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Abstract

Agents from a community interact in pairwise transac-
tions across discrete time. Each agent reports its evalua-
tion of another agent with which it has just had a trans-
action to a central system. This system uses these time-
sequences of experience evaluations to infer how much the
agents trust each another. Our paper proposes rationality
assumptions (also called axioms or constraints) that such
inferences must obey, and proceeds to derive theorems im-
plied by these assumptions. A basic representation theo-
rem is proved. The system also uses these pairwise cross-
agent trustworthiness to compute a reputation rank for each
agent. Moreover, it provides with each reputation rank an
estimate of the reliability, which we call weight of evidence.
This paper is different from much of the current work in that
it examines how a central system which computes trustwor-
thiness, reputation and weight of evidence is constrained by
such rationality postulates.

1 Introduction

With the rapid increase of commerce and other online
transactions, it has become advantageous to have methods
for evaluation of the behavior of agents involved. The no-
tions that address how agents assess other agents, and how
overall reputations arise, derive from cognitive social sci-
ence. The primary reference for this background is the
foundational work [1]. Some well-known and widely used
systems already give some data to help assess the reputa-
tion of an agent. For example, the eBay makes available for
each agent the percentage of positive evaluations it receives
from other agents, called the “Feedback”. The report [6]
has a comprehensive survey of many alternative approaches
to representing, assessing, computing and updating agent

trustworthiness and reputation. This paper is different in
spirit of much of the ongoing work on reputation of which
[5] is a good example. In [5] the main method for evaluating
performance of different approaches is by simulation. Our
paper however sets out postulates that are intuitively appeal-
ing, and from them we derive representation theorems.

Assume that N agents {Ai : 1 ≤ i ≤ N} are involved
in some pairwise transactions over discrete time instants.
We identify time instants with natural numbers and that the
“granularity” of time intervals is sufficiently fine so that any
two agents at any instant can be involved in at most one
transaction. For an agent Ai, its assessment of another agent
Aj for a transaction happened at k is its experience evalu-
ation, eij(k). Over time up to n, agent Ai has produced
an experience sequence which we identify with the partial
function ~s ij = {(k, eij(k)) : k ∈ D(~s ij)}. The do-
main D(~s ij) is the collection of time instants k ≤ n when
agent Ai was engaged in a transaction with Aj . If there is
no confusion, we drop the index i, j for brevity. For every
k ∈ D(~s ), ~s [k] = e(k). This sequence is the base of Ai’s
judgement of Aj’s trustworthiness which can be seen as an
aggregation over time of all individual past experiences. We
call this trust rank, T (~s ).

For an agent Aj , its trust ranks by all other agents in the
community can be further aggregated to give a community-
wide judgement on its trustworthiness. We call this Aj’s
reputation, ρj(n), which is valid at time n. Having a reputa-
tion based on just a few transactions long time ago is clearly
different from having the same based on a large number of
recent transactions. To address this issue, we introduce the
notion of community evidence, Wj(n), for each ρj(n).

In our approach, these two levels of aggregation are per-
formed by a central mediating agency to minimize bias in
the aggregation process. In addition to being more robust
against manipulative reporting, this system also maintains
the privacy of the evaluations of individual transactions.



Fair conditions, also called rationality assumptions, that
constrain how an experience sequence ~s ij is related to the
consequent trustworthiness assessment have been investi-
gated in [4] and [2]. We provide a rigorous analysis of the
problem of ranking the trustworthiness and reputation of
agents involved in transactions, and in assessing reliability
of such a rank, based on our rationality assumptions. While
these persuasive assumptions are essential to our analysis,
much of our technical development can be modified for
somewhat different setups that do not meet all of our as-
sumptions.

2 Aggregation in Time

We will assume that an experience evaluation e(k) is a
real number in a fixed range [0, M ], M > 0. If e(k) = M ,
this means Ai regards the quality of the transaction with Aj

at moment k is the best, while a report of 0 means the worst.
Now, let us list axioms which delineate the “rationality” of
trust rank T .

2.1 Axioms for Aggregation in Time

(T1) Shift Invariance. Let ~s + be the forward unit shift
of the sequence ~s , i.e., let ~s + = 〈(k+1, e(k)) : k ∈ D(~s )〉;
then T (~s +) = T (~s ).

(T2) Time Averaging. Let ~s be any sequence of experi-
ences; then min(~s ) ≤ T (~s ) ≤ max(~s ).

(T3) Consistency. Let ~s 1 and ~s 2 be two experience se-
quences such that D(~s 1)∩D(~s 2) = ∅ and T (~s 1) = T (~s 2);
then T (~s 1) = T (~s 1 ∪ ~s 2) = T (~s 2).

(T4) Discounting. Assume that 0 ≤ e < E ≤ M and
let ~s 1 = {(1, e), (2, E)} and ~s 2 = {(1, E), (2, e)}; then
T (~s 1) ≥ T (~s 2).

We feel that every reasonable trust rank function must
satisfy the above axioms. Intuitive justification of the next
axiom given below is perhaps somewhat less than univer-
sal; however, it greatly simplifies technical matters, without
imposing any undue restrictions.

(T5) Linearity. Let α, β be real numbers, and ~s 1, ~s 2

be two sequences such that D(~s 1) = D(~s 2) = D and
0 ≤ α~s 1[k] + β~s 2[k] ≤ M for all k ∈ D. Further, the
sequence ~s is defined on D with ~s [k] = α~s 1[k] + β~s 2[k]
for all k ∈ D. Then T (~s ) = αT (~s 1) + βT (~s 2).

The next lemma reveals a form for trust rank functions
analogous to the response of a linear system.

Lemma 2.1 Let n ∈ N and In = {i : 1 ≤ i ≤ n}.
Further, let D ⊆ In and {1, n} ⊆ D. For a sequence ~s
with D(~s ) = D, if the trust rank function T satisfies T1
through T5, there exist positive numbers wD

k such that
∑

k∈DwD

k = 1 (1)
T (~s ) =

∑
k∈DwD

k ~s [k]. (2)

Proof. For each k ∈ D, we define the experience sequence
~s D

k such that D(~s D

k ) = D; ~s D

k [k] = 1 and ~s D

k [m] = 0 for
all m ∈ D, m 6= k. Then we have ~s =

∑
k∈D ~s [k] ~s D

k .
Since T is linear, T (~s ) =

∑
k∈D ~s [k] T (~s D

k ). Consider the
sequence ~1D such that for all i ∈ D, ~1D(i) = 1. T (~1D) =∑

k∈D T (~s D

k ). By Averaging Axiom, T (~1D) = 1; thus,∑
k∈D T (~s D

k ) = 1, and for all k ∈ D we can take wD

k =
T (~s D

k ). 2

Corollary 2.2 (Uniform Continuity) For every δ and ev-
ery two experience sequences ~s 1, ~s 2 with D(~s 1) =
D(~s 2) = D and |~s 1[k] − ~s 2[k]| < δ for all k ∈ D, then
also |T (~s 1)− T (~s 2)| < δ.

Corollary 2.3 (Point-wise monotonicity) Let ~s 1, ~s 2 be
two experience sequences with D(~s 1) = D(~s 2) = D. If
~s 1[k] ≥ ~s 2[k] for all k ∈ D, then T (~s 1) ≥ T (~s 2).

Theorem 2.4 (Representation Theorem) Let T satisfy
the axioms; then there exists q ≥ 1 such that for all ~s the
following canonical representation of T (~s ) holds:

T (~s ) =
∑

k∈D(~s )

qk−1

∑
l∈D(~s ) ql−1

e(k). (3)

Proof. Note that, by Lemma 2.1, for some wI2
1 , wI2

2 such
that wI2

1 + wI2
2 = 1 we have T ({(1, 1), (2, 0)}) = wI2

1

and T ({(1, 0), (2, 1)}) = wI2
2 . By T4, wI2

1 ≤ wI2
2 . Thus,

wI2
1 ≤ 1/2 and so for some q ≥ 1, T ({(1, 1), (2, 0)}) =

1/(1 + q) and consequently T ({(1, 0), (2, 1)}) = wI2
2 =

1− wI2
1 = q/(1 + q).

We first prove the statement for all D such that D =
In = {1, . . . , n} for some n ≥ 3, and for q as above.
Using Lemma 2.1, T (~s ) =

∑n
k=0 wIn

k ~s [k]. Fix m < n

and consider a set of 3 experience sequences ~s mm′
, ~s •mm′

and ~s ?mm′
with D(~s mm′

) = In, D(~s •mm′
) = {m,m +

1}, D(~s ?mm′
) = In \D(~s •mm′

). We define ~s mm′
as fol-

low:

~s mm′
[k] =





1 if k = m

0 if k = m + 1
1/(1 + q) otherwise ;

while ~s •mm′
= {(m, 1), (m + 1, 0)} and ~s ?mm′

[k] =
1/(1+q) for all k ∈ D(~s ?mm′

). Then by T1, T (~s •mm′
) =

T ({(1, 1), (2, 0)}) = 1/(1 + q). By T2, T (~s ?mm′
) =

1/(1+q). Thus, by T3, T (~s mm′
) = T (~s •mm′∪~s ?mm′

) =
1/(1 + q). Since by Lemma 2.1

∑
k∈In

wIn

k = 1, we get
T (~s mm′

) = wIn
m +(1−wIn

m −wIn
m+1)/(1+q) = 1/(1+q),

which implies wIn
m+1 = wIn

m q. Consequently, for all k ∈
In, wIn

k = qk−1/(1+ . . .+qn−1) = qk−1(q−1)/(qn−1).
Consider now another set of sequences ~s 1n, ~s •1n and

~s ?1n with D(~s 1n) = In, D(~s •1n) = {1, n}, D(~s ?1n) =
In \ D(~s •1n). Let this time ~s •1n = {(1, 1), (n, 0)}; then



there exists r > 0 such that T (~s •1n) = 1/(1 + r). For
all k ∈ D(~s ?1n), ~s ?1n[k] = 1/(1 + r). We define ~s 1n as
follow:

~s 1n[k] =





1 if k = 1
0 if k = n

1/(1 + r) otherwise ;

Then again by T2 and T3, T (~s 1n) = T (~s •1n) =
T (~s ?1n) = 1/(1 + r). This implies that

T (~s 1n) =
1∑n

k=1 qk−1
+

1
1 + r

∑n−1
k=2 qk−1

∑n
k=1 qk−1

=
1

1 + r
,

which is easily seen to yield r = qn−1. This means that for
every ~s such that D(~s ) = {1, n} we have

T (~s ) =
~s [1]

1 + qn−1
+

~s [n] qn−1

1 + qn−1
.

Finally we consider an arbitrary D ⊆ {1, . . . , n} and
an arbitrary ~s such that D(~s ) = D. Then T (~s ) =∑

k∈D wD

k ~s [k]. To complete the proof of the theorem it
is enough to show that if l, m ∈ D and l < m, then
wD

m/wD

l = qm−l. Consider a similar set of sequences
~s lm, ~s •lm and ~s ?lm. Let ~s •lm = {(l, 1), (m, 0)}. By T1,
T (~s •lm) = T ({(1, 1), (m − l + 1, 0)}) = 1/(1 + qm−l).
Again, we set ~s lm[l] = 1, ~s lm[m] = 0 and ~s lm[k] =
1(1 + qm−l) for all k ∈ D \ {l, m}. Likewise, ~s ?lm[k] =
1/(1 + qm−l) for all k ∈ D \ {l,m}. Once more, we have
T (~s lm) = T (~s •lm ∪ ~s ?lm) = T (~s ?lm) = T (~s •lm), i.e.,

T (~s lm) =
wD

l∑
k∈D

wD

k

+

( ∑
k∈D

wD

k

)
− wD

l − wD
m

∑
k∈D

wD

k

1
1 + qm−l

=
1

1 + qm−l

which implies wD

l qm−l = wD
m. 2

Corollary 2.5 Let ~s 0, ~s 1, ~s 2 be any three experience se-
quences such that D(~s 0) 6= ∅, D(~s 0) ∩ D(~s 1) = ∅, and
D(~s 1) = D(~s 2). Then:

• T (~s 0∪~s 1) < T (~s 0∪~s 2) ⇔ T (~s 1) < T (~s 2) (mono-
tonicity) ;

• T (~s 0) > T (~s 1) ⇒ T (~s 0) > T (~s 0 ∪ ~s 1) > T (~s 1)
(interpolation);

• |T (~s 0∪~s 1)−T (~s 0∪~s 2)| < |T (~s 1)−T (~s 2)| (amor-
tization).

Theorem 2.6 (Trust Update) Let function Q(D) be de-
fined on finite sets of natural numbers so that Q(D) =

∑
i∈D qi; let n > max(D(~s )) and ~s ′ = ~s ∪ {(n, e(n))}.

Then

T (~s ′) =
Q(D(~s ))T (~s )

Q(D(~s )) + qn−1
+

qn−1 e(n)
Q(D(~s )) + qn−1

.

Proof. By Theorem 2.4 we have

T (~s ′) =

(∑
k∈D(~s ) qk−1~s [k]

)
+ qn−1 e(n)

∑
k∈D(~s ′) qk−1

=
Q(D(~s ))

∑
k∈D(~s ) qk−1~s [k]

Q(D(~s )) + qn−1 e(n)

Q(D(~s )) + qn−1

=
Q(D(~s )) T (~s )

Q(D(~s )) + qn−1
+

qn−1 e(n)
Q(D(~s )) + qn−1

.

To obtain the new values, T (~s ′) and Q(D(~s ′)), we only
need to keep track of two quantities, T (~s ) and Q(D(~s )). 2

As q increases, the dependency of the trust rank on most
recent samples also increases, i.e., the value of q controls
how fast the trust rank updates. The proper value for q
should be chosen close to but larger than one, on the basis
of statistical data from the community of agents involved,
matching the expected volatility of agents and striking the
right balance between importance of longer term perfor-
mance and likelihood of sudden changes in agent’s behav-
ior.

3 Aggregation in Community

To handle the issues about community reputation, we
first introduce a notion of the weight of pairwise evidence,
denoted by wij(n). Let ~s ij(n) be a sequence up to time n
we define

wij(n) =
∑

k∈D(~s ij(n))

qk−n,

where q is the same constant as in (2.4). In essence,
we count the number of transactions of Ai with Aj , dis-
counting each transaction by the factor 1/qn−k where k ∈
D(~s ij(n)). In this way, the larger the value of wij(n) the
more significant and reliable the value T (~s ij) is at an in-
stant n. Note that wij satisfies the recursion:

wij(n + 1) =

{
wij(n)/q + 1 if n + 1 ∈ D(~s ij(n + 1))
wij(n)/q otherwise

Thus, wij can also be evaluated recursively; for q = 1 we
have w(n) ≤ n, and for q > 1, wij(n) are bounded because
wij(n) ≤ ∑‖~s ij(n)‖−1

k=0 q−k ≤ ∑∞
k=0 q−k = q/(q − 1).

Let ∆j(n) denote the set of indices of all agents with
which agent Aj has had transactions up to the instant



n. Aj’s reputation rank, ρj(n), should be a form of an
average over the community of agents in the sense that
min{T (~s ij(n)) : i ∈ ∆j} ≤ ρj(n) ≤ max{T (~s ij(n)) :
i ∈ ∆j}. The influence of a trust assessment T(~s ij(n)) on
ρj(n) should depend on both the interaction significance,
wij(n), and the assessor’s reputation, ρi(n). The following
formula of weighted average satisfies all the above criteria:

ρj(n) =
∑

i∈∆j(n)

f(wij(n), ρi(n))Tij(~s ij(n))∑
i∈∆jn f(wij(n), ρi(n))

where f(w, ρ) : [0, q/(q − 1)] × [1, M ] 7→ R+ is a strictly
increasing in both arguments and satisfies w, ρ ≤ f(w, ρ).

Note that the above does not solve our problem of as-
signing reputation rank. To solve this problem we look for
a solution of the following system of equations in variables
ρi, i ≤ N .





∑

i∈∆j(n)

f(wij(n), ρi) T (~s kj(n))∑
k∈∆j(n) f(wkj(n), ρk)

= ρj





j≤N

(4)

where ρi(n), i ≤ N are chosen to be the solutions.
For our numerical experiment using f(w, ρ) = wαρβ

with positive real numbers α, β depending on discounting
factor q, we made an inessential change to possible range of
our experience estimates eij(n), allowing only values 1 ≤
eij(n) ≤ M , with M >> 1. We set 1 ≤ eij(n) ≤ 100.
Then, by our Averaging axiom, also the values T (~s ij(n))
are in the same range. Consider now the mapping F given
by

F : (ρi : i ≤ N) 7→
 ∑

i∈∆j(n)

f(wij(n), ρi) T (~s kj(n))∑
k∈∆j(n) f(wkj(n), ρk)

: j ≤ N


 .

Since for every j the weights in the weighted jth sum add
up to one and since the scaling function f is continuous in
both variables, it is easy to see that F is a continuous map-
ping of the N -dimensional cube [1,M ]N into itself. Thus,
since F is a continuous map from a convex and compact
subset of RN into itself, by the Brouwer Fixed point theo-
rem F must have a fixed point, see e.g., [3], which we take
as the values of (ρj(n) : j ≤ N). The fixed point can be
obtained by standard iterative procedures. Our experimental
results showed that the method is both fast and numerically
robust.

Finally, we can evaluate the community evidence
(Wj(n) : j ≤ N) using

Wj(n) =
∑

k∈∆j(n)

f(wkj(n), ρk); j ≤ N. (5)

Thus, at each moment n and for each j ≤ N , ρj(n) is a
representation and an estimate for our informal notion of
community reputation enjoyed by agent Aj , and Wj(n) is a
community based measure of reliability of such reputation
estimate.

Conclusion. Tennenholtz’s [7] idea on the reputation
of agents can be paraphrased as follows. Say an agent Aj

is supported by a set Sj of other agents if the agents in Sj

provide high trust rankings for Aj . Since his discussion is
about a static domain there is no notion of time progression.
Moreover, he argued that support by agents which them-
selves have high reputations should result in higher repu-
tation for the supported agent than support by low reputa-
tion agents. We feel that we have provided an adequate and
rigorous formalization of this idea, also extending Tennen-
holtz’s static setup to one that involves time sequences of
transactions.

One might ask a question how one should use reputation
rank and the community evidence to make decision. For ex-
ample, given to agent, one with reputation of 50 and com-
munity evidence 0.5 and another with reputation of 60 and
community evidence 0.4, which should one choose? The
answer depends on the particular features of the commu-
nity and must be probabilistic in nature, in the sense that
agents will act so that they maximize the expected utility.
This problem, together with software engineering of such a
system, e.g. clock reset, partition of market into overlap sub
communities to avoid explosion in size of equation system,
require further investigation.
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