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Abstract

In our setup, agents from a community interact in pair-
wise transactions across discrete time. Each agent reports
its evaluation of another agent with which it has just had a
transaction to a central system. This system uses these time-
sequences of experience evaluations to infer how much the
agents trust each another. Our paper proposes rational-
ity assumptions (also called postulates or constraints) that
such inferences must obey, and proceeds to derive theorems
implied by these assumptions. A basic representation theo-
rem is proved. The system also uses these pairwise cross-
agent trustworthiness to compute a reputation rank for each
agent. Moreover, it provides with each reputation rank an
estimate of the reliability, which we call weight of evidence.
This paper is different from much of the current work in that
it examines how a central system which computes trustwor-
thiness, reputation and weight of evidence is constrained by
such rationality postulates.

1 Introduction

With the rapid increase of commerce and other online
transactions, it has become advantageous to have methods
for evaluation of the behavior of agents involved. The no-
tions that address how agents assess other agents, and how
overall reputations arise, derive from cognitive social sci-
ence. The primary reference for this background is the
foundational work [1] to which we refer the reader; how-
ever, in our paper we will explain those notions pertinent to
the issues we raise. This paper is different in spirit of much
of the ongoing work on reputation of which [5] is a good ex-
ample. In [5] the main method for evaluating performance
of different approaches is by simulation. Our paper however
sets out postulates that are intuitively appealing for any such
system, and from them we derive representation theorems.

An agent’s assessment of another agent with which it had
a transaction is its experience evaluation; such evaluation
may vary for different transactions when they repeatedly in-
teract over time. Thus, an agent Ai will have an experience
sequence ~sij of its transactions with agent Aj , usually eval-
uating agent Aj for the transaction at time instant t with
eij(t) on some scale. Experience sequences are the bases
of an agent’s judgement of another agent’s trustworthiness.
The trustworthiness can be seen as an aggregation over time
of all individual past experiences into a single quantity on
some scale of ranking. Such judgements of trustworthiness
of an agent by other agents from the same community can
be further aggregated into an easily understood numeric or
qualitative rank. We call this community-wide judgement
on the trustworthiness of an agent its reputation within the
community.

Both aggregation over time and aggregation over the
community of agents are needed to provide a public as-
sessment of the reputation of each agent involved in pair-
wise transactions. In some models in the literature agents
combine their experiences over transactions and report their
trustworthiness assessments of other agents. We argue that
this is not a good approach and that agents should report
only their experiences in each individual transaction. The
reason is that the assessments of agents should be as ob-
jective as possible. Thus, agents should provide the most
uncompounded, raw data, to avoid as much as possible in-
dividual bias of agents that might occur if it is left up to
the agents to aggregate individual experiences in unspeci-
fied way. In our approach, these two levels of aggregation of
individual experiences are performed by a central mediating
agency. This central agency can maintain the privacy of the
experience evaluations of individual transactions given by
the agents while publishing only its final results of aggre-
gations, which further increases the robustness of the sys-
tem against possible manipulative reporting. Details of the



aggregation methods used by the agency may also be pub-
lished.

Fair conditions, also called rationality assumptions, that
constrain how an experience sequence ~s ij is related to the
consequent trustworthiness assessment have been investi-
gated in [4] and [2]. These assessments among agents up
to a time instant t are further aggregated into a community
evaluation of each agent at t, which we call reputation for
agent Aj at t.

Some well-known and widely used systems already give
some data to help assess the reputation of an agent. For ex-
ample, the eBay makes available for each agent the percent-
age of positive reports it receives from other agents, called
the “Feedback”. The report [6] has a comprehensive survey
of many alternative approaches to representing, assessing,
computing and updating agent trustworthiness and reputa-
tion.

In this paper we provide a rigorous analysis of the prob-
lem of ranking the trustworthiness and reputation of agents
involved in transactions, and in assessing reliability of such
a rank. We provide some rationality assumptions that such
ranking methods should satisfy. While assumptions that are
essential for our analysis are persuasive, much of our tech-
nical development can be modified for somewhat different
setups that do not meet all of our assumptions.

1.1 Setup
Assume that N agents {Ai : 1 ≤ i ≤ N} are involved

in some pairwise transactions over discrete time moments;
thus, we identify time instants with natural numbers. If
at an instant k an agent Ai has a transaction with another
agent Aj , it records an evaluation of its experience for that
transaction, eij(k). Over time up to the instant n, agent Ai
has produced a sequence of experience evaluations which
we identify with the partial function ~s ij = {(k, eij(k)) :
k ∈ D(~s ij)}, with the domain D(~s ij) as the collection of
time instants k ≤ n when agent Ai was engaged in a trans-
action with Aj ; we assume that the “granularity” of time
intervals is sufficiently fine so that any two agents at any
instant can be involved in at most one transaction. Each
agent Ai produces one such sequence for every agent Aj
that it has had transactions with. If k ∈ D(~s ij), then we set
~s ij [k] = eij(k). If no confusion can occur, we drop indices
i, j and write e(k) and ~s for eij(k) and ~s ij respectively.

After a transaction at moment k, the values e(k) are re-
ported to a central agency and the agency computes a trust-
worthiness assessment T (~s) on the basis of the sequence ~s
of all experiences of agent Ai with agent Aj up to the in-
stant n. We call this assessment trust rank for short. The
system then uses T (~s) for all pairs of agents Ai, Aj in-
volved in a transaction at some instants k ≤ n, to assign
to each agent Aj a reputation rank ρj(n), valid for the mo-
ment n, that reflects adequately the trust ranks that other
agents ascribed to agent Aj , as well as an estimate of the

weight of evidence Wj(n) for such rank. While it might
be the case that only the ranking system can see the ex-
perience reports of individual agents involved, the table of
ordered pairs Rn = {(ρj(n),Wj(n)) : j ≤ N} of the as-
signed reputation ranks and the evidence weights for those
ranks for each instant n is made immediately available to
all agents.

Rationality assumptions that should constrain trust rank
function T (~s) are proposed, some of which resemble those
in [4]. We also discuss how these individual trust ranks
should then be aggregated in the community of agents to
obtain a community reputation of each agent under similar
assumptions.

In the literature it is often assumed that evaluation of ex-
perience can be positive, neutral or negative, with positive
values increasing the trust rank, negative decreasing it and
neutral leaving it unchanged. We argue that such model
does not capture our intuitive notion of trust. In particular,
it allows an agent to maintain initial high trust simply by
maintaining performance that renders experience of other
agents neutral.

Let us elaborate this point further by assuming that an
agentAi is dealing at an instant n+1 with another agentAj
with which it had a sequence of past experiences ~s with the
domain D(~s ) ⊆ {1, . . . , n}. Thus, prior to the transaction
at the moment n + 1, Aj’s trust rank with Ai is τ = T (~s ).
A more satisfactory model should have means of producing
the expected experience level ε(τ) that an agent should ex-
pect to get from an agent with trust rank τ . Let ~s ′ denote
the sequence of experiences obtained by extending the se-
quence of experiences ~s with experience e(n+ 1) at instant
n + 1, i.e., ~s ′ = ~s ∪ {(n + 1, e(n + 1))}. We argue that a
trust rank function T (~s ) should satisfy

T (~s ′) S T (~s )⇔ e(n+ 1) S ε(T (~s )).

In this way, the trust rank T (~s ′) of agent Aj after the trans-
action at instant t + 1 will be larger than T (~s ) just in case
its performance e(n + 1) evaluated by agent Ai at instant
n + 1 is higher than what one would expect from an agent
with trust rank T (~s ).

The simplest way of achieving this is to measure the
reputation rank by the value of the expected experience
level. This means that the experience and the reputation
rank should be measured on the same scale, with ε(τ) = τ ,
and that the following should hold:

T (~s ′) S T (~s )⇔ e(n+ 1) S T (~s ).

We will assume that an experience evaluation e(k) is a
real number in a fixed range [0,M ], M > 0. If e(k) = M ,
this means the reporting agent Ai regards the quality of the
transaction with Aj at moment k is the best, while a report
of 0 means the worst.



2 Aggregation in Time
We start by examining methods for aggregation in time.

In previous section, we introduced the notion of the trust
rank computed on the basis of the experience sequence ~s ,
denoted by T (~s ). Should this function be recursive i.e.,
T (~s ′) = U(T (~s ), e(n+1)) for some trust update function
U(x, y), evaluation will be very efficient. We will discuss
this aspect at the end of this section. Now, let us list axioms
that such a trust rank function T , which aggregates over
time individual experiences in a sequence of experiences
~s of an agent Ai with an agent Aj , should satisfy. These
axioms attempt to delineate the “rationality” of T .

2.1 Axioms for Aggregation in Time

(T1) Shift Invariance. Let ~s+ be the forward unit shift
of the sequence ~s , i.e., let ~s+ = 〈(k+1, e(k)) : k ∈ D(~s )〉;
then T (~s+) = T (~s ). 2

This property formalizes our intuition that the trust rank
of a sequence of experiences ~s depends only on the pattern
of past individual experiences. In other words, the way how
the trust rank of Aj with Ai is obtained by aggregation of
the past experiences of Ai with dealing with Aj does not
change with time and is obtained for all pairs of agents in
the same way.

(T2) Time Averaging. Let ~s be any sequence of experi-
ences; then min(~s ) ≤ T (~s ) ≤ max(~s ). 2

Thus, if ~s is a constant sequence, then min(~s ) =
max(~s ) = T (~s ). In particular, if D(~s ) contains a single
instant k, then T (~s ) = ~s [k] = e(k). Intuitively, the trust
rank T (~s ) obtained on the basis of the sequence of experi-
ences ~s is certain form of an average of trust included in the
sequence ~s .

(T3) Consistency. Let ~s 1 and ~s 2 be any two experience
sequences for the same pair of agents over two disjoint time
domains D(~s 1) ∩ D(~s 2) = ∅, such that T (~s 1) = T (~s 2);
then T (~s 1) = T (~s 1 ∪ ~s 2) = T (~s 2). 2

This formalizes our intuition that if the trust rank of two
sequences are the same, then joining them together should
also result in a sequence with the same trust rank.

(T4) Discounting. Assume that 0 ≤ e < E ≤ M and
let ~s 1 = {(1, e), (2, E)} and ~s 2 = {(1, E), (2, e)}; then
T (~s 1) ≥ T (~s 2). 2

Discounting formalizes our intuition that older experi-
ences of an agent Ai dealing with Aj cannot be more im-
portant than the more recent ones, because if we compare
both sequences ~s 1 and ~s 2 with ~s = {(1, e), (2, e)}, in-
creasing the more recent experience increases the trust rank
at least as much as increasing the older experience.

We feel that every reasonable trust rank function must
satisfy the above axioms. Intuitive justification of the next
axiom given below is perhaps somewhat less than univer-
sal; however, it greatly simplifies technical matters, without
imposing any undue restrictions.

(T5) Linearity. Let α, β be real numbers, and ~s 1 and ~s 2

two experience sequences such that D(~s 1) = D(~s 2) = D
and 0 ≤ α~s 1[k] + β~s 2[k] ≤ M for all k ∈ D. Further, the
sequence ~s = α~s 1 + β~s 2 is defined on the same domain
D so that for all k ∈ D, ~s [k] = α~s 1[k] + β~s 2[k]. Then
T (~s ) = αT (~s 1) + βT (~s 2). 2

Linearity implies that if we increase all experiences in
an experience sequence by say 10% and if these values are
still below the maximal value M , then the trust rank of
that sequence will increase by 10% as well. Also, let ~∆
be an arbitrary sequence or real numbers with the domain
D(~∆) = D(~s ). Then for every sequence ~s if we change the
values ~s [k] into values ~s [k] + ~∆[k], and if these values are
within the range [0,M ], the trust rank of the new sequence
is obtained as T (~s )+T (~∆), i.e., the change of the trust rank
does not depend on the starting sequence values, but only
on the sequence of changes ~∆. In particular, improving the
experience at any particular instant k in the domain of the
sequence ~s for a certain amount increases the overall trust
rank of the sequence as much as degrading the same expe-
rience at the same instant for the same amount decreases
the trust rank. Thus, these features, equivalent to linearity,
are reasonable properties for a trust rank function. How-
ever, it is not hard to construct quadratic or higher-degree
trust rank functions that satisfy all other axioms. Some of
our arguments can be extended to such functions as well, al-
beit with considerable technical complications and, we feel,
with doubtful gain.

2.2 Canonical Form of Trust Rank Func-
tions

In this subsection we use (T1) through (T4) to obtain
a canonical form for the trust rank function T that maps
experience sequences into trust ranks. The main theorem
constructs this form, and its corollaries exhibit intuitively
appealing properties of that canonical T .

We define ‖~s ‖ = max(D(~s ))−min(D(~s )) + 1. Thus,
if ν(~s ) is the sequence obtained by translating the sequence
~s such that min(D(ν(~s )) = 1, then max(D(ν(~s )) = ‖~s ‖.
The Shift Invariance Axiom implies that T (ν(~s )) = T (~s );
thus, it is enough to consider trust ranks of sequences such
that 1 ∈ D(~s ).

The next lemma reveals a form for trust rank functions
analogous to the response of a linear system.

Lemma 2.1 Let n be an integer and In = {i : 1 ≤ i ≤
n}. Further, let D ⊆ In be such that {1, n} ⊆ D. For
a sequence ~s with D(~s ) = D, if the trust rank function
T satisfies T1 through T5, there exist positive numbers wD

k

such that ∑
k∈Dw

D

k = 1 (1)
T (~s ) =

∑
k∈Dw

D

k ~s [k]. (2)



Proof. For each k ∈ D, we define the experience sequence
~s D

k such that D(~s D

k ) = D; ~s D

k [k] = 1 and ~s D

k [m] = 0 for
all m ∈ D,m 6= k. Then we have ~s =

∑
k∈D ~s [k] ~s D

k .
Since T is linear, T (~s ) =

∑
k∈D ~s [k] T (~s D

k ). Consider the
sequence ~1D such that for all i ∈ D, ~1D(i) = 1. T (~1D) =∑
k∈D T (~s D

k ). By Averaging Axiom, T (~1D) = 1; thus,∑
k∈D T (~s D

k ) = 1, and for all k ∈ D we can take wD

k =
T (~s D

k ). 2

Corollary 2.2 (Uniform Continuity) For every δ and ev-
ery two experience sequences ~s 1, ~s 2 with D(~s 1) =
D(~s 2) = D and |~s 1[k] − ~s 2[k]| < δ for all k ∈ D, then
also |T (~s 1)− T (~s 2)| < δ.

Proof. We first note that ~s 1−~s 2 might not be an experience
sequence because some of the values (~s 1 − ~s 2)[k] might
be negative. However, function T , by linearity, naturally
extends via (2) to such sequences as well, and T (~s 1−~s 2) =
T (~s 1)− T (~s 2). Thus,

|T (~s 1 − ~s 2)| ≤
∑
k∈D

(wD

k |~s 1[k]− ~s 2[k]|)

< δ

(∑
k∈D

wD

k

)
= δ.

2

The following corollary can be proved in the same manner.

Corollary 2.3 (Point-wise monotonicity) Let ~s 1, ~s 2 be
two experience sequences with D(~s 1) = D(~s 2) = D. If
~s 1[k] ≥ ~s 2[k] for all k ∈ D, then T (~s 1) ≥ T (~s 2).

Theorem 2.4 (Representation Theorem) Let T satisfy
the axioms T1 through T5. Then there exists q ≥ 1 such that
for all ~s the following canonical representation of T (~s )
holds:

T (~s ) =
∑

k∈D(~s )

qk−1∑
l∈D(~s ) q

l−1
e(k). (3)

Proof. Note that, by Lemma 2.1, for some wI21 , w
I2
2 such

that wI21 + wI22 = 1 we have T ({(1, 1), (2, 0)}) = wI21

and T ({(1, 0), (2, 1)}) = wI22 . By the Axiom of Discount-
ing, wI21 ≤ wI22 . Thus, wI21 ≤ 1/2 and so for some
q ≥ 1, T ({(1, 1), (2, 0)}) = 1/(1 + q) and consequently
T ({(1, 0), (2, 1)}) = wI22 = 1− wI21 = q/(1 + q).

We first prove the statement for all D such that D =
In = {1, . . . , n} for some n ≥ 3, and for q as above.
Using Lemma 2.1, T (~s ) =

∑n
k=0 w

In

k ~s [k]. Fix m < n

and consider a set of 3 experience sequences ~smm
′
, ~s •mm

′

and ~s ?mm
′

with D(~smm
′
) = In, D(~s •mm

′
) = {m,m +

1}, D(~s ?mm
′
) = In \D(~s •mm

′
). We define ~smm

′
as fol-

low:

~smm
′
[k] =


1 if k = m

0 if k = m+ 1
1/(1 + q) otherwise ;

while ~s •mm
′

= {(m, 1), (m + 1, 0)} and ~s ?mm
′
[k] =

1/(1 + q) for all k ∈ D(~s ?mm
′
). Then by the Shift Invari-

ance Axiom, T (~s •mm
′
) = T ({(1, 1), (2, 0)}) = 1/(1+q).

By the Averaging Axiom, T (~s ?mm
′
) = 1/(1+q). Thus, by

the Consistency Axiom, T (~smm
′
) = T (~s •mm

′∪~s ?mm′
) =

1/(1 + q). Since by Lemma 2.1
∑
k∈In

wIn

k = 1, we get
T (~smm

′
) = wIn

m +(1−wIn
m −w

In
m+1)/(1+q) = 1/(1+q),

which implies wIn
m+1 = wIn

m q. Consequently, for all k ∈
In, wIn

k = qk−1/(1+ . . .+qn−1) = qk−1(q−1)/(qn−1).
Consider now another set of sequences ~s 1n, ~s •1n and

~s ?1n with D(~s 1n) = In, D(~s •1n) = {1, n}, D(~s ?1n) =
In \ D(~s •1n). Let this time ~s •1n = {(1, 1), (n, 0)}; then
there exists r > 0 such that T (~s •1n) = 1/(1 + r). For
all k ∈ D(~s ?1n), ~s ?1n[k] = 1/(1 + r). We define ~s 1n as
follow:

~s 1n[k] =


1 if k = 1
0 if k = n

1/(1 + r) otherwise ;

Then again by the Averaging and the Consistency Axioms,
T (~s 1n) = T (~s •1n) = T (~s ?1n) = 1/(1 + r). This implies
that

T (~s 1n) =
1∑n

k=1 q
k−1

+
1

1 + r

∑n−1
k=2 q

k−1∑n
k=1 q

k−1
=

1
1 + r

,

which is easily seen to yield r = qn−1. This means that for
every ~s such that D(~s ) = {1, n} we have

T (~s ) =
~s [1]

1 + qn−1
+
~s [n] qn−1

1 + qn−1
.

Finally we consider an arbitrary D ⊆ {1, . . . , n} and
an arbitrary ~s such that D(~s ) = D. Then T (~s ) =∑
k∈D w

D

k ~s [k]. To complete the proof of the theorem it
is enough to show that if l,m ∈ D and l < m, then
wD
m/w

D

l = qm−l. Consider a similar set of sequences
~s lm, ~s •lm and ~s ?lm. Let ~s •lm = {(l, 1), (m, 0)}. By the
Shift Invariance, T (~s •lm) = T ({(1, 1), (m− l+ 1, 0)}) =
1/(1 + qm−l). Again, we set ~s lm[l] = 1, ~s lm[m] = 0 and
~s lm[k] = 1(1 + qm−l) for all k ∈ D \ {l,m}. Likewise,
~s ?lm[k] = 1/(1 + qm−l) for all k ∈ D \ {l,m}. Once
more, we have T (~s lm) = T (~s •lm ∪ ~s ?lm) = T (~s ?lm) =
T (~s •lm), i.e.,

T (~s lm) =
wD

l∑
k∈D

wD

k

+

( ∑
k∈D

wD

k

)
− wD

l − wD
m∑

k∈D
wD

k

1
1 + qm−l

=
1

1 + qm−l

which implies wD

l q
m−l = wD

m. 2



Note that the form of (3) implies that we do not have
to translate a sequence so that its domain starts with one, in
order to evaluate its rank function. This is because any extra
powers of q in both the denominator and the numerator of
the fraction qk−1/

∑
l∈D(~s ) q

l−1 cancel out. One can now
demonstrate the following corollary.

Corollary 2.5 Let ~s 0, ~s 1, ~s 2 be any three experience se-
quences such that D(~s 0) 6= ∅, D(~s 0) ∩ D(~s 1) = ∅, and
D(~s 1) = D(~s 2). Then:

(i) (Monotonicity.) T (~s 0 ∪ ~s 1) < T (~s 0 ∪ ~s 2) ⇔
T (~s 1) < T (~s 2);

(ii) (Interpolation.) T (~s 0) > T (~s 1) ⇒ T (~s 0) > T (~s 0 ∪
~s 1) > T (~s 1).

(iii) (Amortization.) |T (~s 0∪~s 1)−T (~s 0∪~s 2)| < |T (~s 1)−
T (~s 2)|. Moreover, if we fix ~s 1 and ~s 2 and let ‖~s 0‖ →
∞, then T (~s 0∪~s 1)→ T (~s 0) and thus |T (~s 0∪~s 1)−
T (~s 0 ∪ ~s 2)| → 0.

Proof. Let ~s i = {(k, ei(k)) : k ∈ D(~s i)} for i = 0, 1, 2.
Clearly, (i) follows directly from (3).

To prove (ii), let D = D(~s 0) ∪ D(~s 1), and let e(k) =
e0(k) if k ∈ D(~s 0) and e(k) = e1(k) if k ∈ D(~s 1); then
by (3),

T (~s 0 ∪ ~s 1) =

∑
i∈D(~s 0)

qi−1

∑
j∈D

qj−1

∑
k∈D(~s 0)

qk−1∑
i∈D(~s 0)

qi−1
e(k)

+

∑
i∈D(~s 1)

qi−1

∑
j∈D

qj−1

∑
k∈D(~s 1)

qk−1∑
i∈D(~s 1)

qi−1
e(k)

Setting α =
∑
i∈D(~s 1) q

i−1/
∑
j∈D q

j−1 and β =∑
i∈D(~s 2) q

i−1/
∑
j∈D q

j−1, we get T (~s 1 ∪ ~s 2) =
αT (~s 1) + βT (~s 2), with α + β = 1, which implies the
claim.

To prove (iii), as in Corollary 2.2, we use extension of
T to sequences that can take negative values, and note that
the sequence (~s 0 ∪ ~s 1) − (~s 0 ∪ ~s 2), with domain D =
D(~s 0) ∪ D(~s 1) is zero over D(~s 0) and equal to ~s 1 − ~s 2

over D(~s 1). Thus,

T ((~s 0 ∪ ~s 1)− (~s 0 ∪ ~s 2))

=
∑

k∈D(~s 1)

qk−1(e1(k)− e2(k))∑
i∈D q

i−1

=

∑
i∈D(~s 1) q

i−1∑
j∈D q

j−1

∑
k∈D(~s 1)

qk−1(e1(k)− e2(k))∑
i∈D(~s 1) q

i−1

=

∑
i∈D(~s 1) q

i−1∑
j∈D q

j−1
(T (~s 1)− T (~s 2))

As D(~s 0) 6= ∅, we have
∑
i∈D(~s 1) q

i−1/
∑
j∈D q

j−1 < 1
and thus |T (~s 0 ∪ ~s 1) − T (~s 0 ∪ ~s 2)| < |T (~s 1) − T (~s 2)|.
Also,

∑
i∈D(~s 1) q

i−1/
∑
j∈D q

j−1 → 0 as ‖~s 0‖ → ∞ and
thus T (~s 0 ∪ ~s 1)− T (~s 0 ∪ ~s 2)→ 0. 2

Note that (i) formalizes our intuition that the trust rank
T (~s ) should change monotonically with respect to addition
of another sequence of experiences; (ii) formalizes our in-
tuition that joining a sequence with a higher trust rank with
a sequence of a lower trust rank should result in a sequence
with a trust rank that is a degradation of the higher and an
improvement of the lower. Finally, (iii) formalizes our in-
tuition that difference in trust ranks of two experience se-
quences ~s 1 and ~s 2 “amortizes” when these sequences are
extended with the same sequence ~s 0; thus, initial few expe-
riences have negligible impact on overall rank as the num-
ber of transactions increases.

If q > 1, then Corollary 2.5(iii) can be strengthened. In
this case we can take only limited number of latest experi-
ences to obtain an arbitrarily good approximation of T (~s ).
Let us denote by ~s [m,n] the restriction of ~s to the domain
D(~s ) ∩ {m, . . . , n}.

Corollary 2.6 If q > 1, then for every δ there existsK such
that for every ~s satisfying ‖~s ‖ > K, we have

|T (~s )− T (~s [ ‖~s ‖ −K, ‖~s ‖])| < δ.

Proof. For clarity, we fix the ranges of subscripts used in
sums in this proof as follow:

• m ∈ D(~s );

• k ∈ D(~s [1, ‖~s ‖ −K − 1]);

• l, l1 ∈ D(~s [ ‖~s ‖ −K, ‖~s ‖]) and

• i ∈ I‖~s ‖−K−1.

Note that

~s = ~s [1, ‖~s ‖ −K − 1] ∪ ~s [ ‖~s ‖ −K, ‖~s ‖]

and ∑
l

ql−1 e(l)∑
m
qm−1

=

∑
l1

ql1−1∑
m
qm−1

∑
l

ql−1 e(l)∑
l1

ql1−1

=

∑
l

ql−1∑
m
qm−1

T (~s [‖~s ‖ −K, ‖~s ‖]).



Since

T (~s ) =
∑
k

qk−1∑
m
qm−1

e(k) +
∑
l

ql−1∑
m
qm−1

e(l),

we have

T (~s )− T (~s [‖~s ‖ −N, ‖~s ‖])

=
∑
k

qk−1 e(k)∑
m
qm−1

+


∑
l

ql−1∑
m
qm−1

− 1

T (~s [‖~s ‖ −K, ‖~s ‖])

=
∑
k

qk−1 e(k)∑
m
qm−1

−


∑
k

qk−1∑
m
qm−1

T (~s [‖~s ‖ −K, ‖~s ‖])

Also, since e(k) ≤M ,

∑
k

qk−1 e(k)∑
m
qm−1

≤M
∑
k

qk−1∑
m
qm−1

;

thus, by increasing the numerator and reducing the denom-
inator, we get

∑
k

qk−1∑
m
qm−1

<
∑
i

qi−1

q‖~s ‖−1
<

1
(q − 1)qK−1

Thus,

|T (~s )− T (~s [‖~s ‖ −K, ‖~s ‖])|

≤ 2M

∑
k

qk−1∑
m
qm−1

≤ 2M
(q − 1)qK−1

which can be made arbitrarily small by taking sufficiently
large K. 2

Theorem 2.7 (Trust Update) Let function Q(D) be de-
fined on finite sets of natural numbers so that Q(D) =∑
i∈D q

i; let n > max(D(~s )) and ~s ′ = ~s ∪ {(n, e(n))}.
Then

T (~s ′) =
Q(D(~s ))T (~s )
Q(D(~s )) + qn−1

+
qn−1 e(n)

Q(D(~s )) + qn−1

Proof. By Theorem 2.4 we have

T (~s ′) =
∑

k∈D(~s )

qk−1~s [k]( ∑
i∈D(~s )

qi−1

)
+ qn−1

+
qn−1 e(n)( ∑

i∈D(~s )

qi−1

)
+ qn−1

=
∑
k∈D

qk−1~s [k]
Q(D(~s ))

Q(D(~s ))
Q(D(~s )) + qn−1

+
qn−1 e(n)

Q(D(~s )) + qn−1

=
Q(D(~s )) T (~s )
Q(D(~s )) + qn−1

+
qn−1 e(n)

Q(D(~s )) + qn−1
.

2

To obtain the new values, T (~s ′) and Q(D(~s ′)), we only
need to keep track of two quantities, T (~s ) and Q(D(~s )),
rather than individual experience values eij(k), for all k ≤
n. For q > 1

qn−1

S(D(~s )) + qn−1
≥ qn−1∑n−1

k=1 q
k−1 + qn−1

= 1− qn−1 − 1
qn − 1

= 1− 1− 1/qn−1

q − 1/qn−1
> 1− 1

q

and consequently Q(D(~s ))/(Q(D(~s )) + qn−1) < 1/q.
Thus, as q increases, the dependency of the trust rank on
most recent samples also increases, i.e., the value of q con-
trols how fast the trust rank updates. The proper value for q
should be chosen close to but larger than one, on the basis
of statistical data from the community of agents involved,
matching the expected volatility of agents and striking the
right balance between importance of longer term perfor-
mance and likelihood of sudden changes in agent’s behav-
ior.

2.3 Asymptotic Behavior of Trust Rank

Introducing trust rank function for infinite experience se-
quences allows an analysis of the asymptotic behavior of
trust rank functions on finite sequences. Thus, let ~S be
a function from an infinite domain D(~S) ⊆ N with val-
ues in [0,M ]. We denote by ~S[m,n] the restriction of ~S
to the domain D(~S) ∩ {m, . . . , n}. Let ~S be any infi-
nite experience sequence with the domain D(~S); we de-
fine T (~S) = limn→∞ T (~S[1, n]) whenever such limit ex-
ists. Assume n ∈ N; then ~S ↓n is the infinite sequence with
the domain D(~S ↓n) = {k : (k + n) ∈ D(~S)} defined by
~S ↓n [k] = ~S[k + n].



Theorem 2.8 For every integer n, T (~S) is defined if and
only if T (~S ↓n) is defined, in which case T (~S) = T (~S ↓n).

Theorem 2.8 asserts that T (~S) is shift invariant not only
for shifts in the positive direction but also in the negative di-
rection, when initial few terms could be dropped. It can also
be easily seen that T (~S) for infinite sequences also satisfies
the Consistency axiom and the following strengthening of
the Averaging Axiom: lim inf(~S) ≤ T (~S) ≤ lim sup(~S).

Theorem 2.9 If experiences in an infinite sequence of ex-
periences ~S converge, i.e., if limn→∞ ~S [n] = s, then
limn→∞ T (~S[1, n]) also exists and equals s.

Proof. Let δ > 0 be arbitrary, and let K ∈ N be such that
|~S[n]− s| < δ for all n > K. Using Corollary 2.5 (iii) with
~s 0 = ~S[K + 1, n] and ~s 1 = ~S[1,K] we can chose L > K

such that for all n > L, |T (~S[1, n])−T (~S[K,n])| < δ. Let
~s n be such that D(~s n) = Dn = D(~S) ∩ {K, . . . , n}, and
~s [k] = s for all k ∈ Dn; then ~s n[k] − ~S[K,n][k] < δ and
thus |T (~s n) − T (~S[K,n])| = |T (~s n − ~S[K,n][k])| < δ.
Hence, |T (~S[1, n])− T (~s n)| < 2δ, i.e., |T (~S[1, n])− s| <
2δ, which implies our claim. 2

Theorem 2.9 states that T (~S) exists for every convergent
infinite experience sequence and equals to the limit of the
sequence. The converse is false; consider ~S• with domain
N such that for ~S•[2k + 1] = 1 and ~S•[2k] = 0 all k. It is
easy to see that T (~S•) converges to 1/2 for q = 1. Thus,
the notion of reputation rank is a form of a generalized infi-
nite impulse response averaging filter applicable to “partial
signals” which need not be defined for all instants in time.

2.4 Weight of Pairwise Evidence

Having a high trust rank on the basis of just a few trans-
actions long time ago is clearly not the same as having a
high reputation rank on the basis of a large number of re-
cent transactions. To formalize this intuition, we introduce
the notion of the weight of pairwise evidence an agent Ai
has about the trustworthiness of another agent Aj up to the
instant n, denoted by wij(n). Thus, let ~s ij(n) be the ex-
perience sequence of Ai with Aj that takes into account all
transactions Ai has had with Aj up to the moment n. Then

wij(n) =
∑

k∈D(~s )

qk−n,

where q is the same constant as in (2.4). In essence,
we count the number of transactions of Ai with Aj , dis-
counting each transaction by the factor 1/qn−k where k ∈
D(~s ij(n)) is the instant of transaction. In this way, the
larger the value of wij(n) the more significant and reliable
the value T (~s ij) is at an instant n. Note that wij satisfies

the recursion:

wij(n+ 1) =

{
q wij(n) + 1 if n+ 1 ∈ D(~s ij(n+ 1))
q wij(n) otherwise

Thus, wij(n) can also be evaluated recursively; for q = 1
we have wij(n) ≤ n, and for q > 1, wij(n) are bounded
because wij(n) ≤

∑‖~s ij(n)‖−1
k=0 q−k ≤

∑∞
k=0 q

−k =
q/(q − 1).

3 Aggregation in Community
We can now tackle the problem of averaging in com-

munity. Let ~s ij(n) be the sequence of experiences in all
transactions of reporting agent Ai with agent Aj up to and
including instant of time n. We assume that the agency has
calculated the trust rank τij(n) = T (~s ij(n)) of each agent
Aj with every other agentAi which were involved in at least
one transaction up to the instant n, and the corresponding
weight of pairwise evidence wij(n). The agency now has
to assign a community reputation rank 1 ≤ ρj(n) ≤ M to
each agent Aj that had transactions up to the instant n, as
well as a weight of community evidence Wj(n) for the rep-
utation of Aj on the basis of all available values τij(n) and
wij(n).

Let ∆j(n) denote the set of indices of all agents with
which agentAj has had transactions up to the instant n. The
community reputation rank should be a form of an average
over the community of agents in the sense that min{τij(n) :
i ∈ ∆j} ≤ ρj(n) ≤ max{τij(n) : i ∈ ∆j}. The weight of
community evidenceWj(n) for the reputation ofAj should
be a cumulative weight of pairwise evidence obtained by
aggregating all weights {wij(n) : i ∈ ∆j} and that reflects
the confidence we can have in accepting the value of the
reputation rank ρj(n).

So in our setup we can assume that at instant n the
agency has a partial table Tn, such that for each i, j ≤ n
the (i, j)-entry of the table Tk is either blank if Ai and Aj
were not involved in a transaction up to the instant n, or is
a pair (τij(n), wij(n)), i 6= j. We now need a mapping
ρ(Tn) 7→ Rn assigning to each partial table Tn a partial ta-
ble Rn of pairs (ρi(n),Wi(n)) assigned for instant n. The
table Rn is made available to all agents to help them esti-
mate the risks involved in entering into a transaction with
other agents.

To explain the essence of our method of arriving at the
reputation rank ρj(n) and the cumulative weight of commu-
nity evidence Wj(n), we consider the following situation.
Assume that we have a community of agents A = {Ai :
i ≤ N} with already assigned ranks {ρi(n) : i ≤ N}, and
an additional agent A0 with unknown rank. Assume that
A0 has had transactions with all of the agents inA, and that
they have submitted their experience reports ei0(n). Thus,
we can assume that we have calculated the trust ranks τi0(n)



of A0 with every agent Ai ∈ A, and the weight of evidence
wi0(n) for such trust ranks. Then the reputation rank ρ0(n)
of A0 can be evaluated using the following weighted aver-
age:

ρ0(n) =
N∑
i=1

wi0(n)ρi(n) τi0(n)∑N
k=1 wk0(n)ρk(n)

. (4)

We see that individual trust ranks τi0(n) of agentA0 with
agentsAi, i ≤ n, are averaged with weights that reflect rep-
utation ρi(n) of the reporting agents, as well as the amount
of evidence they have to support the values τi0(n). In this
way, the highest impact on the value of the community rep-
utation ρ0(n) of agent A0 will have agents with high com-
munity reputation rank ρi(n) at the given instant n, which
also have the large weight of evidence wi0(n) backing their
corresponding estimate τi0 of trustworthiness of agent A0.
One can also define the cumulative, community weight of
evidence for the reputation ρ0(n) of agent A0 as

W0(n) =
N∑
k=1

wk0(n)ρk(n) (5)

as a measure of weight of total evidence that supports rank
ρi(n), because each individual weight wk0(n) is prorated
by the reputation of the reporting agent. Thus, (4) can be
written as

ρ0(n) =
N∑
i=1

wi0(n)ρi(n) τi0(n)
W0(n)

(6)

and interpreted that the reputation rank ρ0(n) is a weighted
sum of trust ranks τi0 of agent A0 with agents Ai, i ≤
N, with weight given to an agent Ai that reflects its share
of prorated evidence wi0(n)ρi(n) in the total of prorated
evidence W0(n).

One may object that reputation ranks ρi(n) and weights
of evidence wi0(n) are not on a par; for example, one
might argue that halving the reputation rank of a report-
ing agent Ai should have more severe impact than halv-
ing the weight of its evidence wi0(n). Thus, we generalize
the (4) by allowing an arbitrary continuous scaling function
f(w, ρ) : [0, q/(q − 1)] × [1,M ] → R+ that is strictly in-
creasing in both arguments and satisfiesw, ρ ≤ f(w, ρ) and
by letting

ρ0(n) =
N∑
i=1

f(wi0(n), ρi(n)) τk0(n)∑N
k=1 f(wk0(n), ρk(n))

. (7)

For example, in our numerical experiments f(w, ρ) =
wαρβ performed very well, with α, β depending on par-
ticular value of the discounting factor q appearing in our
Representation Theorem 2.4.

Note that the above does not solve our problem of assign-
ing the reputation ranks ρi(n), because we assumed that we
had such ranks for all agents exceptA0, and we did not take
into account at all experiences of A0 with other agents. To
solve this problem we look for a solution of the following
system of equations in variables ρi, i ≤ n. ∑

i∈∆j(n)

f(wij(n),ρi) τkj(n)∑
k∈∆j(n) f(wkj(n), ρk)

= ρj


j≤N

(8)

Thus, if ρi(n), i ≤ N are chosen to be the solutions
of the system (8), then for every agent Aj its commu-
nity reputation rank ρj(n) at an instant n is equal to the
weighted average of all trust ranks τij(n) of Aj at in-
stant n, with every other agent Ai that was involved in
transactions with Aj up to the moment n, weighted by
Ai’s share of contribution to the total community evidence,
i.e., f(wij(n), ρi)/

∑
k∈∆j(n) f(wkj(n), ρk), and which is

commensurate to both its Ai’s reputation rank ρi(n) and
its weight of evidence wij(n). We now make an inessential
change to possible range of our experience estimates eij(n),
allowing only values 1 ≤ eij(n) ≤ M , with M >> 1; for
example, we can set 1 ≤ eij(n) ≤ 100. Then, by our Av-
eraging axiom, also the values τij(n) are in the same range.
Consider now the mapping F given by

F : (ρi : i ≤ N) 7→ ∑
i∈∆j(n)

f(wij(n), ρi) τkj(n)∑
k∈∆j(n) f(wkj(n), ρk)

: j ≤ N

 .

Since for every j the weights in the weighted jth sum add
up to one and since the scaling function f is continuous in
both variables, it is easy to see that F is a continuous map-
ping of the N -dimensional cube [1,M ]N into itself. Thus,
since F is a continuous map from a convex and compact
subset of RN into itself, by the Brouwer Fixed point the-
orem F must have a fixed point, see e.g., [3], which we
take as the values of (ρj(n) : j ≤ N). The fixed point
can be obtained by standard iterative procedures, and our
experimental results show that the method is both fast and
numerically robust. It is possible to reset the clock without
causing disruption and to partition the market into overlap-
ping sub communities to prevent an explosion in size of the
system of equations. The details, together with the issues
of software engineering of such a system will be presented
separately in a forthcoming paper.

Finally, we can evaluate the community evidence
(Wj(n) : j ≤ N) using

Wj(n) =
∑

k∈∆j(n)

f(wkj(n), ρk); j ≤ N. (9)



Thus, at each moment n and for each j ≤ N , ρj(n) is a
representation and an estimate for our informal notion of
community reputation enjoyed by agent Aj , and Wj(n) is a
community based measure of reliability of such reputation
estimate.

One might ask a question how one should use reputation
rank and the weight of evidence to make a decision. For
example, given two agents, one with reputation of 50 and
weight of evidence .5 and another with reputation rank 60
and weight of evidence .4, which should one chose? The
answer depends on the particular features of the community
of agents, and must be probabilistic in nature, in the sense
that agents will act so that they maximize the expected util-
ity in transactions. These are problems that merit a separate
paper.

Conclusion. Tennenholtz’s [7] idea on the reputation
of agents can be paraphrased as follows. Say an agent Aj
is supported by a set Sj of other agents if the agents in Sj
provide high trust rankings for Aj . Since his discussion is
about a static domain there is no notion of time progression.
Moreover, he argued that support by agents which them-
selves have high reputations should result in higher repu-
tation for the supported agent than support by low reputa-
tion agents. We feel that we have provided an adequate and
rigorous formalization of this idea, also extending Tennen-
holtz’s static setup to one that involves time sequences of
transactions.
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