
A Configuration System Architecture
Supporting Bit-stream Compression for FPGAs

Marco Della Torre†, Usama Malik†‡and Oliver Diessel†‡

†School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
‡Embedded, Real-time, and Operating Systems (ERTOS) Program,

National ICT Australia
{marcodt, umalik, odiessel}@cse.unsw.edu.au

Abstract. This paper presents an investigation and design of an en-
hanced on-chip configuration memory system that can reduce the time
to (re)configure an FPGA. The proposed system accepts configuration
data in a compressed form and performs decompression internally. The
resulting FPGA can be (re)configured in time proportional to the size
of the compressed bit-stream. The compression technique exploits the
redundancy present in typical configuration data. An analysis of config-
urations corresponding to a set of benchmark circuits reveals that data
that controls the same types of configurable elements have a common
byte that occurs at a significantly higher frequency. This common byte
is simply broadcast to all instances of that element. This step is followed
by byte updates if required. The new configuration system has modest
hardware requirements and was observed to reduce reconfiguration time
for the benchmark set by two-thirds on average.

1 Introduction

The high latency of configuration places a significant limitation on the applica-
bility and overall performance of Field Programmable Gate Arrays (FPGAs).
This limit is most evident when reconfiguration is performed as part of the
overall processing mechanism, such as in dynamically reconfigurable systems.
In this paper the background, investigation and design of an enhanced config-
uration system to reduce this limitation is presented. Our results demonstrate
significant performance improvements over currently available devices. The new
configuration system reduces the time required to configure an FPGA for typical
circuits, requires little additional hardware to that available in current models,
and therefore increases the possible applications of FPGAs, while enhancing the
performance of systems in which they are already employed.

The technique presented in this paper reduces the (re)configuration time of
an FPGA circuit by reducing the amount of configuration data that needs to be
loaded onto the device via its configuration port. Data compression is achieved
by exploiting the regularities present within typical configurations. An analysis
of a set of benchmark circuits from the DSP domain reveals that fragments of

configuration data controlling the same type of FPGA resources tend to be sim-
ilar with at least one byte occurring with a high frequency. This characteristic of
typical configurations suggests the following compression technique: partition the
configuration data into sets that control the same type of resources in the device;
broadcast the most frequent byte in each set on all instances of that resource;
then selectively load any bytes that differ from the byte previously broadcast.
Using this technique, we observed a two-third reduction in reconfiguration time
for the benchmark set.

Techniques to compress FPGA bit-streams have been widely studied. The
method in this paper differs mainly in two respects: it shows that a broadcast-
based compression technique can be applied on the configurations of a high
density FPGA and, in contrast to the previously published methods, it requires
significantly less hardware resources to decompress and distribute the data in
the configuration memory. These issues are discussed in Section 2. We follow
that with an analysis of the configuration data corresponding to typical DSP
circuits, which motivates the broadcast-based configuration system presented in
Section 4. The proposed model is analysed in Section 5, followed by conclusions
and a reference to future work.

2 Related Work & Background

The main focus of this research is on techniques that reduce the reconfiguration
time of an FPGA by reducing the amount of configuration data that must be
transfered to the memory. This differs from those techniques which compress
configuration data in order to reduce the storage requirements and perform de-
compression before data is loaded into the memory array (e.g. [3]). Apart from
compression, architectural techniques such as multi-context FPGAs have also
been proposed as a solution to high reconfiguration latency (e.g. [9, 18]). These
methods, however, demand significant memory resources. Other proposals, such
as pipelined [17] and wormhole [15] reconfiguration are only applicable to spe-
cialised FPGA models.

Within the work on compression we identify two categories: the methods
in the first category propose special memories that directly accept compressed
data. The XC6200 was an earlier FPGA of this type and offered a wildcard
facility whereby several registers in a column could be written with the same
data at once [20]. Luk et al. showed that wildcarding can provide near constant-
time reconfiguration for highly regular circuits but can be inefficient for irregular
cases [10]. Hauck et al. presented an algorithm that uses wildcard effectively and
reduced reconfiguration time for a set of benchmark circuits to almost a quarter
[2].

As FPGAs grew in density, the RAM-style configuration memory had to be
compromised since it requires significant hardware resources. The configuration
memory in Virtex is implemented as a large number of shift registers that can
be individually addressed [19]. Several researchers have investigated compres-
sion techniques for this model and achieved 20-85% reduction in bit-stream size

for various benchmarks. Dandalis et al. studied a dictionary-based compression
technique and found that it demands significant on-chip memory to store the
dictionaries [1]. The method presented by Li et al. is LZ-based, which has mod-
est on-chip memory requirements but requires a large number of parallel wires
across the device [8]. Both of these methods are therefore viewed as impractical
for large devices. Recently, Ju et al. have described algorithms that exploit both
inter- and intra- configuration regularities [14]. However, the required hardware
decompressor is not detailed.

Our previous research efforts focused on reducing the amount of configuration
data that must be loaded for a circuit by making use of configuration fragments
that are already present on-chip [11]. An analysis of a set of benchmark circuits
showed that significant configuration re-use is possible if the memory allows
byte-level access to its registers. However, for a large device, the RAM style,
fined-grained access to configuration memory presents with significant address
data. Moreover, a RAM style implementation is costly in terms of the wires that
are needed to transfer data directly to byte-sized registers.

The above issues were discussed in [12] and a new configuration architec-
ture was presented that allowed byte-level access to configuration memory at
a significantly lower cost in terms of the address and wiring overheads. The
proposed system implemented a strategy where on-chip data was read into an
internal buffer, was modified and finally written back to its destination. The
method presented in this paper is an attempt to overcome the increased power
consumption incurred due to excessive data movement in the read-modify-write
strategy. Moreover, the current memory does not require the user to know the
previous configuration state of the FPGA. This architecture is partly inspired
by the XC6200’s wildcarding mechanism. The main contribution of the present
work is that it shows the benefits of such a model, even for high density FPGAs,
at negligible additional hardware cost.

3 Empirical Analysis

Compression techniques depend upon the regularities that exist within input
data. This section provides an empirical analysis of the frequency distribution
of the data within a typical configuration. We first present our assumed device
model, a Virtex FPGA [19]. This device was chosen because it is widely used in
academia and industry alike. Moreover, Virtex provides a low-level interface to
its configuration data, which aids analysis [5].

A Virtex device consists of c columns and r rows of logic and routing re-
sources segmented into so-called configurable logic blocks (CLBs). There are 48
configuration shift-registers per column which span the entire height of the de-
vice. Each register configures a portion of a column of the FPGA resources. The
data that resides in a register is called a frame, which is the smallest unit of
configuration. The number of bytes in a frame, f , depends on the number of
rows in the device (e.g. for an XCV100, c = 30, r = 20 and f = 56).

The user supplies the configuration data through an 8-bit wide input port at
a configuration clock frequency of at most 66MHz. If the overhead data required
due to pipelining of the configuration process is neglected, the time needed to
(re)configure the device is directly proportional to the amount of data that is to
be transferred to its configuration memory. For an XCV100, a complete configu-
ration consists of 97,652 bytes, which can be loaded in 1.5ms. The configuration
delay for the largest member of the family is at least 11.6ms. When an FPGA
is reconfigured to implement the various phases of a high-performance, iterative
algorithm, e.g. real-time image processing, the size of these overheads can render
dynamic reconfiguration infeasible. Low latency reconfiguration techniques are
therefore essential to make use of this method.

The process to load configuration data onto a Virtex device uses a DMA
approach and works as follows. Load the address of the first frame and the
number of consecutive frames that are to be updated. Next, load the required
frames onto the device byte by byte. Finally, supply a pad frame in order to
flush the internal pipeline. This process needs to be repeated for each block
of contiguous frames. The limitations of this addressing model for fine-grained
access to the configuration memory were discussed in [12].

Several researchers have considered the problem of re-ordering Virtex frames
so as to exploit the similarity between successive frames [8, 14]. We ran several
experiments in which various frame orderings were considered. For each ordering,
we determined the number and frequency of the unique bytes in the successive
frames as this impacts upon any compression technique. Not surprisingly, maxi-
mum redundancy in data was observed when the ordering was such that frames
at the same offsets within logic columns, which configure the same resources,
were considered together. We describe this experiment in detail.

3.1 Experiment 1

Ten common circuits from the DSP domain were considered (Table 1). Table 2
also provides some parameters of the technology-mapped netlists of these circuits
indicating their resource requirements. These high-level parameters were used
because the CAD tool does not completely report on the low-level utilisation of
the device (e.g the number of programmable interconnect points used).

These circuits were mapped onto an XCV100 using ISE5.2 ([4]). This device
was chosen because it was the smallest Virtex that could fit all circuits. The
total number of 4-input look-up-tables (LUTs) in an XCV100 is 2,400 and the
number of bonded IO blocks is 180. Thus, most of the circuits used the available
resources sparsely. The circuits were synthesised for minimum area, and the
configuration files corresponding to these circuits were generated. These bit files
were converted into ASCII for further processing using JBits [5]. In this analysis
only 1440 (48×30) frames corresponding to the CLB and switch configurations
were considered. The remaining 170 frames in the device correspond to the RAM
and IO blocks and are not organised into bundles of 48. In order to simplify our
analysis, these were initially ignored.

In the next step, each configuration was partitioned into 48 sets. The ith,
1 ≤ i ≤ 48, set consisted of frames that are located in the ith position within
each column. We refer to these frames as having the same column offset. Each
set, containing 30 frames, was further partitioned into 56 subsets such that the
jth subset contained the jth byte from each frame. The size of each of these
subsets was thus 30 bytes. The individual bytes occurring in each subset were
examined and their frequency within the subset recorded. From this, the average
number of unique bytes and their average frequency distribution was determined.

The results are shown in the second column of Table 1. The second column
lists the average number of unique bytes at a particular byte position within all
frames at the same offset within the CLB columns. The next two columns list
the highest and second highest frequencies recorded for individual bytes in these
sets. The results show that a single byte value has a frequency of more than 20
on average. In other words, across all frames with the same column offset, at the
same byte offset within the frame, just a few bytes values occur on average, and
just one of these dominates each set. It was also found that these common bytes
differ from row to row. It should be noted that DCT and IIR, the two largest
circuits, had much less regularity in their configuration data.

A high level of regularity was observed in the above experiment because
frames at the same column offsets configure the same types of resources. By
performing similar experiments as above, it was found that frames at different
column offsets did not exhibit high degrees of similarity. As a consequence, the
architecture outlined in the next section considers frames at the same column
offsets as a unit. As for the non-CLB frames, it was found that consecutive
frames contain the greatest similarity.

Circuit Experiment 1 Experiment 2
#Unique Highest 2nd Highest #Unique Highest 2nd Highest

bytes Freq. Freq. bytes Freq. Freq.
ammod [4] 3 27 1 7 16 5
bfproc [13] 3 26 1 7 16 5
ccmul [13] 3 27 1 7 16 5
cic3r32 [13] 3 27 1 7 16 5
cosine LUT [4] 4 26 1 7 15 5
dct [4] 6 20 3 11 13 4
ddsynthesiser [13] 2 28 1 6 16 5
dfir [4] 2 28 1 6 16 5
fir srg [13] 2 28 1 7 16 5
iir [13] 5 22 3 9 15 4

Table 1. Results for Experiments 1 & 2.

3.2 Experiment 2

The previous experiment attempted to understand byte distributions across the
device. This experiment attempts to find regularities vertically within the frames.
The objective of this experiment was to determine the average number and
distribution of the unique bytes within the frames as it is this similarity that
has previously been exploited in [8].

The ten configurations were considered again. Each frame in each configura-
tion was considered. The number of unique bytes in each frame was considered
and the frequency table corresponding to each frame was determined. The results
are shown in the second column of Table 1, which shows that while regularities
exist within the frames, they are not as pronounced as across the frames. This
result is also expected as a frame contributes 18 bits, as opposed to some multiple
of 8 bits, to each row of resources [19].

3.3 Summary

The results of the above experiments can now be summarised: for typical Virtex
configurations, CLB frames at the same column offsets are likely to contain the
same data at a particular byte offset with a single common byte occurring with
a high frequency within the frames; consecutive non-CLB frames have greatest
similarity; and, for the same configurations, intra-frame regularity is significantly
less than inter-frame regularity.

4 A New Configuration System Architecture

The proposed scheme is divided into two stages. The first stage configures the
non-CLB frames (IOB, BlockRam Interconnect and Centre frames). The second
stage configures the CLB frames. During the CLB stage, configuration data is
transferred as a block to sets of frames with the same offset within the CLB
columns, whereas in the non-CLB stage, the data is transferred as a block to
adjacent frames. In the CLB stage, the most common byte is broadcast to every
frame in the current set, followed by byte updates to those locations that differ
from the broadcast data. The approach followed differs from the current Virtex
configuration method, in which adjacent frames are loaded one after another.
The system proposed here allows commonality in the blocks of data being sent
to frames to be eliminated. This section presents the new configuration sys-
tem architecture with an XCV100 device in mind. The next section includes a
discussion of the scaling of this model to larger devices.

Data is buffered from the byte-wide input port and then transferred to the
configuration memory in 30-byte packets. We use the term byte set to describe
these packets, which are a basic unit of configuration in the proposed design.
Although the design described in this section caters for 32 bytes in a packet, our
template device only requires the use of 30 at a time.

A byte set is prepared by first supplying the most commonly occurring bene-
ficiary byte, which is broadcast to all 30 locations in the byte set. After this, the

user specifies a 4-byte modification vector, in which each bit indicates whether
a byte in the byte set is to be modified or not. If any bytes are to be modified,
the user inputs these in sequence to complete loading the byte set. In XCV100,
a byte set can thus be prepared in as few as 5 cycles (1 for the beneficiary byte
and 4 for the modification vector) and as many as 34 cycles (29 additional cycles
for the non-beneficiary bytes).

Once a byte set is prepared it is distributed throughout the device where
the configuration data is shifted into the appropriate frames in parallel. In order
to completely configure the selected frames, 56 byte sets, corresponding to the
number of bytes within a frame, must be prepared and shifted to the frame
registers. These 56 byte sets are subsequently referred to as a frame set . For all
Virtex family members, 48 frame sets are needed to completely configure the
CLB columns and 6 frame sets are needed to configure the non-CLB frames.

Partial configuration is a method for reconfiguring portions of an FPGA
instead of the complete device. In Virtex devices, users typically reconfigure
one or more vertical bands of the device in order to swap one core and its
interconnect for another. The Virtex family supports partial configuration by
allowing contiguous frames within a range of frame addresses to be loaded. In
this proposal, the user is required to load those frame sets that “touch” the
configuration registers spanned by the core that is to be loaded. Usually this
will mean all 48 frame sets must be loaded.

To support partial configuration, a couple of mechanisms provide finer con-
trol over which parts of the configuration memory are updated and thus over
how much data must be loaded. First, the range of frame set addresses that is to
be loaded is specified by giving an initial frame set address (FSAi) and a final
frame set address (FSAF). Second, prior to loading each frame set, a 4-byte
FSAwe vector, which enables writing to the individual frames within the set,
must be loaded. For example, if some incoming core requires that the configu-
ration memory of frames 0–15 and 32–47 in column 12 and frames 12–23 and
36–39 of column 13 be updated, we would load two frame set ranges, the first
spanning frame sets 0–23, and the second frame sets 32–47. For frame sets 0–11,
all bits of the FSAwe vector would be cleared except for the 12th, and for frames
sets 12–15 the 13th bit would be asserted as well, then the 12th bit would be
cleared for frame sets 16–23, and so on.

4.1 Main Controller

The configuration system we propose consists of two components: a Main Con-
troller and an Addressing and Data Routing Unit (ADRU) (Figure 1). These
components are used to organise and distribute the configuration data.

The main controller is the interface between the configuration data input
port and the ADRU. The configuration port is assumed to be one byte wide like
all Virtex devices. The main controller is responsible for the assembly (decom-
pression) of byte sets prior to their distribution to the configuration memory.
The main controller also stores configuration parameters and status information.
Configuration parameters include FSAi, FSAF and the FSAwe vector, as well

0 1 47 0 1 47 0 1 47

weFSA [0]

M
ai

n
C

on
tr

ol
le

r

Byte Set Buffer : 30B

Modification Vector : 4B

Beneficiary Byte: 1B

Byte Set : 30B

Configuration Port8

Addressing and Data Routing Unit

Data ByteData Byte FSAcurrentData ByteFSAcurrent FSAcurrent

FSA [1] FSA [29]we we

293210

FSAi/FSAcurrent:1B

FSAF : 1B

FSAWE : 4B

C0 C1 C29

Fig. 1. Configuration memory system overview.

as the modification vector. Status information includes the current frame set
address FSAcurrent (the incremented FSAi), the number of byte sets within the
frame set remaining to be prepared (between 0 and 56) and the configuration
stage (non-CLB or CLB).

The main controller consists of three main sub-components: the status con-
troller, a 30-byte byte set register, and a byte set buffer of equal size. These
maintain the status information, the byte set being assembled, and a copy of the
previously assembled byte set while it is being broadcast to the configuration
memory via the ADRU. In order to assemble a byte set, the beneficiary byte is
broadcast to a constant number (8) of byte set registers per cycle while the 4
byte modification vector is being loaded. The controller then loads and routes
to the corresponding byte set register entry an additional byte of configuration
data for each bit that is set in the modification vector. The overall operation of
the main controller is illustrated in the state diagram of Figure 2. The status
controller performs the functions described within the unshaded region of the
diagram and the byte set register implements the functions within the smaller
shaded area.

The control and operation of the byte set buffer, not shown in the state
diagram, occurs in parallel with the status controller. While the status controller
decrements the number of bytes left in the frame set and checks whether it is
equal to zero, the previously prepared byte set is transferred from the byte
set register to the byte set buffer. While the operation of the main controller
continues to prepare the next byte set the byte set buffer is free to transfer the
previous byte set to the configuration memory of the device using the ADRU.

4.2 Addressing and Data Routing Unit

The ADRU is responsible for transferring configuration data from the byte set
buffer to the configuration memory elements on the device (Figure 3). Since a
byte set can be prepared in as few as 5 cycles, the ADRU must transfer 30 bytes
to the configuration memory within this period. In order to minimise the bus

Fig. 2. Main controller state diagram.

width of the ADRU, the proposal envisages transferring 6 bytes per cycle. A
3-bit column group select signal indicates which 6-byte fragment is currently
being transferred. When the byte set register unit is accepting the beneficiary
byte of the next byte set, the ADRU copies the first 6-byte section of the byte
set buffer to the device. The ADRU uses the configuration stage, FSAcurrent and
column group select signals to determine how the data is routed to the device.
The FSAwe vector selects which bytes are actually written to the device, thus
disabling any frame registers not being configured.

5 Analysis of the System

Hardware requirements

The hardware requirements of the proposed configuration system are modest and
comparable with those currently present in the Virtex family. The main change
is to have a somewhat wider data distribution network in the ADRU — up to

A
D

R
U

B
yt

e
Se

t B
uf

fe
r

C
ro

ss
 d

ev
ic

e
tr

an
sf

er

0 1 2 47

3

6

48

Column Group Select

Configuration Data

Frame Routing Network

Column Data

C
on

fi
gu

ra
tio

n
D

at
a8

6

48

W
ri

te
 E

na
bl

e
(f

ro
m

 F
SA

 d

at
a)

w
e

FSA
current

cu
rr

en
t

FS
A

1

Fig. 3. Address and data routing unit arrangement. Note: just one column is depicted
in this diagram.

8 bytes of data in parallel (when fully expanded, as outlined below), compared
with 4 bytes — and the ability to shift data into 8 frame registers in parallel
(when expanded — for XCV100, 6 frames are targeted). Initial modelling of
the area and power needs of our design using Design Compiler from Synopsis
suggest power consumption will increase by a factor of about 1.5 over the current
Virtex system during configuration, but will be compensated for by having the
configuration period reduced by a factor of 2 to 3. This estimate is based on
estimates carried out on the system described in [12], which proposes two buses
rather than one, and accessed each configuration register twice per cycle in order
to be able to modify the configuration currently on chip.

The timing of the modification vector update unit was considered to be the
critical element within the controller design. This unit employs successive bit-
clearing logic to route non-beneficiary bytes to the byte set register and to test
for the need to load further byte set data. This logic is described by the left
pair of states in the shaded region of the state diagram depicted in Figure 2.
Our implementation of the successive bit-clearing logic uses a chain of two-input
XOR gates, 2 per modification vector bit, and thus has a a delay proportional to
the size of the modification vector. With current 90nm process technology, the
delay for a 32-bit vector was found to be 1.6ns and is thus insignificant.

To gauge the delay of the ADRU we assumed the propagation of data across
the device could be supported at the 66MHz configuration clock speed currently
used by Virtex. Should this not be possible, the data transfer could easily be
pipelined.

Benchmark performance

In order to evaluate the performance of our proposed configuration system we
compared the amount of data currently needed to configure the circuits described

in Section 3 on a Virtex XCV100 with the amount of data needed using our
scheme. This data corresponds directly to the number of configuration clock
cycles needed to load the configuration bit-stream and to configure the device.
Refer to Table 2.

The third and fourth column from the right in this table list the total num-
ber of bytes, including overheads, that are needed with our proposal and the
percentage reduction in bit-stream size. On average, just over 32,000 bytes are
needed to configure each circuit while 97,652 bytes are needed using the current
XCV100 configuration interface. This is largely due to the way the circuits were
mapped, since each required a complete configuration of the device. Primarily
this was due to nets crossing the entire device. It would perhaps be more fair
to compare the methods when the circuits are compacted into as few columns
as possible. Nevertheless, the results are encouraging for most circuits, with an
average reduction in configuration bit-stream size and latency of 67.2%.

We are concerned that the results for the DCT and IIR circuits indicate
less regular, larger circuits will cause significant loss of benefit from compres-
sion, particularly as the device utilisation approaches 100%. We are currently
investigating this effect with high-stress circuits.

Circuit #LUTs #IOBs #Nets Modification Random
Vector Access

Bit-stream Bit-stream
Size % Red Size % Red

ammod [4] 271 45 990 28,412 70.9 30,960 68.3
bfproc [13] 418 90 1,347 30,229 69.0 34,140 65.0
ccmul [13] 262 58 905 27,179 72.2 28,490 70.8
cic3r32 [13] 152 42 736 26,667 72.7 27,450 71.9
cosine LUT [4] 547 45 2,574 31,710 67.5 37,580 61.5
dct [4] 1,064 78 5,327 54,315 44.4 71,394 26.9
ddsynthesiser [13] 70 44 759 25,704 73.7 25,214 74.2
dfir [4] 179 43 782 26,262 73.1 26,668 72.7
fir srg [13] 216 16 726 26,143 73.2 26,480 72.9
iir [13] 894 62 2,907 42,011 57.0 57,108 41.5
Average 32,079 67.2 36,548 62.6

Table 2. Bit-stream sizes in bytes (including overheads) and percentage re-
duction in bit-stream size for benchmark circuits using the proposed scheme
(Modification Vector) and an alternative (Random Access).

Random access byte set modification

The proposed configuration system has a relatively high fixed overhead of 12,316
bytes for a complete configuration. This overhead, comprising byte set modifi-

cation vectors, frame write masks and frame set ranges, may be too high for
partial reconfiguration. To partially configure a single column of the device in
which all 48 frames are touched results in 48 frame sets having to be written
with an overhead of 10,754 bytes.

We therefore examined the performance of an alternative scheme in which
non-beneficiary bytes are addressed using a 1-byte address for each byte to be
modified in the byte set. This approach should benefit byte sets in which the
number of bytes that differ from the broadcast byte is less than four. For the
complete configurations under test, we found that this typically led to a net
increase in bit-stream size. See the right pair of columns in Table 2.

It is expected that this method will have a benefit when the number of
non-beneficiary bytes is less than 4 on average. This is more likely for updates
covering a small number of columns but will be less likely as the utilisation
or the functional density of the frames covered increases. Another factor to be
considered with this alternative is that a byte set could be ready for distribution
every 2 cycles: just 1 beneficiary byte and 1 end of byte set marker may suffice
to specify a complete byte set of 30 bytes. With the XCV100 device, up to 15
frames would therefore need to be configured per cycle in order to maintain the
configuration bandwidth at the input port.

Scalability

The proposed configuration method could be adapted for use in larger devices by
repeating and/or expanding the design. The number of frames in each column is
fixed for all Virtex series devices, and so need not be considered. Similarly, the
number of non-CLB columns in Virtex series devices is fixed. However, there are
96 columns of CLBs in the largest (XCV1000) device, and each frame contains
156 bytes. This represents a significant increase over the XCV100 device in the
amount of data to be transferred. The increase in the number of bytes per frame
only affects the size of the counter controlling the current byte position, increas-
ing it from 6 bits (56 bytes per frame) to 8 bits (156 bytes per frame). However,
the large increase in the number of CLB columns needs further consideration.

Repetition refers to adding one CLB configuration stage for each additional
set of 32 CLB columns. This strategy necessitates that the controller keep track
of the current CLB configuration stage. For example, in the XCV1000 there
would be 1 non-CLB stage and 3 CLB stages. The CLB configuration stage is
broadcast along with the configuration data in order to configure the correct
subset of columns. If necessary, the data bus would be pipelined to cope with
delays in broadcasting the configuration and control data across the chip.

Expansion refers to the enlargement of existing structures to avoid the use
of multiple CLB configuration stages and the need to transfer additional con-
figuration stage data. The Virtex XCV1000 could be implemented using a byte
set size of 96. The modification vector system would then have a latency of ap-
proximately 96 gate delays. In 90nm process technology this critical path length
allows a configuration clock frequency of approximately 200MHz, which at more
than twice the speed of current Virtex devices, is adequate.

The broadcast of the beneficiary byte does not pose a problem in an ex-
panded system since at most just 8 bytes must be written to per cycle. The
number of bytes needing to be transferred from the byte set buffer to the device
would be adapted to 8 bytes/cycle for large devices and therefore does not add
prohibitively to the hardware requirements. Accordingly, the number of FSAwe

bits needing to be broadcast increases from 6 to 8. Since each of these 8 bytes
could be written to any of 12 sets of contiguous columns, the size of the column
select group increases to 4 bits. The 200% increase from the XCV100 to the
XCV1000 in the number of configuration columns thus necessitates an expan-
sion of the data bus width from 57 to 76 bits. Indeed, if the configuration data
is ignored, the overhead in addressing data increases from 9 to just 12 bits.

Details on the configuration architecture employed in the latest Virtex-4 se-
ries of FPGAs offered by Xilinx are vague. We understand these devices may
be thought of as a small, vertically aligned stack of enlarged Virtex-1 devices.
The configuration memory is thus partitioned into a small number of wide hor-
izontal bands or pages corresponding to the smaller units comprising the stack,
and Virtex-4 frames are partitioned into a small number of sub-units that are
individually addressable. We see our approach as being applied at this sub-unit
level, with a shared or separate controller for each page of sub-frames.

6 Conclusions and Future Work

This paper has presented an analysis of configurations corresponding to common
DSP circuits on a Virtex FPGA. It was found that frames at the same column
offsets are likely to contain the same data with one byte occurring with a high
frequency at the same byte offset within the frames. A new configuration system
was developed to exploit this phenomenon. The architecture simply broadcasts
the most frequent byte on selected frames followed by updates to individual
bytes where needed. The new design reduced the (re)configuration time for the
benchmark set by two-thirds with modest hardware additions.

In the future, we would like to extend our method to include configuration
caching (studied by many researchers e.g. [7, 16, 6]). We are currently investi-
gating the possibility of caching the update bytes in our method. This is likely
to further reduce the (re)configuration time especially for dense circuits.

Acknowledgements: National ICT Australia is funded through the Australian
Government’s Backing Australia’s Ability initiative, in part through the Aus-
tralian Research Council.

References

1. A. Dandalis and V. Prasanna. Configuration compression for FPGA-based embed-
ded systems. ACM International Symposium on Field-Programmable Gate Arrays,
pages 187–195, 2001.

2. S. Hauck, Z. Li, and E. Schwabe. Configuration compression for the Xilinx XC6200
FPGA. IEEE Transactions on Computer Aided Design on Integrated, Circuits and
Systems, Volume 18 Number 8, pages 1237–1248, 1999.

3. M. Huebner, M. Ullmann, F. Weissel, and J. Becker. Real-time configuration code
decompression for dynamic FPGA self-reconfiguration. Reconfigurable Architec-
tures Workshop, 2004.

4. ISE Version 5.2. Xilinx Inc., 2002.
5. JBits SDK. Xilinx Inc., 2000.
6. I. Kennedy. Exploiting redundancy to speedup reconfiguration of an FPGA. Field

Programmable Logic, pages 262–271, 2003.
7. Z. Li, K. Compton, and S. Hauck. Configuration cache management techniques for

FPGAs. IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 22–36, 2000.

8. Z. Li and S. Hauck. Configuration compression for Virtex FPGAs. IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, pages 2–36, 2001.

9. X. Ling and H. Amano. WASMII: A data driven computer on a virtual hardware.
IEEE Symposium on Field-Programmable Custom Computing Machines, pages 33–
42, 1993.

10. W. Luk, N. Shirazi, and P. Cheung. Compilation tools for run-time reconfigurable
designs. IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 56–65, 1997.

11. U. Malik and O. Diessel. On the placement and granularity of FPGA configura-
tions. International Conference on Field-Programmable Technology, pages 161–
168, 2004.

12. U. Malik and O. Diessel. A configuration memory architecture for fast Run-
Time-Reconfiguration of FPGAs. International Conference on Field Programmable
Logic, 2005.

13. U. Meyer-Baese. Digital signal processing with Field Programmable Gate Arrays.
Springer, 2001.

14. J. Pan, T. Mitra, and W. Wong. Configuration bitstream compression for dynami-
cally reconfigurable FPGAs. International Conference on Computer Aided Design,
pages 766–773, 2004.

15. A. Ray and P. Athanas. Wormhole run-time reconfiguration. International Sym-
posium on Field-Programmable Gate Arrays, pages 79–85, 1997.

16. S. Sadhir, S. Nath, and S. Goldstein. Configuration caching and swapping. Field-
Programmable Logic and Applications, pages 192–202, 2001.

17. H. Schmit. Incremental reconfiguration for pipelined applications. IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, pages 47–55, 1997.

18. S. Trimberger. A Time-Multiplexed FPGA. IEEE Symposium on FPGA-
Programmable Custom Computing Machines, pages 22–28, 1997.

19. Virtex 2.5V Field Programmable Gate Arrays Data Sheet, Version 1.3. Xilinx,
Inc., 2000.

20. XC6200 Field Programmable Gate Arrays, version 1.10. Xilinx, Inc., 1997.

This article was processed using the LATEX macro package with LLNCS style

