A note on esApply

exprSets are complex objects. We will think of them as linked arrays: the `exprs` element of an `exprSet` is $G \times N$, where G is the number of genes on a chip and N is the number of tissues analyzed, and the `pData` element of the associated `phenoData` element is $N \times p$, where p is the number of phenotypic or demographic, etc., variables collected.

Abstractly, we are often interested in evaluating functions $f(y; x)$ where y is an N-vector of expression results for a specific gene and x is an N-dimensional structure, coordinated with y, that distinguishes elements of y for processing in the function f. A basic problem is to guarantee that the jth element of y is correctly associated with the jth component of x.

As an example, let’s consider `sample.exprSet` which is an `exprSet` supplied with Biobase. We will print a little report, then the first N-vector of gene expressions and some covariate data:

```r
> print(sample.exprSet)

Expression Set (exprSet) with
500 genes
26 samples
phenoData object with 3 variables and 26 cases
varLabels
sex: Female/Male
type: Case/Control
score: Testing Score

> print(exprs(sample.exprSet)[1, ])

A  B  C  D  E  F  G  H
192.7420  85.7533  176.7570  135.5750  64.4939  76.3569  160.5050  65.9631
I  J  K  L  M  N  O  P
  56.9039  135.6080  63.4432  78.2126  83.0943  89.3372  91.0615  95.9377
Q  R  S  T  U  V  W  X
179.8450  152.4670  180.8340  85.4146 157.9890 146.8000  93.8829 103.8550
Y  Z
  64.4340  175.6150

> print(pData(sample.exprSet)[1:2, 1:3])

                  sex   type    score
A Female Control 0.75
B     Male Case 0.40
```

Now let’s see how expressions and a covariate are related:
A function that evaluates the difference in median expression across strata defined using an abstract covariate \(x \) is

```r
> medContr <- function(y, x) {
+   ys <- split(y, x)
+   median(ys[[1]]) - median(ys[[2]])
+ }
```

We can apply this to a small `exprSet` that gives back the data listed above:

```r
> print(apply(exprs(sample.exprSet[1, , drop = F]), 1, medContr, + pData(sample.exprSet)["sex"]))
```

That's a bit clumsy. This is where `esApply` comes in. We pay for some simplicity by following a strict protocol for the definition of the statistical function to be applied.

```r
> medContr1 <- function(y) {
+   ys <- split(y, sex)
+   median(ys[[1]]) - median(ys[[2]])
+ }
```

```r
> print(esApply(sample.exprSet, 1, medContr1)[1])
```

```
AFFX-MurIL2_at  "192.742" "85.7533" "176.757" "135.575" "64.4939" "76.3569"
sex  "Female" "Male" "Male" "Male" "Female" "Male"
G    H    I    J    K    L
AFFX-MurIL2_at  "160.505" "65.9631" "56.9039" "135.608" "63.4432" "78.2126"
sex  "Male" "Male" "Female" "Male" "Female" "Male"
M    N    O    P    Q    R
AFFX-MurIL2_at  "83.0943" "89.3372" "91.0615" "95.9377" "179.845" "152.467"
sex  "Male" "Male" "Female" "Female" "Female" "Male"
S    T    U    V    W    X
AFFX-MurIL2_at  "180.834" "85.4146" "157.989" "146.8" "93.8829" "103.855"
sex  "Male" "Female" "Male" "Female" "Male" "Male"
Y    Z
AFFX-MurIL2_at  "64.434" "175.615"
sex  "Female" "Female"

-12.7935
```
The manual page on esApply has a number of additional examples that show how applicable functions can be constructed and used. The important thing to note is that the applicable functions know the names of the covariates in the pData dataframe.

This is achieved by having an environment populated with all the variables in the phenoData component of the exprSet put in as the environment of the function that will be applied. If that function already has an environment we retain that but in the second position. Thus, there is some potential for variable shadowing.

1 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 2.4.0 (2006-10-03)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

attached base packages:
[1] "tools" "methods" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "base"

other attached packages:
 Biobase
"1.12.2"