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Abstract. This paper argues that Haigh and Young’s definition of non-
interference for intransitive security policies admits information flows
that are not in accordance with the intuitions it seeks to formalise. Sev-
eral alternative definitions are discussed, which are shown to be equiva-
lent to the classical definition of noninterference with respect to transitive
policies. Rushby’s unwinding conditions for intransitive noninterference
are shown to be sound and complete for one of these definitions, TA-
security. Access control systems compatible with a policy are also shown
to be TA-secure, and it is also shown that TA-security implies that the
system can be interpreted as an access control system.

1 Introduction

The term ‘noninterference’ is used in the computer security literature to refer to
formal definitions of information flow or causality between security domains. The
classical theory of noninterference [GM82] dealt with transitive policies, which
are closely related to partially ordered security levels. This theory is unable to
deal with certain systems requiring channel control and downgrading [Rus81].
To overcome these limitations, Haigh and Young [HY87] proposed a variant of
the classical definition for channel control applications, which was further pro-
mulgated by Rushby [Rus92] for intransitive policies more generally. Roscoe and
Goldsmith [RG99] have argued that the variant definition is in fact inadequate
for dealing with downgrading, and have proposed an alternate definition. Their
arguments do not seem to have been universally accepted, however, and the
Haigh and Young definition remains in use and continues to be the subject of
research [HALL+05,MS04,Ohe04].

In this paper, we present a new argument against this definition, showing
that it may be too weak for the intuitions it seeks to capture. We present an
example that shows that it allows information to flow to an agent, that could not
have come from the agents from which it is permitted to acquire information.

This leads us to consider alternative definitions. We show that there is in
fact a spectrum of different definitions of noninterference for possibly intransitive
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policies, all having some intuitive plausibility, and all equivalent to the classical
definition in the case of transitive policies. The weakest of these definitions is the
classical purge-based definition, the strongest is Haigh and Young’s definition.
We define two notions of intermediate strength. These definitions state that the
agent should not have more information than the maximal amount it is permitted
to have, but differ in the modelling of the maximal amount of information that
may be transmitted by an action. One of these notions, TO-security, states that
an agent may not transmit information that it has not directly observed. The
other notion, TA-security, takes a more liberal view, in which an agent’s actions
may transmit information that it is permitted to have, even if it has not actually
observed this information.

We include a discussion of “unwinding conditions,” which provide a proof
technique for noninterference, but can be taken as a definition of security in their
own right. Rushby proved that the classical unwinding conditions of Goguen and
Meseguer provide a complete proof technique for noninterference in the transi-
tive case. He proposes a weakening of these conditions for intransitive policies
(correcting an earlier proposal by Haigh and Young [HY87]). He establishes
soundness of the weakened unwinding conditions, but not completeness. We
give an explanation of this: Rushby’s conditions are not complete for the Haigh
and Young definition of noninterference. Instead they are sound and complete
for the stronger notion of TA-security. There is a somewhat surprising subtlety
in this statement: for completeness, the weakened unwinding conditions must
be applied to the appropriate bisimilar system, but the existence of the weak
unwindings is not preserved under bisimulation.

We also follow Rushby in considering the behaviour of the definitions on
access control systems, the class of applications originally motivating the liter-
ature on noninterference. Rushby showed that access control systems satisfying
a condition of structural consistency with a policy satisfy Haigh and Young’s
definition of intransitive noninterference. We argue that Rushby’s definition of
access control systems can be weakened, and that access control systems consis-
tent with a policy satisfy the stronger notion of TA-security as well as Haigh and
Young’s definition of security. Moreover, we also show that TA-security implies
that there is a way to interpret the system as an access control system in the
weakened sense. This shows that TA-security is in some sense equivalent to the
existence of an access control implementation of the system. Further, we prove
that access control systems structurally consistent with a policy also satisfy the
stronger notion of TO-security, provided we work with an appropriate notion of
observation for such systems.

The structure of the paper is as follows. Section 2 recalls the Haigh and Young
definition, and presents our new argument against the definition. In Section 3 we
introduce two new definitions of noninterference for intransitive noninterference,
and show how they are related. We discuss unwinding conditions in Section 4.
The results on access control systems are presented in Section 5. We close in
Section 6 with some remarks concerning related research and issues requiring
investigation.



2 Intransitive Noninterference

The notion of noninterference was first proposed by Goguen and Meseguer
[GM82]. Early work on this area was motivated by multi-level secure systems,
and dealt with deterministic systems and partially ordered (hence transitive)
information flow policies. A significant body of work has developed since then,
with a particular focus on generalization to the case of nondeterministic sys-
tems [Sut86,WJ90,McC88,FG01,Rya01] and intransitive policies [Rus92,RG99,Ohe04].
We focus in this paper on intransitive policies in the deterministic case.

Several different types of semantic models have been used in the literature
on noninterference. (See [MZ06] for a comparison and a discussion of their
relationships.) We work here with the state-observed machine model used by
Rushby [Rus92], but similar results would be obtained for other models.1 This
model consists of deterministic machines of the form 〈S, s0, A, step, obs, dom〉,
where S is a set of states, s0 ∈ S is the initial state, A is a set of actions,
dom : A → D associates each action to an element of the set D of secu-
rity domains, step : S × A → S is a deterministic transition function, and
obs : S × D → O maps states to an observation in some set O, for each
security domain. We may also refer to security domains more succinctly as
“agents”. We write s · α for the state reached by performing the sequence
of actions α ∈ Actions∗ from state s, defined inductively by s · ǫ = s, and
s ·αa = step(s ·α, a) for α ∈ A∗ and a ∈ A. Here ǫ denotes the empty sequence.

Noninterference policies, as they are now usually presented2, are relations
⊆ D × D, with u  v intuitively meaning that “actions of domain u are
permitted to interfere with domain v”, or “information is permitted to flow
from domain u to domain v”. Since, intuitively, a domain should be allowed to
interfere with, or have information about, itself, this relation is assumed to be
reflexive. In early work on noninterference, it is also assumed to be transitive.

Noninterference is given a formal semantics in the transitive case using a
definition based on a “purge” function. Given a policy , we define the function
purge : A∗ × D → A∗ such that purge(α, u) is the subsequence of all actions
a in α such that dom(a)  u. (For clarity, we may use subscripting of agent
arguments of functions, writing e.g., purge(α, u) as purgeu(α).) The system M

is then said to be secure with respect to the policy  when for all α ∈ A∗ and
domains u ∈ D, we have obsu(s0 · α) = obsu(s0 · purgeu(α)). That is, each
agent’s observations are as if only interfering actions had been performed. An
equivalent formulation is the following: for all sequences α, α′ ∈ A∗ such that
purgeu(α) = purgeu(α′), we have obsu(s0 · α) = obsu(s0 · α′). This can be
understood as saying that agent u’s observation depends only on the sequence
of interfering actions that have been performed.

1 In a subsequent version of this paper we will also treat Rushby’s action-observed
model, and show that the corresponding definitions in that model are related to those
in the state-observed model by means of a natural mapping from action observed
systems to state-observed systems.

2 Goguen and Meseguer used a slightly richer notion.



Haigh and Young [HY87] generalised the definition of the purge function to
intransitive policies as follows. Intuitively, given a sequence of actions a1 . . . an ∈
A∗, the intransitive purge of this sequence with respect to a domain u is the
largest subsequence b1 . . . bk such that for each i < k, either bi  u or for some
j ≤ k we have dom(bi)  dom(bj) and i < j. More formally, the definition
makes use of a function sources : A∗ × D ⇒ P(D) defined inductively by
sources(ǫ, u) = {u} and

sources(a·α, u) = sources(a·α, u)∪{dom(a) | ∃v ∈ sources(v, α)(dom(a)  v)}

for a ∈ A and α ∈ A∗. Intuitively, sources(α, u) is the set of domains v such
that there exists a sequence of permitted interferences from v to u within α. The
intransitive purge function ipurge : A∗×D → A∗ is then defined inductively by
ipurge(ǫ, u) = ǫ and

ipurge(aα, u) =

{

a · ipurge(α, u) if dom(a) ∈ sources(aα, u)
ipurge(α, u) otherwise

for a ∈ A and α ∈ A∗. An alternative, equivalent formulation that we will find
useful is the following: given a set X ⊆ D, define ipurgeX(α) inductively by
ipurgeX(ǫ) = ǫ and

ipurgeX(αa) =

{

ipurgeX∪{dom(a)}(α) if dom(a)  u ∈ X)

ipurgeX(α) otherwise

Then ipurgeu(α) is identical to ipurge{u}(α).
Using the intransitive purge function, a system M is defined to be secure

with respect to a possibly intransitive policy  if for all sequences α ∈ A∗, and
u ∈ D, we have obsu(s0 ·α) = obsu(s0 ·ipurgeu(α)). We will refer to this notion
as IP-security. Since the function ipurgeu on A∗ is idempotent, this definition,
like the definition for the transitive case, can be formulated as: M is IP-secure
with respect to a possibly intransitive policy  if for all u ∈ D and all sequences
α, α′ ∈ A∗ with ipurgeu(α) = ipurgeu(α′), we have obsu(s0 ·α) = obsu(s0 ·α

′).
It can be seen that ipurgeu(α) = purgeu(α) when  is transitive, so IP-security
is in fact a generalisation of the definition of security for transitive policies.

Roscoe and Goldsmith [RG99] (henceforth, RG) have argued that the Haigh
and Young definition is incorrect. They present a number of concrete examples
to make this case, including a policy H  D  L, intended to represent that
D is a “downgrader” process that decides which of the High (H) secrets may
safely be revealed to a Low process L. The essence of their argument is that the
definition has the effect that a downgrader D’s action permits all information
about preceding H actions to become known to L, even if the intent of the
downgrading action was to release only some specific information about the
preceding H actions.

That is, this definition does not enable the intent of specific downgrading
actions to be specified. But it might be countered in that intransitive nonin-
terference was not intended to make such fine grained distinctions, but only to



express some coarse architectural constraints on information flow. In RG’s ex-
amples, the information released to L is information that was known to D at
the time of release. One might sensibly hold the view that therefore RG’s exam-
ples are not counterexamples to the intuitive reading of the policy. Indeed, RG’s
arguments have not been universally accepted as compelling (see, e.g., [Ohe04]).

Nevertheless, we believe that a case can be made that IP-security is too weak,
but on different grounds. Note that the intransitive purge ipurgeu(α) preserves
not just certain actions from the sequence α, but also their order. We claim that
this allows u to “know” this order in situations where an intuitive reading of the
policy would suggest that it ought not to know this order.

The notion of an agent’s knowledge in a system can be given formal meaning
using the following notion of view. The definition uses an absorbtive concatena-
tion function ◦, defined over a set X by, for s ∈ X∗ and x ∈ X , by s ◦ x = s

if x is equal to the final element of s (if any), and s ◦ x = s · x (ordinary con-
catenation) otherwise. Define the view of domain u with respect to a sequence
α ∈ A∗ by viewu(ǫ) = obsu(s0), and viewu(α · a) = (viewu(α) · b) ◦ obsu(s0 ·α),
where b = a if dom(a) = u and b = ǫ otherwise. That is, viewu(α) is the se-
quence of all observations and actions of domain u in the run generated by α,
compressed by the elimination of stuttering observations. Intuitively, viewu(α)
is the complete record of information available to agent u in the run generated
by the sequence of actions α. The reason we apply the absorbtive concatenation
is to capture that the system is asynchronous, with agents not having access to
a global clock. Thus, two periods of different length during which a particular
observation obtains are not distinguishable to the agent.

Using the notion of view, we may define for each agent u an equivalence
relation ≡u on sequences of actions by α ≡u α′ if viewu(α) = viewu(α). We
may then say that in the run generated by a sequence of actions α, agent u

knows a fact φ about α if φ is true of all sequences α′ such that α ≡u α′. This
is essentially the definition of knowledge for an agent with asynchronous perfect
recall used in the literature on reasoning about knowledge [FHMV95]. Another
notion used in this literature is the notion of the distributed knowledge3 of a
group of agents. Intuitively, a fact is distributed knowledge to a set of agents
G if it could be deduced after combining all the information that these agents
have. More formally, we may define the relations ≡G on sequences of actions by
α ≡G α′ if α ≡u α′ for all u ∈ G. A fact φ is then distributed knowledge to
group G in a sequence α if it holds of all sequences α′ such that α ≡G α′.

3 Distributed knowledge has been argued to be too strong a notion to apply in asyn-
chronous systems, such as those we consider in this paper, and a weaker notion called
inherent knowledge has been proposed [MB94]. However, the notion of distributed
knowledge will suffice for our purposes since our arguments would also hold if dis-
tributed knowledge were to be replaced by a weaker notion. Indeed, we will argue in
a longer version of the paper that in the present setting, it is appropriate to consider
a novel notion of group knowledge (which relies on the group knowing the order
of the actions of agents within the group) which is yet stronger than distributed
knowledge.



We may now present our example illustrating a weakness of IP-security. The
essence of the example is that IP-security is consistent with an agent acquir-
ing information that is not distributed knowledge to the agents from which it
permitted (by an intransitive policy) to acquire information.

Example 1. Consider the intransitive policy  given by H1  D1, H2  D2,
D1  L and D2  L. Intuitively, H1, H2 are two High security domains, D1, D2

are two downgraders, and L is an aggregator of downgraded information.

Define the system M with actions A = {h1, h2, d1, d2, l} of domains H1, H2, D1, D2, L

respectively. The set of states of M is the set of all strings in A∗. The transi-
tion function is defined by concatenation, i.e. for a state α ∈ A∗ and an action
a ∈ A, step(α, a) = αa. The observation functions are defined using the ipurge
function associated to the above policy: obsu(α) = [ipurge(α, u)]. (Here we put
brackets around the sequence of actions when it is interpreted as an observation,
to distinguish such occurrences from the actions themselves as they occur in a
view.)

It is plain that M is IP-secure. For, if ipurge(α, u) = ipurge(α′, u) then
Ou(s0 · α) = [ipurge(α, u)] = [ipurge(α′, u)] = Ou(s0 · α′). We claim that the
system nevertheless has an undesirable information flow.

Consider the sequences of actions α1 = h1h2d1d2 and α2 = h2h1d1d2. Note
that these differ in the order of the events h1, h2. Then we have obsL(α1) =
[ipurge(α1, L)] = [α1], so in α1 agent L knows the entire run, and in particu-
lar, the ordering of the events h1, h2. However, obsD1

(α1) = [ipurge(α1, D2)] =
[h1d1] = obsD1

(α2), so the agent’s final observation does not enable it to distin-
guish α1 from α2. Moreover, this holds even when we consider views, since

viewD1
(α1) = obsD1

(ǫ) ◦ obsD1
(h1) ◦ obsD1

(h1h2) ◦ d1 ◦ obsD1
(h1h2d1) ◦ obsD1

(h1h2d1d2)
= [ǫ] ◦ [h1] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]
= [ǫ] ◦ [ǫ] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]
= obsD1

(ǫ) ◦ obsD1
(h2) ◦ obsD1

(h2h1) ◦ d1 ◦ obsD1
(h2h1d1) ◦ obsD1

(h2h1d1d2)
= viewD1

(α2)

i.e., α1 ≡D1
α2. By symmetry, we also have α1 ≡D2

α2, hence α1 ≡{D1,D2} α2.
This means that D1 and D2 do not have distributed knowledge of the ordering
of the events h1, h2, even with respect to the asynchronous perfect recall intepre-
tation of knowledge, in which they reason based on everything that they learn
in the run.

Thus, L has acquired information that cannot have come from the two sources
D1 and D2 that are supposed to be, according to the policy, its only sources of
information. ⊓⊔

This example has a rather different character to those of RG. We believe that
it more convincingly demonstrates that IP-security allows information flows that
contradict the intuitive meaning of the policy, at the level of abstraction at which
the notion of noninterference is intended to operate (rather than the much more
detailed level of abstraction to which RG tried to apply it.)



3 Alternative Definitions

Roscoe and Goldsmith [RG99], follow their criticism of Rushby’s definition with
a proposed alternative definition. They work in the framework of the process
algebra CSP, which lacks a distinction between observations and actions, so it
is not entirely clear how best to translate this proposal into the framework of
state machines. Ignoring the role of observations for the moment, RG’s Theorem
1 suggests the following translation:

Definition: M is P-secure with respect to a policy  if for all sequences
α, α′ ∈ A∗ and domains u ∈ D if purgeu(α) = purgeu(α′), then obsu(s0 · α) =
obsu(s0 · α′).

Intuitively, this says that u’s observations depend only on the prior actions
in domains that may interfere with u. Observe that this is precisely the vari-
ant of the classical definition of security discussed above, so it is obvious that
this definition, like IP-security, is a generalisation of the classical definition for
transitive policies.

Note that the system of Example 1 is not P-secure. For example, if we take
α = h1h2d1 and α′ = h2h1d1 then purgeL(α) = d1 = purgeL(α′) but obsL(α) =
α 6= α′ = obsL(α′).

However (and, presumably, this is why it was felt necessary to vary the
definition in the intransitive case), P-security may be too strong, since it does
not permit an agent to transmit to others information that it has acquired from
others. The only way to enable this consistently with the definition of P-security
is to define a distinct action for each piece of observed information that is to be
transmitted. While this is precisely what RG advocate, based on their aim to
express detailed reasoning about downgrading, this entails a very high modelling
overhead, and it is not possible to define such actions in the context of input-
enabled systems, where they cannot be correlated with the information they are
meant to transmit.

We therefore propose two other definitions of security.4 Both are based on a
concrete model of the maximal amount of information that an agent may have
after some sequence of actions has been performed, and state that an agents
observation may not give it more than this maximal amount of information.
The definitions differ in the modelling of the maximal information, and take the
view that an agent increases its information either by performing an action or
by receiving information transmitted by another agent.

In the first model of the maximal information, we take the view that what is
transmitted when an agent performs an action is information about the actions

4 The question of how exactly our defintions relate to RG’s definition requires a treat-
ment of mappings between state machine models and CSP, for which there are a
number of plausible candidates. In a longer version of the paper we show that one
of these yields that RG’s definition is in fact P-security, but on another RG’s defi-
nition is not equivalent to any of ours: the difference relates to the treament of an
interfering agent’s observations after its last action.



performed by other agents. The following definition does so in a weaker way than
the ipurge function.

Let the set HT (A∗) of hierarchical triples over A∗ be the smallest set con-
taining A∗ and such that if x, y, z ∈ HT (A∗) then (x, y, z) ∈ HT (A∗). Given
a policy , define, for each agent u ∈ D, the function tau : A∗ → HT (A∗)
inductively by tau(ǫ) = ǫ, and, for α ∈ A∗ and a ∈ A,

1. if dom(a) 6 u, then tau(αa) = tau(α),
2. if dom(a)  u, then tau(αa) = (tau(α), tadom(a)(α), a).

Intuitively, tau(α) captures the maximal information that agent u may, con-
sistently with the policy , have about the past actions of other agents. In
particular, the definition says that nothing new is transmitted to u by an ac-
tion that may not interfere with u, and an action a that may interfere with
u may add to u’s information tau(α) everything that is potentially known to
dom(a), represented by tadom(a)(α), as well as the fact that the action a has been
performed.

We now define a system M to be TA-secure with respect to a policy 

if for all agents u and all α, α′ ∈ A∗ such that tau(α) = tau(α′), we have
obsu(s0 · α) = obsu(s0 · α

′). Intuitively, this says that each agent’s observations
provide the agent with no more than the maximal amount of information that
may have been transmitted to it, as expressed by the functions ta.

Example 2. Note that the system of Example 1 is not TA-secure. For,

taL(h1h2d1d2) = (taL(h1h2d1), taD2
(h1h2d1), d2)

= ((taL(h1h2), taD1
(h1h2), d1), taD2

(h1h2), d2)
= ((taL(h1), taD1

(h1), d1), (taD2
(h1), taH2

(h1), h2), d2)
= ((ǫ, (ǫ, ǫ, h1), d1), (ǫ, ǫ, h2), d2)

and

taL(h2h1d1d2) = (taL(h2h1d1), taD2
(h2h1d1), d2)

= ((taL(h2h1), taD1
(h2h1), d1), taD2

(h2h1), d2)
= ((taL(h1), (taD1

(h1), taH1
(h2), h1), d1), taD2

(h2), d2)
= ((ǫ, (ǫ, ǫ, h1), d1), (ǫ, ǫ, h2), d2)

So taL(h1h2d1d2) = taL(h2h1d1d2), but OL(h1h2d1d2) = [h1h2d1d2] 6= [h2h1d1d2] =
OL(h2h1d1d2). ⊓⊔

The definition of TA-security has one aspect that might plausibly be ques-
tioned: it classifies as secure situations in which an agent transmits information
to another that it has not actually observed.

Example 3. Consider a downgrading system with policy H  D  L, ac-
tions A = {h, d, l} of domains H, D, L, respectively, states A∗ with s0 = ǫ

and transitions step(α, a) = αa. Let the observation functions be given by
obsL(α) = taL(α) and obsu(α) = ⊥ for all α ∈ A∗ and u ∈ {H, D}. Let



α, α′ ∈ {h}∗. Then we have taD(α) = taD(α′) iff α = α′. Thus, from obsL(αd) =
(taL(α), taD(α), d), it is possible for L to deduce the exact sequence of H actions
performed in α. On the other hand, since always obsD(α) = ⊥, agent D itself
has no information about this sequence. Thus, in this system D can be viewed
as causing information to be transmitted to L that it does not itself have. ⊓⊔

Whether one considers this example to illustrate a violation of security de-
pends on one’s attitude to forwarding of unobserved information. IP-security
considers this acceptable, as does TA-security. However, it is possible to con-
struct a definition that would consider this as insecure.

Given a policy , for each domain u, define the function tou : A∗ → HT (A∗)
by tou(ǫ) = obsu(s0) and tou(αa) = tou(α) when dom(a) 6 u and tou(αa) =
(tou(α), viewdom(a)(α), a) otherwise. We then define M to be TO-secure with
respect to  if for all domains u and all α, α′ ∈ A∗ with tou(α) = tou(α′), we
have obsu(s0 · α) = obsu(s0 · α′). Intuitively, this definition takes the model of
the maximal information that an action a may transmit after the sequence α

to be the fact that a has occurred, together with the information that dom(a)
actually has, as represented by its view viewdom(a)(α). By contrast, TA-security
uses in place of this the maximal information that dom(a) may have.

It is possible to give a flatter representation of the information in tou(α)
that clarifies the relationship of this definition to P-security. Define the possibly
transmitted view of domain u for a sequence of actions α to be the largest prefix
tviewu(α) of viewu(α) than ends in an action a with dom(a) = u. Then we have
the following:

Proposition 1. M is TO-secure with respect to a policy  iff for all sequences
α, α′ ∈ A∗, and domains u ∈ D, if purgeu(α) = purgeu(α′) and tviewv(α) =
tviewv(α

′) for all domains v 6= u such that v  u, then obsu(s0 ·α) = obsu(s0 ·
α′).

We note the following property of these definitions:

Proposition 2. Let α, α′ ∈ A∗ and u ∈ D.

1. If M is TO-secure and tou(α) = tou(α′) then viewu(α) = viewu(α′).
2. If M is TA-secure and tau(α) = tau(α′) then viewu(α) = viewu(α′).

The following result describes how these definitions are related. Like IP-
security, the notions P-security, TO-security and TA-security are generalizations
of the classical notion of noninterference in the transitive case.

Theorem 1.

1. If M is P-secure with respect to  then M is TO-secure with respect to .
2. If M is TO-secure with respect to  then M is TA-secure with respect to

.
3. If M is TA-secure with respect to  then M is IP-secure with respect to .



4. If  is transitive then M is P-secure with respect to  iff M is TO-secure
with respect to  iff M is TA-secure with respect to  iff M is IP-secure
with respect to .

Proof. Part (1) is immediate from Proposition 1. Part (4) follows from parts (1)-
(3), using the fact that P-security and IP-security are equivalent with respect to
transitive policies (Rushby [Rus92] Theorem 9).

We now prove part (2). We claim that for all u ∈ D and α, α′ ∈ A∗, if
tau(α) = tau(α′) then tou(α) = tou(α′). The result is then immediate from the
definition of TO-security. The proof of the claim is by induction on |α| + |α′|.
The base case of α = α′ = ǫ is trivial. Supposing that the claim holds for strings
of shorter combined length, suppose tau(αa) = tau(α′), where α, α′ ∈ A∗ and
a ∈ A. We consider two cases:

1. Case 1: dom(a) 6 u. Then tau(α) = tau(αa) = tau(α′), so by the inductive
hypothesis we have tou(α) = tou(α′). Since tou(αa) = tou(α) in this case
it is immediate that tou(αa) = tou(α′).

2. Case 2: dom(a)  u. We may assume without loss of generality that the last
action in α′ also interferes with u, else we may apply the previous case. So
let α′ = βb. Then tau(αa) = tau(βb), from which we get that a = b and
tau(α) = tau(β) and tadom(a)(α) = tadom(a)(β). By induction we have that
tou(α) = tou(β) and todom(a)(α) = todom(a)(β). From the latter, we obtain
by TO-security and Proposition 2 that viewdom(a)(α) = viewdom(a)(β). It is
now immediate from the definition of ta that tau(αa) = tau(βb).

To show part (3), we claim that if u ∈ X ⊆ D then tau(α) = tau(ipurgeX(α)).
In particular, tau(α) = tau(ipurgeu(α)). Note that this straightforwardly im-
plies that if ipurgeu(α) = ipurgeu(α′) then tau(α) = tau(α′), and so if M is
TA-secure with respect to  then M is IP-secure with respect to . To prove
the claim we proceed by induction. The case of α = ǫ is trivial. Assuming the
claim holds for α, consider αa where a ∈ A. We consider two cases: depending
on whether dom(a)  u.

If dom(a) 6 u, then tau(αa) = tau(α). We consider two further subscases.
Write v  X if there exists w ∈ X such that v  w.

1. Case 1: dom(a) 6 X . Then ipurgeX(αa) = ipurgeX(α). Hence

tau(ipurgeX(αa)) = tau(ipurgeX(α))
= tau(α) (by induction)
= tau(αa).

2. Case 1: dom(a)  X . Then ipurgeX(αa) = ipurgeX∪{dom(a)}(α) · a. Hence,
from the induction hypothesis and the definitions,

tau(ipurgeX(αa)) = tau(ipurgeX∪{dom(a)}(α) · a)

= tau(ipurgeX∪{dom(a)}(α))

= tau(α) (by induction)
= tau(αa).



If dom(a)  u, then ipurgeX(αa) = ipurgeX∪{dom(a)}(α) · a. Thus

tau(ipurgeu(αa)) = tau(ipurgeX∪{dom(a)}(α) · a)

= (tau(ipurgeX∪{dom(a)}(α)), tadom(a)(ipurgeX∪{dom(a)}(α)), a)

= (tau(α), tadom(a)(α), a) (by induction)
= tau(αa).

This completes the proof of the claim. ⊓⊔

4 Unwinding Relations

In this section we relate our alternative definitions of security for intransitive
policies to “unwinding conditions” that have been discussed in the literature
as a way to prove nonintererference [GM84]. We show that Rushby’s proposed
unwinding conditions for intransitive noninterference are most closely related
to the notion of TA-security (where they provide a sound and complete proof
method), although they are also sufficient for TO-security in a special case. We
also show the somewhat suprising fact that Rushby’s unwinding conditions are
not preserved under bisimulation.

We begin by recalling Rushby’s results on unwinding for intransitive nonin-
tereference. Suppose we have for each domain u an equivalence relation ∼u on
the states of M . Rushby discusses the following “unwinding” conditions on such
equivalence relations.

OC: If s ∼u t then obsu(s) = obsu(t). (Output Consistency)
SC: If s ∼u t then s · a ∼u t · a. (Step Consistency)
LR: If not dom(a)  u then s ∼u s · a. (Left Respect)

If these conditions are satisfied then M is secure with respect to a transitive
policy [GM84]. Conversely, consider the particular equivalence relations ≈u on
states, defined by s ≈u t if for all strings α in A∗ we have obsu(s·α) = obsu(t·α).
Rushby uses these equivalence relations to show completeness of the unwinding
conditions for transitive noninterference:

Proposition 3. ([Rus92] Theorem 6) Suppose M is P-secure with respect to the
transitive policy . Then the relations ≈u satisfy OC, SC and LR.

For intransitive noninterference he introduces the following condition:

WSC: If s ∼u t and s ∼dom(a) t then s · a ∼u t · a. (Weak Step Consistency)

Define a weak unwinding on a system M with respect to a policy  to be a family
of relations ∼u, for u ∈ D, satisfying OC,WSC and LR. It will be convenient to
have the following alternate characterization of this notion. Given a system M

and a policy , let {≈uw
u }u∈D be the smallest family of equivalence relations

(under the pointwise containment order) satisfying WSC and LR.



Proposition 4. There exists a weak unwinding for M with respect to  iff the
relations ≈uw

u satisfy OC.

Proof. The implication from right to left is trivial. For the implication from right
to left, suppose that {∼u}u∈D is a weak unwinding for M with respect to . It
is immediate from the definition of ≈uw

u and fact that the property of being an
equivalence relation, WSC and LR are defined by Horn formulas that ≈uw

u ⊆∼u.
The fact that ∼u satisfies OC now implies that ≈uw

u satisfies OC. ⊓⊔

Rushby shows the following:

Proposition 5. ([Rus92], Theorem 7) Suppose that the relations ∼u on a sys-
tem M satisfy OC,WSC and LR. Then M is IP-secure for .

However, he does not establish completeness of these unwinding conditions
for IP-security. The following result yields an explanation of this fact.

Theorem 2. Suppose that there exists a weak unwinding for M with respect to
. Then M is TA-secure with respect to .

Proof. We show that for u ∈ D and α, α′ ∈ A∗, if tau(α) = tau(α′) then
s0 · α ∼u s0 · α′. By OC, it also follows that obsu(s0 · α) = obsu(s0 · α′), which
is what we need for TA-security. We proceed by induction on |α| + |α′|. The
base case of α = α′ = ǫ is trivial. Supposing that the result holds for sequences
of shorter combined length, consider sequences αa and α′, where a ∈ A and
tau(α) = tau(α′).

If dom(a) 6 u, then tau(α) = tau(αa) = tau(α′). Hence, by induction,
s0 · α ∼u s0 · α′. Also, by LR, we have s0 · αa ∼u s0 · α, Thus s0 · αa ∼u s0 · α′

by transitivity of ∼u.
If dom(a)  u, then tau(αa) = (tau(α), tadom(a)(α), a), which implies that

the action a also occurs in α′ as the last action in a domain interfering with u.
If there are any subsequent noninterfering actions, we may switch the role of αa

and α′ and apply the previous case. Hence, we may assume α′ = βa for some
sequence of actions β, so tau(α′) = (tau(β), tadom(a)(β), a). It follows from the
equality tau(α) = tau(α′) that tau(α) = tau(β) and tadom(a)(α) = tadom(a)(β).
By the inductive hypothesis, we obtain s0 · α ∼u s0 · β and s0 · α ∼dom(a) s0 · β.
It follows from this by WSC that s0 · αa ∼u s0 · βa. ⊓⊔

Since, by Example 2, TA-security is stronger than IP-security, this result
implies that the existence of equivalence relations ∼u satisfying conditions OC,
WSC and LR is not a necessary condition for IP-security, since if this were the
case, then every IP-secure system would be TA-secure.

This raises the question of whether the existence of weak unwindings is equiv-
alent to TA-security instead. We now show that this question can be answered in
the positive, provided it is formulated appropriately. The existence of weak un-
windings turns out to have a somewhat surprising dependency on the structure
of the system.



Given a system M = 〈S, s0, step, obs, dom〉 with actions A, define the “un-
folded” system uf(M) = 〈S′, s′0, step

′, obs′, dom〉 with actions A having the
same domains as in M , by S = A∗, s0 = ǫ, step′(α, a) = αa, and obs′u(α) =
obsu(s0 ·α), where s0 ·α is computed in M . Intuitively, this construction unfolds
the graph of M into an infinite tree. Then we have the following.

Theorem 3. M is TA-secure with respect to  iff there exists a weak unwinding
on uf(M) with respect to .

Proof. Define the equivalence relations ∼ta

u on uf(M) by α ∼ta

u α′ iff tau(α) =
tau(α′). We first note that for the relations ≈uw

u on uf(M), we have α ≈uw
u α′

iff α ∼ta

u α′. For, the relations ∼ta

u are equivalence relations and satisfy WSC
and LR by definition of tau. Thus, we have ≈uw

u ⊆∼ta

u by definition of ≈uw
u .

Conversely, we show that tau(α) = tau(α′) implies α ≈uw
u α′, by induction

on |α| + |α′|. The case of α = α′ = ǫ is clear. Suppose tau(αa) = tau(α′).
If dom(a) 6 u, we have tau(α) = tau(αa) = tau(α′), so by the inductive
hypothesis, we have α ≈uw

u α′. Since ≈uw
u satisfies LR, we obtain αa ≈uw

u α and
it follows that αa ≈uw

u α′. For the case where tau(αa) = (tau(α), tadom(a)(α), a),
we may assume without loss of generality that the final action in α′ may interfere
with u, and derive that α′ = βa where tau(α) = tau(β) and tadom(a)(α) =
tadom(a)(β). It follows by the inductive hypothesis that α ≈uw

u β and α ≈uw
dom(a) β,

hence by the fact that ≈uw
u satisfies WSC that αa ≈uw

u βa, as required.
Suppose M is TA-secure with respect to . Then WSC and LR for the

relations ∼ta

u are immediate from the definition of the functions tau, and OC
follows directly from TA-security. Hence the family ∼ta

u is a weak unwiding on
uf(M). Conversely, suppose that there exists a weak unwinding ∼u on uf(M)
with respect to . Then ∼ta

u =≈uw
u ⊆∼u satisfies OC, hence M is TA-secure with

respect to . ⊓⊔

It is reasonable to give a definition of security on M by reference to uf(M)
since these systems are bisimilar under the obvious notion of bisimulation on
the state-observed system model. Bisimilarity of two systems is usually taken to
imply their equivalence on all properties of interest. One might therefore expect
from Theorem 3 that TA-security implies the existence of a weak unwinding on
the system M as well as on uf(M). It is the case that unwindings on M can be
lifted to unwindings on uf(M).

Proposition 6. If there exists a weak unwinding for  on M then there exists
a weak unwinding for  on uf(M)

Proof. Suppose the relations ∼u are a weak unwinding for  on M . Define ∼′
u

on uf(M) by α ∼′
u α′ if s0 · α ∼u s0 · α′ in M . It is easily checked that the

relations ∼′
u are a weak unwinding on uf(M). ⊓⊔

However, what we need, given Theorem 3, to deduce the existence of an
unwinding on M from TA-security is the converse of this result. The following
example shows that the converse does not hold.
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Fig. 1. An example showing TA-security does not imply existence of a weak unwinding.

Example 4. Consider the system and policy depicted in Figure 1. There are
actions a, b, c of domains A, B, C respectively, and s0 is the initial state. For all
domains u other than D, we assume that the observation obsu is the same on
all states. TA-security therefore depends only on the behaviour of the system
with respect to domain D, where there are two possible observations o, o′ as
indicated. We show that there does not exist a weak unwinding for  on M ,
but there does exist one on uf(M).

For the former, we consider the relation family ≈uw
u on M . Note that since

B 6 D and s0 · b = s1 we have s0 ≈uw
D s1. Similarly, since C 6 A we have

s0 ≈uw
A s1. Hence, by WSC, for the action a, we get s0 ≈uw

D s2. Since obsD(s0) =
o and obsD(s2) = o′, we have that ≈uw

D does not satisfy OC. Since ≈uw
u is the

smallest family satisfying WSC and LR, there can exist no weak unwinding for
 on M .

For the unwinding on uf(M), consider ≈uw
u =∼ta

u . Since this family of equiv-
alence relations satisfies WSC and LR, it suffices to consider the property OC,
where we need consider only the domain D, as already noted. Here, the only pos-
sible failure of OC is for states α, α′ where taD(α) = taD(α′), s0 · α ∈ {s0, s1}
and s0 · α′ = s2. Now s0 · α′ = s2 implies that α′ contains either a b and a later
a, or a c and a later a. View taD(α′) as a tree with nodes of the form (x, y, e)
representing a vertex labelled e with subtrees corresponding to x and y. Then
this tree contains a path from a leaf to the root containing either b and later a,
or c and later a. The same then applies to the identical tree for taD(α), which
implies that α contains either a b and later a or a c and later a. But this means
that s0 · α = s2, a contradiction. Hence the family ≈uw

u satisfies OC. ⊓⊔

Since uf(M) and M are bisimilar, this example shows that bisimulation does
not preserve weak unwinding. It is therefore necessary to either abandon the
presumption that security properties are preserved under bisimulation, or adopt
the stance that existence of a weak unwinding (on the system as presented) is
not a sensible notion of security. We prefer the latter, but note that this does
not hinder the utility of weak unwinding as a proof technique.

Further evidence of the utility of weak unwiding is the following result, which
shows that it can also be used as a proof technique for TO-security. Define the



relations ≈obs

u on states of a system M by s ≈obs

u t if obsu(s) = obsu(t). Then
we have the following sufficient condition for TO-security:

Proposition 7. Suppose the relation family ≈obs

u is a weak unwinding on M

with respect to . Then M is TO-secure with respect to .

Proof. We claim that tou(α) = tou(α′) implies s0 · α ≈obs s0 · α′. The result
then follows immediately using OC. The proof of the claim is by induction on the
combined length of the sequences α, α′. In case both are ǫ, the claim plainly holds.
Suppose that it holds for sequences of shorter combined length, and consider the
sequences αa and α′, where a ∈ A. We consider two cases, depending on whether
dom(a)  u.

1. If dom(a) 6 u, then it follows from the definitions that tou(α) = tou(αa) =
tou(α′), so by the inductive hypothesis, we have s0 · α ≈obs

u s0 · α′. By LR
we moreover have s0 · αa ≈obs

u s0 · α, and we conclude s0 · αa ≈obs

u s0 · α
′.

2. If dom(a)  u, then we may assume without loss of generality that α′ = βb

where dom(b)  u, else we may apply the previous case. It then follows
from tou(αa) = tou(βb) that a = b and tou(α) = tou(β) and todom(a)(α) =
todom(a)(β). By the inductive hypothesis, we obtain s0 · α ≈obs

u s0 · β and
s0 · α ≈obs

dom(a) s0 · β. By WSC and a = b we obtain s0 · αa ≈obs

dom(a) s0 · βb, as
required.

⊓⊔

5 Access Control Systems

As a particular application of the unwinding conditions, Rushby [Rus92] dis-
cusses a notion of access control system that he formulates in order to give
semantic content to the Bell-La Padula model [BP76] (which has been criticised
for lacking semantics). He shows that every access control system satisfying a
compatibility condition with respect to a noninterference policy is IP-secure. In
this section, we formulate a weaker variant of Rushby’s definitions, and show
that it implies the stronger notion of TA-security. We also show that our weaker
variant implies the even stronger notion of TO-security, provided we work with
a specific, but intuitive, definition of observation in access control systems.

Moreover, we also show a converse to the result that access control systems
are TA-secure, viz., that every system satisfying TA-security can be interpreted
as an access control system. This proves the equivalence in some sense of access
control and TA-security. We believe that these results, together with the example
of Section 3 and the results of the previous section, provide strong evidence that
TA-security, rather than IP-security, is the notion that best realises the intentions
of the notion of intransitive noninterference.

According to Rushby, a system with structured state is a machine 〈S, s0, A, step, obs, dom〉
together with

1. a set N of names,



2. a set V of values, and functions
3. contents : S × N → V , with contents(s, n) interpreted as the value of

object n in state s,
4. observe : D → P(N), with observe(u) interpreted as the set of objects

that domain u can observe, and
5. alter : D → P(N), with alter(u) interpreted as the set of objects whose

values domain u is permitted to alter.

For a system with structured state, when u ∈ D and s is a state, write ocu(s) for
the function mapping observe(u) to values, defined by ocu(s)(n) = contents(s, n)
for n ∈ observe(u). Intuitively, ocu(s) captures all the content of the state s that
is observable to u. Using this, we may define a binary relation ∼oc

u of observable
content equivalence on S for each domain u ∈ D, by s ∼oc

u t if ocu(s) = ocu(t).
In order to capture the conditions under which the machine operates in accor-

dance with the intuitive interpretations of this extra structure, Rushby defines
the following three Reference Monitor Assumptions.5

RM1. If s ∼oc

u t then obsu(s) = obsu(t) .
RM2. If s ∼oc

dom(a) t and either contents(s ·a, n) 6= contents(s, n) or contents(t ·

a, n) 6= contents(t, n) then contents(s · a, n) = contents(t · a, n)
RM3. If contents(s · a, n) 6= contents(s, n) then n ∈ alter(dom(a)).

The first of these says that an agent’s observation depends only on the values of
the objects observable to the agent. The third says that if an action can change
the value of an object, then the agent of that action is in fact permitted to alter
that object. The condition RM2 is more subtle. The following provides a possibly
more perspicuous formulation of this condition:

Proposition 8. RM2 is equivalent to the following: For all states s, either

1. for all t ∼oc

dom(a) s, we have contents(t · a, n) = contents(t, n), or

2. for all t ∼oc

dom(a) s, we have contents(s · a, n) = contents(t · a, n)

That is, with the choice depending only on information observable to dom(a),
the effect of the action is either to make no change to n or to assign a new value
to n that depends only on information observable to dom(a).

In addition to the reference monitor assumptions, Rushby considers the con-
dition:

AOI. If alter(u) ∩ observe(v) 6= ∅ then u  v.

Intuitively, this says that the ability to write to a value that an agent can observe
counts as a way to interfere with that agent. Rushby shows the following:

Proposition 9. ([Rus92], Theorems 2,8) Suppose M is a system with structured
state that satisfies RM1-RM3 and AOI. Then the family of relations ∼oc

u on M

is a weak unwinding with respect to . Hence M is IP-secure for .

5 Strictly, Rushby works with action-observed systems. We express here a version for
state-observed systems.



By the results of the previous section, Rushby’s result in fact yields the
stronger conclusion that access control systems consistent with a policy are TA-
secure. We can further strengthen this result by weakening the precondition.

Note that the condition RM2 says that the next value of n produced on
performing an action a depends only on the values of names observable to dom(a).
If n is not observable to dom(a), this may be too strong. Consider for example,
the situation where n represents a block of memory, and the action a writes
to a single location within this block. Here the successor value depends on the
value written (which will typically depend on the values of names observable to
dom(a)), but also on the previous value of n. Similarly, if the name n is an object
in an object-oriented system, and the effect of the action is to call a method
of this object, then the successor value will depend of the input parameters of
the call (which will depend on values of names observable to dom(a)), but also
on the value of n. Thus, the condition RM2 can plausibly be weakened to the
following.6

[RM2 ′] For all actions a, states s, t and names n ∈ alter(dom(a)), if
s ∼oc

dom(a) t and contents(s, n) = contents(t, n) we have contents(s·a, n) =

contents(t · a, n).

That is, for n ∈ alter(dom(a)), the value contents(s · a, n) is a function of
both contents(s, n) and ocdom(a)(s). Using Proposition 8 it can be seen that
RM2 implies RM2 ′. The converse does not hold.

We now weaken Rushby’s notion of access control system by replacing RM2
by RM2 ′. We define a system with structured states to be a weak access control
system if it satisfies conditions RM1,RM2 ′, and RM3.

We also introduce a related notion on systems without structured states,
that expresses that the system behaves as if it were an access control system.
Say that a system M with states S admits a weak access control implementation
consistent with  if there exists a set of names N , a set of values V and functions
observe : D×S → P(N) , alter : D×S → P(N) and contents : N ×S → V ,
with respect to which M is a weak access control system satisfying the condition
AOI.

The following shows that weak access control systems compatible with a
policy satisfy Rushby’s unwinding conditions for intransitive noninterference:

6 A weakened condition resembling RM2 ′ has also been used in a slightly different
context by Greve, Wilding and vanFleet [GWV03]. A similar weakening has also been
proposed by von Oheimb [Ohe04], who also shows that the definition of access control
system consistent with a policy can be weakened while still implying the existence
of unwinding conditions implying IP-security. He adds the conditions dom(a)  u,
n ∈ observe(u) and s ∼

oc

u
t to the preconditions of RM2. We would argue that

there are some difficulties giving intuitive content to von Oheimb’s proposal. First,
whether or not a system is an access control system should be independent of the
policy that may be applied to it. The fact dom(a)  u in the precondition is in
any case derivable from n ∈ observe(u) in the context of AOI and RM3, so can be
omitted without loss of generality. Second, since u does not occur in the consequent,
the quantification over u has a rather obscure meaning.



Proposition 10. Suppose M is a weak access control system consistent with
. Then the family of relations ∼oc

u is a weak unwinding on M with respect to
.

Proof. OC is direct from RM1 and LR follows easily from RM3 and AOI. For
WSC, supppose that s ∼oc

dom(a) t and s ∼oc

u t, i.e., ocu(s) = ocu(t). We need to

show s · a ∼oc

u t · a, which amounts to showing contents(s · a, n) = contents(t ·
a, n) for all n ∈ observe(u). We consider the two possibilities n ∈ alter(dom(a))
and n 6∈ alter(dom(a)):

1. If n ∈ alter(dom(a)) then we have contents(s · a, n) = contents(t · a, n)
by RM2 ′.

2. If n 6∈ alter(dom(a)), then using RM3 we have contents(s·a, n) = contents(s, n) =
contents(t, n) = contents(t · a, n).

Thus, we have s · a ∼oc

u t · a. ⊓⊔

We may also show a converse to this result, which leads to the conclusion
that unwinding and weak access control systems are essentially equivalent.

Proposition 11. Suppose that there exists a weak unwinding on M with respect
to . Then M admits a weak access control interpretation consistent with .

Proof. Write [s]u for the equivalence class of s under ∼u. We define the access
control interpretation on M as follows:

1. N = D

2. observe(u) = {u}
3. alter(u) = {v ∈ D | u  v}
4. contents(s, u) = [s]u.

RM1 is immediate from the fact that ∼ satisfies output consistency.
For RM2 ′, we proceed by contradiction. Note that s ∼u t iff [s]u = [t]u iff

s ∼oc

u t. If RM2 ′fails then there exists an action a, a name n ∈ alter(dom(a))
and states s, t such that s ∼oc

dom(a) t and contents(s, n) = contents(t, n) and

contents(s · a, n) 6= contents(t · a, n). Thus, n = u for some u ∈ D such that
dom(a)  u, and we have s ∼dom(a) t and s ∼u t but not s · a ∼u t · a. This
contradicts WSC.

For RM3, the only value of n to be checked is n = u, and u ∈ alter(dom(a))
iff dom(a)  u. Also contents(step(s, a), u) = contents(s, u) iff step(s, a) ≈u

s. Hence, the contrapostive of RM3 states that if not dom(a)  u then step(s, a) ≈u

s, which is just the condition LR.
Plainly, if n ∈ alter(u) and n ∈ observe(v) then n = v and u  v, so AOI

also holds. ⊓⊔

Combining these results with those of the previous section, we see that there
is a close correspondence between TA-security, weak access control interpreta-
tions, and weak unwindings.



Corollary 1. The following are equivalent

1. M is TA-secure with respect to ,
2. uf(M) admits a weak access control interpretation consistent with ,
3. there exists a weak unwinding on uf(M) with respect to .

Proof. The equivalence of (1) and (3) is from Theorem 3, and that between (2)
and (3) follows from Propositions 10 and 11. ⊓⊔

From Theorem 2 and Proposition 10, we also obtain the following.

Corollary 2. If M is a weak access control system consistent with  then M

is TA-secure for .

This conclusion is a more general result than Proposition 9, in which we have
both weakened the antecedent and strengthened the consequent. The following
example shows that we cannot further strengthen the conclusion to TO-security.

Example 5. Consider the system for the policy A  B  C with structured
states for the set of names nAB, nBC , taking boolean values. Intuitively, these
variables represent channels between the agents, so that nAB ∈ alter(A) ∩
observe(B) and nBC ∈ alter(B) ∩ observe(C). Plainly this is consistent with
AOI. We represent states as tuples s = (nAB, nBC) with the obvious interpreta-
tion for contents. The initial state of the system is (0, 0). Domain A has actions
a with semantics nAB := 1 and B has action b with semantics nBC := nAB. The
observation functions are defined on the state s = (nAB, nBC) by obsA(s) =
obsB(s) = ⊥ and obsC(s) = nBC . It can be verified that this system satisfies
RM1,RM2 ′, RM3. However, it does not satisfy TO-security. To see this, consider
the sequences α = b and α′ = ab. Here we have purgeC(α) = b = purgeC(α′),
and tviewB(α) = ⊥b = tviewB(α′) but obsC(s0 ·α) = 0 6= 1 = obsC(s0 ·α′). ⊓⊔

Notice that in this example, not all of the names observable to a domain have
their contents visible in the observation of the domain. Say that M is a system
with structured states is fully observable if in all states s we have obsu(s) =
ocu(s). Note that this means that the relations ∼oc

u and ≈obs

u coincide. We now
obtain the following from Propositions 7 and 10. This shows that, modulo the
reasonable assumption of full observability, we can derive a result similar to
Corollary 2, but with the yet stronger conclusion of TO-security.

Corollary 3. If M is a fully observable weak access control system consistent
with  then M is TO-secure with respect to .

A similar result does not hold with P-security in place of TO-security.

Example 6. Note that if in Example 5 we change the definition of obsB(s) to
nAB, then the system continues to satisfy RM1,RM2 ′,RM3 and AOI, and not
P-security. The modified system has obsu(s) = ocu(s) for all states s. (So it also
satisfies TO-security.) ⊓⊔



6 Conclusion

Our results have left open a number of technical questions. We have shown
that weak unwindings provide a complete proof technique for TA-security, but
have not provided a complete technique for TO-security. The reason for this is
that there is inherently no tractable set of conditions on the states of the sys-
tem that characterizes TO-security. We will treat this topic in a followup paper
[Mey07] which deals with the complexity of the notions of security discussed
in this paper. Another area requiring investigation is the generalization of our
definitions to nondeterministic systems and systems that are not input-enabled,
as has been studied for IP-security by von Oheimb [Ohe04]. More generally, one
could consider extensions to the richer semantic framework of process algebra.

Both the fact, as argued by RG, that the notion of (intransitive) noninter-
ference does not facilitate the expression of correctness of downgraders, and the
fact, as we have shown, that there are several plausible notions of noninterfer-
ence for intransitive policies, suggests that the notion of noninterference policy
expressed by a relation  on domains lacks expressiveness that will be required
in applications. We believe further work on richer formats for the expression of
causality and information flow policies is warranted.

The specific case of downgrading policies has received some recent attention.
Chong and Myers [CM04] have proposed a flexible language that attaches down-
grading conditions to data items. Mantel and Sands [MS04] have proposed to
introduce a programming annotation for downgrading, enabling the program-
mer to explicitly mark regions of code that are permitted to violate a transitive
policy. They apply a definition based on IP-security. Sabelfeld and Sands [SS05]
lay out some general principles and direction for research in this area. It would
be of interest to reconsider some of these recent contributions in the light of our
results in this paper.
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