements [φ, ψ]. These are pre- and post-condition specifications:
they stand for some code, to be determined, that when executed from a state



satisfying φ terminates in a state satisfying ψ. (The subscripts B and L are
explained below.) We give a formal definition below. The variable X is used in
the specification statements as an implicitly universally quantified frame vari-
able, which is required to assume the same value in the pre-condition and the
post-condition. That is, the specification in this case is required to be satisfied
for all values of X.

We place some further constraints on the code implementing the specification
statements in the program:

I1. We assume that this code does not involve any communication actions be-
tween the cache and its processor, so that the only such events in the imple-
mentation are those already visible in the program above.

I2. Statements of the form [φ, ψ]L must be implemented by a program that takes
only actions local to the cache.

I3. Statements of the form [φ, ψ]B must be implemented by a single bus event.
I4. The variable ci cannot change from having value ⊥ to having a value not

equal to ⊥ without a bus event occurring.
I5. During the execution of [i 6= o, ci = ⊥∧pending i = ⊥]L, i 6= o remains true.

The intuition for I5 is that the clause containing this statement is intended to
flush the data value from the cache, and it does not make sense for the cache to
acquire ownership in order to do so. (This condition is also required for technical
reasons below.)

The {Bus Observation} clause is included to deal with the cache’s observa-
tions (snooping, in the terminology of the literature) of bus events generated
by other caches. The cache may update its own state as a result of observing
such events. It is assumed that all caches participate in each bus event, either by
causing it, or by observing it. Observers may also exchange information during
the bus event, e.g., by declaring that they retain a copy of the memory line.
There is a further requirement that each event observed on the bus be caused
by the action of one of the caches on the bus. Formally, we capture this by the
following conditions:

BObs. Each bus event in a run of the system corresponds to the simultaneous
execution by each cache of a bus event specification statement [α, β]B . At
least one of these is not the {Bus Observation} specification statement.

We also need some constraints on the definition of ownership:

O1. The owner’s value for the memory line is never ⊥, i.e., 2co 6= ⊥
O2. It is always the case that the owner, if a cache, knows that it is the owner,

i.e.,
∧

i∈Cache 2(o = i⇒ ki(o = i))
O3. If a cache is the owner, it remains the owner until a bus event occurs.

We note that O3 permits that ownership can be transferred from the main mem-
ory to a cache without a bus event occurring. We later give an example where
this occurs.

An candidate implementation of the above specification consists of the fol-
lowing:



1. A set of concrete processes Ci for each of the cache specifications Ci, obtained
by substituting specific code for the specification statements in the process
terms Ci, in accordance with constraints I1-I3. These concrete processes
may make use of variables additional to those mentioned above, in order to
maintain information about the state of other caches.

2. A concrete process M for the memory.
3. A definition of the semantics of any handshake actions used in these pro-

cesses, defining which combinations may occur in a handshake, and what the
effect is on the local states.

4. A definition of the local propositions kiφ: these should depend only on the
local variables of cache i in the implementation. These definitions should be
substituted in the guards of Ci in constructing the implementation Ci.

5. A definition of the ownership as a function of global state.

Given a candidate implementation, let S = M ‖ (P1 ‖ C1) ‖ . . . ‖ (Pn ‖ Cn)
be the parallel composition of all the components, and let I be the system
consisting of the set of runs of S, with propositions interpreted in accordance
with their interpretations in the candidate implementation. Then the candidate
implementation is an implementation if the following hold in I.

1. Constraints I4-I5, O1-O3 and BObs are satisfied.
2. The specification constraints are satisfied: for any run r of I, for any interval

(m,n) such that the code implementing the statement [φ, ψ] runs over inter-
val (m,n) in r, if I, (r,m) |= φ then I, (r, n) |= ψ. (Note that because the
underlying semantics is asynchronous, actions of other processes may occur
during the interval [m,n].)

For the purposes of the above definition, the knowledge operator in {Read Miss}
should be interpreted according to the observational semantics of knowledge.

We now show that any implementation of the knowledge-based specification
solves the cache coherence problem, by establishing that a strong type of sequen-
tiality holds if one observes the system at the level of bus events. Say that a write
event (of cache i) is an event involving cache i, such that the next event involv-
ing cache i is Pi!ack. That is, a write event of a cache i is the final event of the
implementation of one of the specification statements [True, ci = v ∧ o = i]L
or [True, co = v ∧ ci = v]B . We say that the value v is the value written in
this write event. We call events of the form Pj !w where w is a memory line
value, read events, with value w. The following result states that values read
are always equal to the last value written. When an event corresponds to the
transition between times n and n+ 1, we say it occurs at time n.

Lemma 1 (Sequentiality). Let I be a system implementing the knowledge-
based specification, and let r be a run of I. If a write event with value v occurs
at time m in r, a read event with value w occurs at time n > m, and no write
event occurs at times p with m < p ≤ n, then v = w.

It is worth remarking that the specification statement for the {Read Miss}
clause could have used the local proposition ki(ci = co) in place of Ki(ci = co),



but this would be less general by validity of ki(φ) ⇒ Ki(φ). In practice, however,
ki(ci = co) could well be the postcondition established, and would have the
benefit of matching the guard of the {Read Hit} statement. If one were to weaken
Ki(ci = co) in the postcondition of the {Read Miss} clause to ci = co, the
sequentiality result would no longer hold, intuitively because there is then no
guarantee that the owner does not perform a local write interleaved between
execution of the bus event and the handshake Pi!ci. However, a closely related
result, stating that observations of reads and writes at the level of the processors
are linearisable [HW90] could still be proved with this weakening.

5 Implementation of the Cache Protocols

One of the benefits of the knowledge-based approach is that it enables high level
descriptions capturing the underlying reasons for correctness of a variety of pro-
tocols. We illustrate this by showing that three known cache coherence protocols
are implementations of our knowledge-based program for cache coherence. We
refer the reader to [AB86] for a detailed presentation of these protocols.

The first protocol is the so-called Write-Once protocol, which gets its name
from the fact that the first write hit is performed as a write-through to the
memory and gives the other caches the information to invalidate their copies.
After this write-through, reads and writes can be performed locally, and the
cache can also be flushed without a write-back if there has been no second
write. See Figure 2(a) for a graphical representation. The cache line can be in
four different states: Invalid (Inv), Valid (Vld), Reserved (Rsv), or Dirty
(Drty). Writes and reads in state Inv lead to a Write-Miss (wm) resp. Read-Miss
(rm). In all other states the protocol reacts with a hit action, e.g., Write-Hit (wh)
resp. Read-Hit (rh). Other caches observe the miss actions, and take in response
the transitions labelled wmo (write miss observed) rmo (read miss observed),
and also observe the write-hit in state Vld, taking the transition woo (write once
observed).

wm@@I

rm��	

Drty��
��

wmo

6

rmo�
�

�
�

���


 	�
-wh Rsv��
��

wh�

rmo

6

wmo

@
@

@
@

@@I

Vld��
��

woo�

wh

?

Inv��
��

(a)

wm@@I

rm��	

Drty��
��wmo

6
rmo


 	�
-wh

Vld��
��

wmo�

wh

�
�

�
�

��	

Inv��
��

(b)

wm@@I wm(sh)���

rm(sh)
��	rm��	

Drty��
��wh

rmo
-

wh

�
�

�
�

���


 	�
-wh ShD��
��

wh�

wh(sh)

6


 	�	�
wh(sh)

ShC��
��

�
�

�
�

��	

rmo

wo

?

VldE��
��

?

-

(c)

Fig. 2. State graphs of the (a) Write-Once, (b) Synapse, and (c) Dragon protocols



The Synapse protocol on the other hand gets by with only three states as
shown in Figure 2(b). There is no Rsv state, hence all miss actions of other
caches result in invalidation of the cache line.

The Dragon protocol uses both a write-through and a copy-back approach.
It needs 5 local states, but Figure 2(c) shows only 4: the invalid state is omit-
ted. Once loaded, the value is always kept up-to-date until the line is flushed.
If the cache holds the line exclusively, then all reads and writes are local.
When other caches may also have a copy of the line, all activities go over
the bus to update all of them. After supplying the line, the main memory
is involved only when the owning cache flushes the line. The four possible
states of a loaded line are: Valid-Exclusive (VldE), Shared-Clean (ShC),
Shared-Dirty (ShD), and Dirty (Drty). Both dirty states imply ownership
and copy-back responsibility.

The added (sh) at some labels indicates that other caches indicated (via
the so-called shared-line) that they share the line. For the owning cache this
means further updates need to be communicated via the bus. The protocol is
written for special hardware that features such shared-lines and offers an inter-
cache communication that is much faster than write-cycles involving the main
memory.

In order to show that these protocols are implementations of the knowledge-
based program, we define additional local variables required for the processes,
and instantiate the various components in the knowledge-based program. By way
of the additional variables, it suffices to associate a variable si with each cache
Ci. The variable si is used to indicate the state the protocol associates with the
memory line in the cache. The following table shows how the propositions in the
knowledge-based program are defined.

o = i ki(o = i) ki(ci = co) ki(excli)
Write-Once si = Drty si = Drty si 6= Inv si ∈ {Rsv, Drty}

Synapse si = Drty si = Drty si 6= Inv si = Drty
Dragon si ∈ {Drty, ShD} si ∈ {Drty, ShD} si 6= Inv si ∈ {VldE, Drty}

The implementation of the locally executed specification statements turns
out to be the same in all the protocols: the {Flush} statement [o 6= i, ci =
⊥∧ pendingi = ⊥] is implemented by ci := ⊥; si := Inv, and the {Write Local}
statement [True, ci = v∧o = i] is implemented by ci := v; si := Drty. Using the
above table, it can be seen directly that, for each protocol, these implementations
ensure that the postcondition is satisfied.1

The remaining statements requiring definition are the bus event specification
statements. Recall that these execute as a handshake between all caches and the
memory, with all but one of the caches executing the {Observe} statement. The
following table describes, for each of the protocols, the atomic state transitions
resulting from the {Write Bus} statement. One column describes the effects at
the cache initiating the bus event, the other describes the transition at each of
the caches observing the bus event.
1 For the variable pending i we need to use the context in which the statement occurs.



{Write Bus} [True, co = v ∧ ci = v]B Observer j
Write-Once ci := v; if si = Inv then si := Drty cj := ⊥; sj = Inv

else if si = Vld then {cm := v; si := Rsv}
Synapse ci := v; si := Drty cj := ⊥; sj = Inv
Dragon ci := v; if sj 6= Inv

if Sh then si := ShD else si := Drty then {cj := v; sj = ShC}

In this table, Sh abbreviates ∃j 6= i(sj 6= Inv), and corresponds to the
SharedLine used by the caches to indicate that they have a copy of the memory
line. The table for the {Read Miss} statement is as follows.

{Read Miss} [co = X, co = X ∧Ki(ci = co)]B Observer j
Write-Once ci := co; si := Vld if sj = Drty then cm := cj ;

if sj ∈ {Rsv, Drty} then sj := Vld
Synapse ci := co; si := Vld if sj = Drty then

{ cm := cj ; cj := ⊥; sj = Inv}
Dragon ci := co; if Sh then si := ShC if sj ∈ {VldE, ShC} then sj := ShC;

else si := VldE if sj = Drty then sj := ShD

In the case of the Synapse protocol, our modelling of the {Read Miss} con-
denses two bus events into one: the actual protocol does not allow the memory
line to be read from another cache: if some cache has a Drty copy, it must first
write this back to memory, and the cache requesting a read must then reissue
its request and obtain the line from the memory.

In case of the {Copyback} statement, the implementation in all the protocols
is by cm := ci; ci := ⊥; si := Inv at the cache performing the copyback, and no
action at the observers. We remark that this implementation satisfies a stronger
postcondition than is required by our knowledge-based specification, which does
not require that ci = ⊥ after a copyback. This suggests the existence of protocols
that separate copyback from flush operations. We return to this point later.
Some other opportunities for alternate implementations are apparent: e.g., the
specification permits the copyback to transfer ownership to another cache rather
than the memory.

Another point needs to be noted concerning our modelling: by representing
the memory line as a single variable, we do not distinguish between reads and
writes of blocks versus single memory locations. Some changes would be required
to capture this: for example, in the write-once protocol, a Drty cache observing
a write must write the block back to memory, but the writing cache then need
only write through the particular memory location being written.

6 Correctness of the Implementations

In order to verify that a concrete program is a correct implementation of the
knowledge based-program, we need to check that each of the specification state-
ments is satisfied by the code implementing that statement, that the test for



knowledge are interpreted by sound conditions for knowledge, and that the other
constraints noted are satisfied. This verification could be carried out by any
standard means, e.g., theorem proving or model checking technology, and once
carried out, implies, by the correctness theorem, that the implementation satis-
fies the correctness condition for cache coherence. (We can, of course, also verify
this condition directly on the concrete code.)

We have conducted the verification by model checking using the model checker
MCK [GM04]. In addition to providing standard temporal logic model checking
capabilities, MCK enables model checking formulas of the logic of knowledge
and time.2 This makes it possible to check not just for correctness but also to
determine if protocols are making optimal use of the information encoded in the
local states. We illustrate our methodology in this section.

6.1 Global consistency

As an example of the global consistency properties we check, consider the re-
quirement that there be a unique owner at all times. In the Write-Once protocol,
we wish to define cache i to be the owner if statusi = Drty and the owner to
be the main memory otherwise. To check that this definition makes sense, we
first model check the following formula 2(status0 6= Drty ∨ status1 6= Drty).
This implies that the definition of ownership assigns a unique owner in all cir-
cumstances. Model checking other properties of this kind also provides a useful
means to detect a variety of basic implementation errors.

6.2 Soundness

Although it may appear to involve model checking knowledge, verifying sound-
ness of a concrete interpretation of the knowledge formulas can be carried out
using only temporal logic model checking technology. For example, to obtain
the Synapse protocol we interpret the local proposition ki(excli) by the test
si = Drty. Thus, soundness of this interpretation amounts to the claim 2(si =
Drty⇒ (ci 6= ⊥ ∧

∧
j 6=i cj = ⊥)), which is a pure temporal logic formula.

6.3 Completeness

The most significant novelty of our methodology concerns cases where we model
check knowledge formulas using the capabilities MCK provides for this purpose.
In particular, for some simple configurations of the 3 protocols, we have checked
the following:

K1 A {Read Miss} establishes the postcondition Ki(ci = co), with respect to the
observational (and hence also the perfect recall) interpretation of knowledge.

2 We extended MCK to handle the asynchronous perfect recall semantics for knowledge
in order to do so - the details will be reported elsewhere.



K2 Does the formula 2(ki(φ) ⇔ Kiφ) hold for each of the local propositions kiφ
in the specification, with respect to the asynchronous perfect recall semantics
of knowledge?

The variables observable to the caches for these results included variables record-
ing information potentially available to the caches in bus event, such as the tran-
sition being performed by the cache initiating the bus event. See the discussion
above for the significance of property K1. A positive answer for Property K2
shows that the protocols are optimal in their use of information, in the sense
that the variables si store all the information available to the caches that they
could use to determine whether the formulas φ hold. The answer to the question
turns out to be yes in all three protocols when the formula φ is o = i. This is to
be expected, since for each protocol, k(o = i) and o = i are identical and i-local,
from which soundness and completeness can easily be seen to follow.

However, when the formula φ is excli, we find that the i-local interpretation
for ki(φ) is sound but not complete in the Write-Once and Synapse protocols.
A scenario showing incompleteness is where the first action in a run is for a
cache to issue a {Read Miss}. Upon receipt of the value, the cache will be in
state Vld, but will know from a log of its observations that no other cache has a
copy, since it would have observed a read or write attempt by any other cache.
To some extent this negative result is to be expected, since the Write-Once and
Synapse protocols make no attempt to maintain exclusiveness information. The
Dragon protocol does maintain information about whether the value is shared,
and our model checking results indicate that whenever the Dragon cache could
know that it has an exclusive copy from a complete log of its observations of bus
events, it already knows this fact from just its Dragon state.

When the formula φ is co = ci, things are more subtle. In this case, the
interpretations we gave for ki(φ) turn out to be sound and complete for all three
protocols as we have described them. However, this conclusion hinges on the
fact that we perform the assignment ci := ⊥ whenever we perform si := Inv.
An alternate interpretation of the protocols would rely on the Flush operation
to perform ci := ⊥, and execute just si := Inv at other times.3 This allows us
to ask the question: are there situations where a cache could know that a value
that it has kept is valid, even though the protocol has marked it as invalid?

Our model checking experiments discovered that there is indeed such a sit-
uation. In the Synapse protocol, note that a cache in state Drty, on observing
a {Read Miss}, writes the value back to memory and goes to state Inv. In fact,
it could know that the value it has remains valid, since any subsequent write
would still have to involve a bus transaction. This suggests a change to the
Synapse protocol, in which the rmo transition from Drty in Figure 2(b) goes
to Vld instead of Inv. This observation has been previously made in the liter-
ature ([Han93], p. 175), but the point we wish to make is that model checking
knowledge provides an automated way to discover such lack of optimality in

3 As we noted above, the knowledge-based specification allows us to distinguish be-
tween a copyback and a flush.



protocols.4 If we make the proposed change to the Synapse protocol, we then
find that the interpretation for ki(co = ci) is both sound and complete.

7 Conclusion

The literature on the knowledge-based approach to the design and analysis of
distributed systems provides comparatively few examples from which to gener-
alise in development of the approach. Our results in this paper provide a new
case study, which illuminates a number of key points. In particular, we see here
an example where correctness of an implementation of a knowledge-based pro-
gram requires only soundness of the knowledge test, and can be separated from
the issue of optimality in use of information, which corresponds to completeness.

We have also clarified Sweazey and Smiths analysis of cache coherence, by
giving it a highly abstract, knowledge-theoretic presentation, that highlights a
number of subtleties and reveals some design alternatives for the development
of new cache coherence protocols. We remark that there has been a previous
analysis of cache coherence using epistemic logic [MWS94]. The key differences to
our work is that it considers a somewhat different class of protocols for network
rather than hardware settings, and uses a logic of belief rather than a logic
of knowledge. Neiger [Nei95] has also considered, from a knowledge theoretic
perspective, distributed shared memory satisfying weaker properties than cache
coherence.

Verification of cache coherence protocols has previously been approached by
refinement, e.g. [BDG+94]. What distinguishes our approach is that it allows
us to automatically discover situations where protocols are not optimal in their
use of information. It also opens up avenues for synthesis of implementations.
For example, after providing implementations of the specification statements,
we could try to determine sound and complete interpretations of the knowledge
conditions by automated synthesis. We leave this as a question for future work.

References

[AB86] James Archibald and Jean-Loup Baer. Cache coherence protocols: eval-
uation using a multiprocessor simulation model. ACM Transactions on
Computer Systems (TOCS), 4(4):273–298, 1986.

[BDG+94] E. Brinksma, J. Davies, R. Gerth, S. Graf, W. Janssen, B. Jonsson, S.Katz,
G. Lowe, M. Poel, A. Pnueli, C. Rump, and J. Zwiers. Verifying sequen-
tially consistent memory. Computing Science Reports 94-44, Eindhoven
University of Technology, 1994.

[CGH+95] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L McMillan,
and L.A. Ness. Verification of the Futurebus+ cache coherence protocol.
Formal Methods in System Design, 6:217–232, 1995.

4 How to modify a protocol in such a situation is an interesting but much more subtle
question, that we leave for the future.



[EMM98] Kai Engelhardt, Ron van der Meyden, and Yoram Moses. Knowledge and
the logic of local propositions. In Itzhak Gilboa, editor, Theoretical As-
pects of Rationality and Knowledge, Proceedings of the Seventh Conference
(TARK 1998), pages 29–41. Morgan Kaufmann, July 1998.

[EMM00] Kai Engelhardt, Ron van der Meyden, and Yoram Moses. A program re-
finement framework supporting reasoning about knowledge and time. In
Foundations of Software Science and Computation Structures, pages 114–
129, 2000.

[EMM01] Kai Engelhardt, Ron van der Meyden, and Yoram Moses. A refinement
theory that supports reasoning about knowledge and time for synchronous
agents. In Proceedings LPAR 2001, pages 125–141, 2001.

[Eng02] Kai Engelhardt. Towards a refinement theory that supports reasoning about
knowledge and time for multiple agents. In John Derrick, Eerke Boiten, Jim
Woodcock, and Joakim von Wright, editors, Electronic Notes in Theoretical
Computer Science, volume 70. Elsevier, 2002.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[FHMV97] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Knowledge-based programs. Distributed Computing, 10(4):199–225, 1997.

[GM04] Peter Gammie and Ron van der Meyden. MCK — Model-checking the logic
of knowledge. In Proc. Computer Aided Verification: 16th International
Conference, CAV, pages 479 – 483. Springer LNCS No. 3114, 2004.

[Han93] J. Handy. The Cache Memory Book. Academic Press, 1993.
[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness

condition for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 12(3):463–492, 1990.

[MM00] Ron van der Meyden and Yoram Moses. On refinement and temporal an-
notations. In Formal Techniques in Real-Time and Fault-Tolerant Systems,
6th International Symposium, FTRTFT 2000 Pune, India, September 20–
22, Proceedings, pages 185–201, 2000.

[MWS94] Lily B. Mummert, Jeannette M. Wing, and M. Satyanarayana. Using belief
to reason about cache coherence. In Proc. ACM Symposium on Principles
of Distributed Computing, pages 71–80, 1994.

[Nei95] Gil Neiger. Simplifying the design of knowledge-based algorithms using
knowledge consistency. Information and Computation, 119(2):283–293,
1995.

[SS86] P. Sweazey and A. J. Smith. A class of compatible cache consistency pro-
tocols and their support by the IEEE futurebus. In Proceedings of the 13th
Annual International Symposium on Computer architecture, pages 414–423.
IEEE Computer Society Press, 1986.


