Aims

This lecture will enable you to describe decision tree learning, the use of entropy and the problem of overfitting. Following it you should be able to:

- define the decision tree representation
- list representation properties of data and models for which decision trees are appropriate
- reproduce the basic top-down algorithm for decision tree induction (TDIDT)
- define entropy in the context of learning a Boolean classifier from examples

Introduction

- Decision trees are the single most popular data mining tool
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- There are some drawbacks, though! (such as overfitting)
- They do classification: predict a categorical output from categorical and/or real inputs

Aims

- describe the inductive bias of the basic TDIDT algorithm
- define overfitting of a training set by a hypothesis
- describe developments of the basic TDIDT algorithm: pruning, rule generation, numerical attributes, many-valued attributes, costs, missing values

[Recommended reading: Mitchell, Chapter 3]
[Recommended exercises: 3.1, 3.2, 3.4(a,b)]

Acknowledgement: Material derived from slides by:
Andrew W. Moore, http://www.cs.cmu.edu/~awm/tutorials
and Eibe Frank, http://www.cs.waikato.ac.nz/ml/weka/
Decision Trees

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- \(\land, \lor, \text{XOR} \)
- \((A \land B) \lor (C \land \neg D \land E) \)
- \(M \) of \(N \)

Decision Trees

\[
X \land Y
\]

\[
X = t:
| Y = t: true
| Y = f: no
X = f: no
\]

\[
X \lor Y
\]

\[
X = t: true
X = f:
| Y = t: true
| Y = f: no
\]
Decision Trees

2 of 3

\[
\begin{align*}
X &= t: \\
& \quad | Y = t: true \\
& \quad | Y = f: \\
& \quad | Z = t: true \\
& \quad | Z = f: false \\
X &= f: \\
& \quad | Y = t: \\
& \quad | Z = t: true \\
& \quad | Z = f: false \\
& Y = f: false
\end{align*}
\]

So in general decision trees represent a *disjunction of conjunctions* of constraints on the attributes values of instances.

When to Consider Decision Trees

- Instances describable by attribute–value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees (TDIDT or ID3)

Main loop:

1. \(A \leftarrow \) the “best” decision attribute for next *node*
2. Assign \(A \) as decision attribute for *node*
3. For each value of \(A \), create new descendant of *node*
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

\[
\begin{align*}
[29^+, 35^-] & \quad A1=? \\
& t \\
& f \\
[21^+, 5^-] & \quad [8^+, 30^-]
\end{align*}
\]

\[
\begin{align*}
[29^+, 35^-] & \quad A2=? \\
& t \\
& f \\
[18^+, 33^-] & \quad [11^+, 2^-]
\end{align*}
\]
Bits

You are watching a set of independent random samples of X
You observe that X has four possible values

$$P(X = A) = \frac{1}{4}, \quad P(X = B) = \frac{1}{4}, \quad P(X = C) = \frac{1}{4}, \quad P(X = D) = \frac{1}{4}$$

So you might see: BAACBADCADDDA...

You transmit data over a binary serial link. You can encode each reading with two bits (e.g. $A = 00$, $B = 01$, $C = 10$, $D = 11$)

0100010010111100...
Fewer Bits

Suppose there are three equally likely values

\[P(X = A) = \frac{1}{3} \quad P(X = B) = \frac{1}{3} \quad P(X = C) = \frac{1}{3} \]

Using the same approach as before, we can get a coding costing 1.6 bits per symbol on average . . .

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
</tr>
</tbody>
</table>

This gives us, on average \(\frac{1}{3} \times 1 \) bit for A and \(2 \times \frac{1}{3} \times 2 \) bits for B and C, which equals 0.33 \(\approx 1.6 \) bits.

Is this the best we can do?

General Case

Suppose \(X \) can have one of \(m \) values \(\ldots V_1, V_2, \ldots V_m \)

\[P(X = V_1) = p_1 \quad P(X = V_2) = p_2 \quad \ldots \quad P(X = V_m) = p_m \]

What’s the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from \(X \)’s distribution?

It’s

\[
H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \ldots - p_m \log_2 p_m \\
= - \sum_{j=1}^{m} p_j \log_2 p_j
\]

\(H(X) \) = the entropy of \(X \)
Entropy

Entropy measures the “impurity” of S

$$Entropy(S) = -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$$

A “pure” sample is one in which all examples are of the same class.

Where:
S is a sample of training examples
p_\oplus is the proportion of positive examples in S
p_\ominus is the proportion of negative examples in S

Information Gain

$$Gain(S, A) = \text{expected reduction in entropy due to sorting on } A$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$p_\oplus (- \log_2 p_\oplus) + p_\ominus (- \log_2 p_\ominus)$

$Entropy(S) = -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$
Information Gain

Gain(S, A1) = Entropy(S) - \left(\frac{|S_t|}{|S|} \text{Entropy}(S_t) + \frac{|S_f|}{|S|} \text{Entropy}(S_f) \right)

= 0.9936 - \left(\frac{26}{64} \left(-\frac{21}{26} \log_2 \frac{21}{26} - \frac{5}{26} \log_2 \frac{5}{26} \right) + \frac{38}{64} \left(-\frac{8}{38} \log_2 \frac{8}{38} - \frac{30}{38} \log_2 \frac{30}{38} \right) \right)

= 0.9936 - (0.2869 + 0.4408)

= 0.2658

Gain(S, A2) = 0.9936 - (0.7464 + 0.0828)

= 0.1643

So we choose A1, since it gives a larger expected reduction in entropy.

Training Examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Which attribute is the best classifier?

Gain (S, Humidity)
\[
\begin{align*}
E &= 0.940 \\
E &= 0.592 \\
\text{Gain} &= 0.940 - \frac{7}{14} \times 0.985 - \frac{7}{14} \times 0.592 \\
&= 0.151
\end{align*}
\]

Gain (S, Wind)
\[
\begin{align*}
E &= 0.811 \\
E &= 1.00 \\
\text{Gain} &= 0.940 - \frac{8}{14} \times 0.970 - \frac{6}{14} \times 1.00 \\
&= 0.048
\end{align*}
\]

Brief History of Decision Tree Learning Algorithms

- late 1950’s – Bruner et al. in psychology work on modelling concept acquisition
- early 1960s – Hunt et al. in computer science work on Concept Learning Systems (CLS)
- late 1970s – Quinlan’s Iterative Dichotomizer 3 (ID3) based on CLS is efficient at learning on then-large data sets
- early 1990s – ID3 adds features, develops into C4.5, becomes the “default” machine learning algorithm
- late 1990s – C5.0, commercial version of C4.5 (available from SPSS and www.rulequest.com)
Hypothesis Space Search by ID3

- Hypothesis space is complete! (contains all finite discrete-valued functions w.r.t attributes)
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can’t play 20 questions...
- No back tracking
 - Local minima...
- Statistically-based search choices
 - Robust to noisy data...
- Inductive bias: approx “prefer shortest tree”

Inductive Bias in ID3

Note H is the power set of instances X

→ Unbiased?

Not really...

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a preference for some hypotheses, rather than a restriction of hypothesis space H
- an incomplete search of a complete hypothesis space versus a complete search of an incomplete hypothesis space (as in learning conjunctive concepts)
- Occam’s razor: prefer the shortest hypothesis that fits the data

Occam’s Razor

William of Ockham (c. 1287-1347)

Entities should not be multiplied beyond necessity

Why prefer short hypotheses?

Argument in favour:

- Fewer short hypotheses than long hypotheses
 → a short hyp that fits data unlikely to be coincidence
 → a long hyp that fits data might be coincidence
Overfitting in Decision Tree Learning

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

```
Outlook
  Sunny Overcast Rain
    Humidity
      High Normal
        No Yes
    Wind
      Strong Weak
        No Yes
```

Overfitting in General

Consider error of hypothesis h over

- training data: $\text{error}_{\text{train}}(h)$
- entire distribution D of data: $\text{error}_{D}(h)$

Definition

Hypothesis $h \in H$ **overfits** training data if there is an alternative hypothesis $h' \in H$ such that

$$\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')$$

and

$$\text{error}_{D}(h) > \text{error}_{D}(h')$$
Avoiding Overfitting

How can we avoid overfitting? **Pruning**

- **pre-pruning** stop growing when data split not statistically significant
- **post-pruning** grow full tree, then remove sub-trees which are overfitting

Post-pruning avoids problem of “early stopping”

How to select “best” tree:

- Measure performance over training data ?
- Measure performance over separate validation data set ?
- MDL: minimize \(\text{size}(\text{tree}) + \text{size}(\text{misclassifications}(\text{tree}))\) ?

Pre-pruning

- Usually based on statistical significance test
- Stops growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3: chi-squared test plus information gain
 - Only statistically significant attributes were allowed to be selected by information gain procedure

Early stopping

- Pre-pruning may suffer from early stopping: may stop the growth of tree prematurely
- Classic example: XOR/Parity-problem
 - No individual attribute exhibits a significant association with the class
 - Target structure only visible in fully expanded tree
 - Prepruning won’t expand the root node
- But: XOR-type problems not common in practice
- And: pre-pruning faster than post-pruning

Post-pruning

- Builds full tree first and prunes it afterwards
 - Attribute interactions are visible in fully-grown tree
- Problem: identification of subtrees and nodes that are due to chance effects
- Two main pruning operations:
 - Subtree replacement
 - Subtree raising
- Possible strategies: error estimation, significance testing, MDL principle
- We examine two methods: Reduced-error Pruning and Error-based Pruning
Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible node (plus those below it)
2. Greedily remove the one that most improves validation set accuracy

- **Good** produces smallest version of most accurate subtree
- **Bad** reduces effective size of training set

Error-based pruning (C4.5)

Quinlan (1993) describes the successor to ID3 – C4.5

- many extensions – see below
- post-pruning using training set
- includes sub-tree replacement and sub-tree raising
- also: pruning by converting tree to rules
- commercial version – C5.0 – is widely used
 - go to RuleQuest.com

Sub-tree replacement

Bottom-up: tree is considered for replacement once all its sub-trees have been considered
Error-based pruning

Goal is to improve estimate of error on unseen data using all and only data from training set

- Pruning operation is performed if this does not increase the estimated error
- C4.5’s method: using upper limit of 25% confidence interval derived from the training data
 - Standard Bernoulli-process-based method
 - Note: statistically motivated but not statistically valid
 - But: works well in practice!

Error-based pruning

- Error estimate for subtree is weighted sum of error estimates for all its leaves
- Error estimate for a node:

\[
e = \frac{f + z^2/2N + z\sqrt{f/N - f^2/N + z^2/4N^2}}{1 + z^2/N}
\]

- If \(c = 25\% \) then \(z = 0.69 \) (from normal distribution)
- \(f \) is the error on the training data
- \(N \) is the number of instances covered by the leaf

Error-based pruning

- health plan contribution: node measures \(f = 0.36, e = 0.46 \)
- sub-tree measures:
 - none: \(f = 0.33, e = 0.47 \)
 - half: \(f = 0.5, e = 0.72 \)
 - full: \(f = 0.33, e = 0.47 \)
- sub-trees combined 6 : 2 : 6 gives 0.51
- sub-trees estimated to give greater error so prune away
Rule Post-Pruning

This method was introduced in Quinlan’s C4.5

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others
3. Sort final rules into desired sequence for use

For: simpler classifiers, people prefer rules to trees

Against: may not scale well, slow for large trees & datasets

Converting A Tree to Rules

Outlook
- Overcast
 - Humidity
 - Normal
 - High
 - No
 - Yes
 - Wind
 - Strong
 - Weak
 - No
 - Yes
 - Yes

- IF (Outlook = Sunny) ∧ (Humidity = High)
 THEN PlayTennis = No

- IF (Outlook = Sunny) ∧ (Humidity = Normal)
 THEN PlayTennis = Yes

Rules from Trees (Rule Post-Pruning)

Rules can be simpler than trees but just as accurate, e.g., in C4.5Rules:

- path from root to leaf in (unpruned) tree forms a rule
 - i.e., tree forms a set of rules
- can simplify rules independently by deleting conditions
 - i.e., rules can be generalized while maintaining accuracy
- greedy rule simplification algorithm
 - drop the condition giving lowest estimated error (as for pruning)
 - continue while estimated error does not increase

Rules from Trees

Select a "good" subset of rules within a class (C4.5Rules):

- goal: remove rules not useful in terms of accuracy
- find a subset of rules which minimises an MDL criterion
- trade-off accuracy and complexity of rule-set
- stochastic search using simulated annealing

Sets of rules can be ordered by class (C4.5Rules):

- order classes by increasing chance of making false positive errors
- set as a default the class with the most training instances not covered by any rule
Continuous Valued Attributes

Decision trees originated for discrete attributes only. Now: continuous attributes.

Can create a discrete attribute to test continuous value:

- Temperature = 82.5
- (Temperature > 72.3) ∈ \{t,f\}

Usual method: continuous attributes have a binary split

Note:
- discrete attributes – one split exhausts all values
- continuous attributes – can have many splits in a tree

Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Why? more likely to split instances into “pure” subsets
- Imagine using Date = Jun_3_1996 as attribute
- High gain on training set, useless for prediction

Continuous Valued Attributes

- Splits evaluated on all possible split points
- More computation: n − 1 possible splits for n values of an attribute in training set
- Fayyad (1991)
 - sort examples on continuous attribute
 - find midway boundaries where class changes, e.g. for Temperature
 \[
 \frac{(48+60)}{2} \quad \text{and} \quad \frac{(80+90)}{2}
 \]
- Choose best split point by info gain (or evaluation of choice)
- Note: C4.5 uses actual values in data

<table>
<thead>
<tr>
<th>Temperature</th>
<th>40</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Attributes with Many Values

One approach: use GainRatio instead

\[
GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}
\]

\[
SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
\]

where \(S_i\) is subset of \(S\) for which \(A\) has value \(v_i\)
Attributes with Many Values

Why does this help?

• sensitive to how broadly and uniformly attribute splits instances
• actually the entropy of S w.r.t. values of A
• therefore higher for many-valued attributes, especially if mostly uniformly distributed across possible values

Attributes with Costs

Consider

• medical diagnosis, $BloodTest$ has cost 150
• robotics, $Width_{from_1ft}$ has cost 23 sec.

How to learn a consistent tree with low expected cost?

Attributes with Costs

One approach: replace gain by

- Tan and Schlimmer (1990)

 $\frac{Gain^2(S, A)}{Cost(A)}$.

- Nunez (1988)

 $\frac{2Gain(S,A) - 1}{(Cost(A) + 1)^w}$

where $w \in [0, 1]$ determines importance of cost

Attributes with Costs

Key idea: evaluate gain relative to cost, so prefer decision trees using lower-cost attributes.

More recently

- Domingos (1999) – MetaCost, a meta-learning wrapper approach
- uses ensemble learning method to estimate probabilities
- decision-theoretic approach

General problem: class costs, instance costs, ...

See5 / C5.0 can use costs ...
Unknown Attribute Values

What if some examples missing values of A?

Use training example anyway, sort through tree. Here are 3 possible approaches

- If node n tests A, assign most common value of A among other examples sorted to node n
- assign most common value of A among other examples with same target value
- assign probability p_i to each possible value v_i of A
 - assign fraction p_i of example to each descendant in tree

Note: need to classify new (unseen) examples in same fashion

Windowing

Early implementations – training sets too large for memory

As a solution ID3 implemented *windowing*:

1. select subset of instances – the *window*
2. construct decision tree from all instances in the window
3. use tree to classify training instances *not* in window
4. if all instances correctly classified then halt, else
5. add selected misclassified instances to the window
6. go to step 2

Windowing retained in C4.5 because it can lead to *more accurate* trees. Related to *ensemble learning*.

Summary

- Decision tree learning is a practical method for concept learning and other classifier learning tasks
- TDIDT family descended from ID3 searches complete hypothesis space - the hypothesis is there, somewhere...
- Uses a search or *preference* bias, search for optimal tree is not tractable
- Overfitting is inevitable with an expressive hypothesis space and noisy data, so pruning is important
- Decades of research into extensions and refinements of the general approach
- The “default” machine learning method, illustrates many general issues
- Can be updated with use of “ensemble” methods