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Abstract. The work on prototypes in ontologies pioneered by Rosch [10] and elaborated

by Lakoff [8] and Freund [3] is related to vagueness in the sense that the more remote an

instance is from a prototype the fewer people agree that it is an example of that prototype.

An intuitive example is the prototypical “mother”, and it is observed that more specific

instances like ”single mother”, “adoptive mother”, “surrogate mother”, etc., are less and

less likely to be classified as “mothers” by experimental subjects. From a different direction

Gärdenfors [4] provided a persuasive account of natural predicates to resolve paradoxes

of induction like Goodman’s “Grue” predicate [5]. Gärdenfors proposed that “quality

dimensions” arising from human cognition and perception impose topologies on concepts

such that the ones that appear “natural” to us are convex in these topologies. We show that

these two cognitive principles — prototypes and predicate convexity — are equivalent to

unimodal (convex) fuzzy characteristic functions for sets. Then we examine the case when

the fuzzy set characteristic function is not convex, in particular when it is multi-modal. We

argue that this is an indication that the fuzzy concept should really be regarded as a super

concept in which the decomposed components are subconcepts in an ontological taxonomy.
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1. Introduction

There are many ways to view the predicate vagueness problem. The fuzzy
logic community regards most predicates outside the domain of formal math-
ematics as essentially inexact, i.e. the characteristic functions of the sets
denoted by the predicates are not two valued, e.g. {0, 1}-valued but have
a range in the interval [0, 1] in the reals. A standard reference for fuzzy
logic that more than covers what we need is Klir and Yuan [7]. The clas-
sical sets with two-valued characteristic functions are called crisp by this
community, in contrast to their fuzzy sets that have fuzzy characteristic
functions in which degrees of membership of candidates vary between 0 and
1. The well-known Sorites Paradox1 is a common argument for the inherent
fuzziness of many concepts in non-formal domains, and we shall return to this
paradox later.

1The origin of this paradox is ancient. See http://plato.stanford.edu/entries/sorites-
paradox/ for a detailed exposition.
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In this paper we suggest an alternative view, that it is sometimes vi-
able to regard the fuzziness of a set as arising from an aggregation of the
characteristic functions of a family of agents each of which has its own crisp
interpretation of membership in the set. This in itself is not a particularly
radical suggestion as it is one of several interpretations explored by Dubois,
et al. [2]. The particular interpretation which is the basis of our view is
that which they call the multiple agent concept approach. The key notion
in that approach is that each agent has its own conception of which objects
qualify for membership in some putative set A, and it regards A as crisp,
and hence the two-valued characteristic function for A is agent-dependent.
In this paper we propose two additional constraints on such functions. The
constraints are derived from cognitive science, and to our knowledge their
significance as yet another account of a common variety of fuzzy sets has
not been recongized. In a sense our work may be regarded as a refinement
of the multiagent approach in Dubois, et al. (op. cit.) when a cognitive
component is added to the agents. The two cognitive constraints invoked
in this paper arise from the notions of prototypicality and convexity, which
we explain later. We assume, as in Dubois, et al., that there is a family of
agents which make classical (crisp) membership decisions. Also, in line with
their view we will aggregate agent decisions to form an overall decision on
set membership.

We wish to focus on those fuzzy sets that have a unimodal (also known as
convex in the fuzzy logic literature) characteristic function. So let us recall
what is a unimodal function2 on the reals.

Definition 1.1. A function f : R → R is unimodal if (i) there is some x
(called a mode3 of f) such that ∀y f(y) ≤ f(x), (ii) ∀u∀v u ≤ v ≤ x ⇒
f(u) ≤ f(v), and (iii) ∀u∀v x ≥ u ≥ v ⇒ f(u) ≥ f(v).

For such sets it turns out that the crisp set interpretation of each agent
in the family must satisfy two well-known cognitive principles. Moreover
the converse must hold, i.e., if a set is such that each agent in a family
views the set as crisp and also satisfies these two cognitive principles, then
the aggregated crisp characteristic functions will yield a unimodal fuzzy
set charateristic function. We now summarize the two cognitive principles
mentioned.

2Definition 1.1 is equivalent to the usual definition of a convex fuzzy function.
3If there is more than one mode, f has the same value on all of them.
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1.1. Prototypes

Rosch [10] proposed that natural concepts exhibit the prototype property.
A prototype is a most typical instance of the concept, but there are also
other instances that are less prototypical. Lakoff [8] accepted this proposal
and used it as a major theme in his book. A contemporary view of concepts
which have prototypes is that of Freund [3]. Rosch noted from experimen-
tal evidence that a concept such as “mother” has instances that are “most
typical” — and any competent user of language would agree that these in-
stances are mothers. This is not to say that typical instances are immutable,
for they may change with culture or over time. But at any point in time and
in a given culture, almost all will agree to the typicality of these instances.
For instance, a mother has to be a female and have children, raising them
in a family with their father. A less typical mother has adoptive children
only. Yet another less typical mother is a step-mother. An even less typical
mother than both may be a surrogate mother. Commonsense reasoning of-
ten starts by thinking about the most typical instances — the prototypes —
and then only considering less prototypical instances when necessary. This
is the essence of non-monotonic reasoning [1]. Lakoff (op. cit.) took the
Rosch thesis and developed it further to show that classical logic, with its
insistence on mathematical sets as extensions for predicates, cannot give an
adequate account of natural language semantics nor of cognition. The evi-
dence is therefore quite strong that natural concepts formalized as predicates
do not have classical extensions. It is interesting to note, that when subjects
are asked about instances that satisfy a predicate they often differ. It may
not be too far-fetched to imagine that these differences are responsible for
the non-classicality of the predicate, but still be consistent with classicality
for each subject.

1.2. Convexity

It was Hume [6] who first drew attention to the problems of induction. One
of the problems which he described had to do with a common justification
for an inductive inference, especially of the kind that is implicitly assumed
in practice — that because each element of a time sequence of observations
x1, x2, . . . , xn (where n is large) has a common property π, we (inductively)
infer that all future observations yet unseen will also enjoy property π. The
informal justification for this is an appeal to uniformity of nature. But then
this principle of uniformity itself appears to rely on a higher-order induction,
that nature has so far been seen to be uniform. From this and similar
argument Hume concluded that there is really no logical basis for induction.
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Much later Goodman provided a contemporary challenge for induction
that raised issues about choices of basic predicates for knowledge represen-
tation. This was his well-known Grue Paradox. A summary paraphrase
of it is as follows. Suppose the repeated past observations that emeralds
are green leads us to the inductive conclusion that all emeralds, including
ones so far unseen, are green. Consider the predicate grue(x) which means
that x is green before the year 2100 or x is blue thereafter. Then the two
sentences ∀x[emerald(x) → grue(x)] and ∀x[emerald(x) → green(x)] are
equally good as inductions for the present. If it is objected that “green”
and “blue” are more basic predicates than “grue” as the latter seems to
switch color at the year 2100, this objection may be answered by defining
another predicate bleen(x) that means x is blue before the year 2100 or x
is green thereafter. Then green(x) may be expressed as grue(x) up to the
year 2100 or bleen(x) thereafter. So from a logical perspective there is no
reason to favour green(x) over grue(x) in the induction. Nevertheless, it
is intuitive that “green” and “blue” are fundamental to human perception
whereas “grue” and “bleen” appear to be artifacts.

Gärdenfors [4] proposed a solution to the Grue Paradox using topological
notions that overlayed concepts. He argued that the kind of concepts con-
sidered to be “natural” by humans have topological dimensions that arise
from perceptual and cognitive bases that are grounded in our common phys-
iologies, etc. For instance, the way we perceive colors is determined by our
perceptual sensors and the way our brains process the received light signals.
Experiments have shown that the “color circle” is indeed fundamental to
all human color perception; while different languages may name contiguous
sectors within this circle differently, the classifications are consistent. A par-
tial depiction of the color circle is shown at the left end of the cylinder in
figure 1, with labels on its circumference marking the approximate regions
of the color named conventionally by the labels. Therefore, Gärdenfors (op.
cit.) argued, this color circle has a natural topology in which the distance
metric between two (color) points on an arc is the arc distance between
them. There are other topological dimensions, hue or intensity, that adds to
perceptual information leading to classifications like “light green” vs. “dark
green”, but for our discussion we do not need them. Gärdenfors then noted
that relative to the arc topology that the sets of points on the arc that are
classified as representing the same color are convex with respect to the arc
topology. In this instance convexity can be defined as follows. Let a col-
lection S of points on the circumference of the circle be such that if x and
y are in S and z is a point in between x and y on the circumference then
z must also be in S — then we call S convex (with respect to the arc
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topology). Then Gärdenfors further noted that Goodman’s Grue Paradox
resides in a setting that can be represented as shown in figure 1, showing
that in addition the color circle there is another topological dimension, that
of linear time which is another perceptual quality of humans4. The entire
topology of the setting of the Grue Paradox is then the product topology of
the color circle topology and the linear time topology. From figure 1 it is
clear that while “green” (or “blue”) are convex in this product topology, nei-
ther “grue” (dashed boundary) nor “bleen” (solid boundary) are. From this
and other examples Gärdenfors proposed that the concepts (predicates) that
are projectible, i.e., for which induction works, are those that have convex
extensions in the topologies of their natural dimensions.

Induction over time is not the only problem posed by some predicates.
The Sorites Paradox (op.cit) is one in which the induction is over some or-
dered sequence of values of the predicate argument. We recall one version
of it. Suppose we consider the predicate Heap(n) to mean “n grains of sand
is a heap”. Then supposedly noboby will regard just one grain of sand as
a heap, so we have ¬Heap(1). Now if ¬Heap(n) then intuitively adding
just one grain of sand will not result in a heap, so ¬Heap(n + 1). Then
by induction it is never possible to have any heap of sand however large n
gets. This is obviously absurd. Two solutions appear to be to give up induc-
tion, or to conclude that the predicate Heap(n) does not have a classically
defined truth value, e.g. it is a fuzzy predicate. There are numerous ways
to interpret this fuzziness. Paoli’s [9] treatment takes on the the standard
fuzzy approach to expose difficulties, and proposes lattice-theoretic systems
of truth degrees instead. Another is that of Yatabe and Inaoka [11] in which
the interpretation of Heap( ) may not be fixed for all time or all arguments
but can shift with either, so failing classical extensionality. They have some
resemblance to our thesis that perhaps the fuzziness of a predicate may be
attributed to differing crisp interpretations of it by different agents and it is
to this we shall now proceed.

2. Agents Making Decisions About Set Membership

A decision problem is about membership in some set S. Given a candidate x,
the problem is to decide x ∈ S (or x 6∈ S). If computation is involved, it boils
down to an effective procedure for realizing the characteristic function of S.

4That some metaphysical traditions like ancient Hinduism hypothesize time to be ul-
timately cyclic does not vitiate this perception of linearity as the Grue Paradox assumes
linear time.
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Given a family F of agents not all of them may agree on the result of such
a decision for some x. This may be due to a less than mathematically
precise description of S. Many concepts, that can be formalized more or
less as sets, are of that nature. This is not to say that the concept is vague
for any agent. Indeed it is possible for each agent to have its own precise
notion of what qualifies for membership in the set, and yet have disagreement
between rational agents about the membership of a particular instance x.
In particular it may be the case that each agent has its own crisp (classical,
two-valued) interpretation of the extension of S.

The following definition is intended to simplify our presentation of the key
points, and will be relaxed later in section 4.

Definition 2.1. Suppose U is the set of all elements in the domain of
discourse5. U is real-number representable if there is a bijection φ : U → R,
where R is the set of real numbers.

The idea is to make elements of S (or S̄) “concrete” so that an element x
is described by a real number. This is independent of whether S is viewed
as inherently fuzzy or as crisp. If x corresponds under this bijection to r
the decision problem for x ∈ S is equivalent to r ∈ φ(S). Therefore, how one
interprets S determines how makes the decision r ∈ φ(S). If S is regarded
as fuzzy, then it is possible for the grade of membership of x to be positive
for both S and its complement S̄, whence φ(S) and φ(S̄) will be fuzzy
(possibly overlapping) subsets of the reals. Obviously this is not possible for
agents that view S as crisp as in that case each agent i will have its own
interpretation of S and S̄ effectively (under φ) as disjoint subsets of R.

We now assume that U is real-number representable and drop reference
to the map φ by conflating an element x with its real number representa-
tion. Further, we use the notation Ri to denote agent i’s interpretation of S
in the reals.

Definition 2.2. S has the prototype property if there is an x such that
every agent i in F decides positively x ∈ S ( equivalently r ∈ Ri). Such an
x (or r) is called a prototype.

Definition 2.3. S has the convexity property if for all agents i and all x, y
and z in R such that x < y < z, if i decides positively for x ∈ Ri and z ∈ Ri,
then i also decides positively for y ∈ Ri.

5Candidates for membership in a set S and/or its complement S̄.
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Observation 1. In definition 2.3 the fact that the values x, y and z were
obtained via the function φ is not significant. Any other function ψ such
that ψ(u1) ≤ ψ(u2) if and only if φ(u1) ≤ φ(u2) will suffice.

Proposition 1. If S has both the prototype and the convexity properties
then
(i) ∩i∈FRi is non-empty
(ii) Ri is a connected interval in R for every agent i
(iii) The subset of all prototypes is a unique convex set, and is ∩i∈FRi.

Proof. Part (i) follows directly from definition 2.2 and part (ii) from defini-
tion 2.3. For (iii), if x and z are prototypes, then an arbitrary agent i decides
postively for x ∈ Ri and z ∈ Ri. Then for any y such that x < y < z, by
convexity of Ri agent i must decide positively for y ∈ Ri. But i is arbitrary,
so this holds for all agents. Moreover, suppose there is an interval [s, t] of
prototypes for some agent i. Let [s′, t′] be the largest interval containing [s, t]
such that s′ and t′ are prototypes. Then by convexity of prototypes every
number in this largest interval correspond to prototypes. By the prototype
property all agents decide positively for this interval, and at least one agent
decides negatively outside it. This largest interval is unique.

For S with the prototype and convexity property, by virtue of Proposi-
tion 1 we may as well represent the characteristic function of an agent j as
an interval Ij .

Definition 2.4. A set {Ij | j ∈ F} of intervals is nested if there is an
ordering j1, j2, . . . , jn of them such that Ij1 ⊆ Ij2 . . . ⊆ Ijn .

There is no a priori reason to believe that such a nesting of agent intervals
exists even though by Proposition 1 they must have non-empty intersection.
However, given the prototype and convexity property we now argue that
there is another family of agents respecting these properties but which have
nested intervals. The next definition formalizes this by considering different
families of agents which are indistinguishable with respect to the proportion
which decide positively for x ∈ S for all x. They are observationally identical
if their internal structures are not accessible.

Definition 2.5. Two equal cardinality families F and F ′ of agents are
input-output (I-O) equivalent if for each x the proportion of agents in F who
decide that x ∈ S is equal to the proportion of agents in F ′ who decide that
x ∈ S. (Therefore the proportion which decide negatively also agree.)
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If the two families are each finite but are not equal in cardinality, it
may be the case that proportions are often unequal even though very close.
There is a simple way to generalize definition 2.5 to recover its intention.
Suppose card(F ) = N and card(F ′) = M . Then we increase the cardinality
of F M -fold, and that of F ′ N -fold. Then, e.g., for a given decision x ∈ S if
originally K out of N in F decide positively, in the M -fold increased set this
number becomes K.M ; and similarly for F ′. The only complication arises
when in the increased set there is a proportion that cannot be “cancelled
out” to a smaller proportion in which the denominator is equal to the original
cardinality. However, this case can be treated as an interpolation.

Proposition 2. Given a family F of agents and a set S, let each agent
i have a characteristic function Fi for the set. If S has the convexity and
prototype property then there is an I-O equivalent family F ′ of agents with
charateristic functions that form a sequential nesting of intervals6.

The key idea behind Proposition 2 is illustrated by Figure 2. The same
figure also shows the idea behind the next proposition.

Proof. By Proposition 1 the intervals Ij of the agent family F overlap.
Denote explicitly the interval of agent j by [aj , bj ]. There is a point c in
the intersection ∩j∈F [aj , bj ]. Consider the intervals [aj , c] on the left side of
[aj , bj ] and [c, bj ] on the right side. Order the left side intervals in increasing
(or non-decreasing) length into the sequence [aj1 , c] ⊆ [aj2 , c] ⊆ · · · ⊆ [ajn , c],
and likewise the right side intervals into [ak1 , c] ⊆ [ak2 , c] ⊆ · · · ⊆ [akn , c]. It
follows that the new intervals [aj1 , ak1 ] ⊆ [aj2 , ak2 ] ⊆ · · · ⊆ [ajn , akn ] form a
nested interval sequence I ′l which are the intervals of the new agent family F ′.

I-O equivalence between these two families is easily argued. For any x
let xm be the number of intervals in F that contain it. If x ≤ c then by
construction xm is also the number of intervals among [aj1 , c] ⊆ [aj2 , c] ⊆
· · · ⊆ [ajn , c] that contain x. Again by construction this is also the number
of intervals in I ′ that contain x. The other case c ≥ x is similar.

The corollary below refers to the standard fuzzy set notion of an α cut
(see Klir and Yuan, op. cit.). Suppose we pick a real number c with 0 ≤
c ≤ 1. Then an α cut of a fuzzy function f is the set of all arguments x of
f such that f(x) ≥ c.

6It is convenient to call such a family of agents, as well as their individual crisp
sets, “nested”.
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Corollary 1. An n-member nested family with the prototype and covexity
properties defines a class of unimodal fuzzy set characteristic functions such
that these intervals are n of the α cuts of each of the functions.

Corollary 1 and Proposition 2 together show the following.

Proposition 3. The prototype and convexity properties imply a unimodal
fuzzy set characteristic function.

3. Unimodal Fuzzy Set Characteristic Functions

The converse of Propostion 3 is the following.

Proposition 4. Let G : R → [0, 1] be a unimodal fuzzy set characteristic
function for a fuzzy set Sf with mode at argument c ∈ R. Then for any
n ∈ N there is a set S with the prototype and convexity property and an
n-agent family F whose characteristic functions for S are n α cuts of G.

Proof. See figure 3 for the gist of the proof. More specifically let c1, c2, . . . ,
cn be any n α cuts of G. By unimodality (i) each ci is an interval, hence
convex, (ii) (without loss of generality we may assume that) c1, c2, . . . , cn are
successively nested and hence their intersection is non-empty. Each interval
can be regarded as an agent’s crisp interpretation of the set. Intervals are
convex, and their non-empty intersection are the prototypes.

4. Generalizations

Here we consider two generalizations. The first is that sometimes fuzzy
charateristic functions are not unimodal. The second is that candidates for
membership in a fuzzy set may not have a representation in R but in some
n-fold product of R.

For the first case Propositions 3 and 4 imply the following observation.

Observation 2. If a fuzzy set S has a bimodal characteristic function with
modes at x and y, the set S can be regarded as the union of two sets S1 and
S2, with x as a prototype for S1 and y as a prototype for S2.

Observation 2 generalizes to multimodal functions, and has applications
in ontology design where “basic” predicates are sought — S1 and S2 above
are more basic than S. This simple idea has interesting ramifications in
the selection of concepts that underlie ontology choice. Typically there are
several alternative designs that are viable for a domain of application, each
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having its own proposed basic predicates that correspond to basic concepts.
If it is possible to generate random instances of a chosen predicate, an ex-
perimental setting may be devised to ask subjects familiar with the domain
to decide (classically) if the instances belong to the predicate, i.e. are in
their (crisp) extension, or otherwise. Each subject is thus an agent. Using
the approach outlined here, if the resulting aggregated membership function
is multimodal, it suggests that the predicate is not in fact basic, and should
be decomposed into its unimodal components. Each alternative design pro-
posal can be subject to such empirical testing to expose the collection of the
“true” basic concepts that they connote.

For the second case we refer to figure 4 when the representation of the
domain U is a pair of reals in R × R. In that figure we sketch the a (two-
dimensional) unimodal characteristic function of a fuzzy set S. An α cut is
shown as the dotted section. It should be clear from this how one can proceed
to generalize the characterizations in the sections to such cases, including
two-dimensionsional versions of the notions of prototypes and convexity for
agents. For instance, in figure 4 the dotted section α cut is an agent’s
crisp view of the set S, and it is convex. The prototype is the point (x, y)
which is the projection of the mode in the unimodal function. The further
generalization to multi-dimensional representations is straightforward.

Finally, one can combine the two cases above to deal with multi-dimen-
sional multi-modal functions in the obvious manner.

5. Conclusion

We have shown that it is possible to reconcile a fuzzy set S that has a
unimodal characteristic function with crisp interpretations of S that satisfy
the prototype and convexity properties. One way to summarize this view is
to say that such a fuzzy set can be viewed as if it is being crisply interpreted
by a family of agents which respect a prototype and also set convexity. We
do not make any ontological claim beyond this.

There is no attempt here to see whether the alternative view of agent
families, in which each agent uses classical inference, can provide a substrate
for fuzzy inference when restricted to reasoning about unimodal fuzzy sets.
This is a possible next step.
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Figure 1. Topologies for the Grue Paradox
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