
Optimal Algorithms for Constrained Recon�gurable Meshes

B� Beresford�Smith O� Diessel H� ElGindy

Department of Computer Science
The University of Newcastle

Callaghan NSW ����
AUSTRALIA

fbbs� odiessel� hossamg�cs�newcastle�edu�au

Abstract

This paper introduces a constrained recon�gurable
mesh model which incorporates practical assump�
tions about propagation delays on large sized buses�
Simulations of optimal recon�gurable mesh algo�
rithms on the constrained recon�gurable mesh model
are found to be non�optimal� Optimal solutions
for the sorting and convex hull problems are then
presented� For the problems investigated� the con�
strained recon�gurable mesh model predicts a con�
tinuum in performance between the recon�gurable
mesh and mesh of processors architectures�

� Introduction

The recon�gurable mesh architecture is a two di�
mensional array of processors in which each pro�
cessor is wired to its four neighbours� Each proces�
sor has control over a set of short�circuit switches
which allow the inter�processor wires to be con�
nected together to form a communication bus� All
processors participating in the bus con�guration
have access to the data available on it� thereby re�
ducing the communication diameter of the array to
a constant �refer to �	� 
� for a detailed description
of this parallel model of computation��

Since the �rst papers �
� 	��� research on the
recon�gurable mesh architecture has gained consid�
erable momentum and has also received some criti�
cism� A number of models have been proposed� and
various techniques have been introduced to help
develop constant running time algorithms for image
processing� geometric and graph theoretic problems
�refer to ��� 	� 
� for a survey of the various models
and algorithms�� Recent examples include constant
time algorithms for sorting n numbers ��� �� and
for determining the convex hull of n planar points
�	�� 		��

A common feature of the various recon�gurable
mesh models is the assumption that a packet of
data can be broadcast in constant time on a bus
component independent of its size or length� This
feature has attracted criticism of these models� and

cast a shadow of doubt on the feasibility of imple�
menting a massively parallel machine based on a
recon�gurable bus system�

Investigation of bus delays ��� 	
� has indicated
that the broadcast delay is small� but that it cannot
be correctly modeled by a constant independent of
the bus size� In this paper we report on our study
of a new approach to coping with bus delay and
its incorporation into the design of algorithms for
recon�gurable meshes� The main idea is to model
the propagation delay on a bus�unit� by a constant�
and to only permit the class of algorithms� denoted
by Ak� that con�gure the bus system into compo�
nents with sizes bounded by k bus�units to run on
the model�

We give a detailed description of our recon�g�
urable mesh model in the following section� In
section 
 we present optimal algorithms for sort�
ing on constrained recon�gurable meshes� and then
present optimal convex hull algorithms for con�
strained recon�gurable meshes with certain aspect
ratios in section �� Lower bounds are then dis�
cussed in section �� Finally� we conclude with some
general remarks and open problems�

� The Model

The recon�gurable mesh of size m � n� consists
of m rows and n columns of processing elements
arranged in a grid� as in �gure 	� Each processor
is connected to its immediate neighbours to the
north� south� east and west� when present� and has
four similarly labeled I�O ports through which it
can communicate with its neighbours�

Each PE has control over a local set of short�
circuit switches which allow the four I�O ports to
be connected together in any combination� The 	�
possible connection con�gurations are depicted in
�gure ��

The processors operate synchronously� in one
machine cycle performing an arithmetic� logic or

�A bus�unit is a segment of the bus that connects two
neighbouring processors�
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Figure 	� A recon�gurable mesh of size 
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Figure �� Recon�gurable mesh connection con�gu�
rations�

control operation� setting a connection con�gura�
tion� and sending �receiving� a datum to �from�
each I�O port� Each processor possesses a con�
stant number of ��logmn��bit word registers al�
lowing it to identify itself� Processors are num�
bered from P��� in the north�western corner� to
Pm���n�� in the south�eastern corner� Processors
may also be numbered from P� to Pmn�� using
other orderings� For example� in row major order
Pi�j � Pin�j� Block shu�ed row�major ordering�
as in �gure 
� has the property that the �rst quarter
of the PEs form one quadrant� the next quarter
form another� and so on� with this property hold�

ing recursively� down to block length sequences of
processors� which remain in row�major order�
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Figure 
� Block shu�ed row�major order�

When a connection is set� signals received by a
port are simultaneously available to any port con�
nected to it� For example� if processors connect
their northern and southern I�O ports by closing
the appropriate switches as in the con�guration
�NS�E�W�� data �broadcast� onto the �columnbus�
can be read by all of the processors in a column�
The model allows concurrent reading from a bus�
requires exclusive writing to a bus� and usually
assumes a constant time communication delay on
arbitrarily large connected bus components�

Unfortunately� the constant time model is in�
feasible for a number of reasons� Due to the �nite
resistance and capacitance per unit wire length�
signals need to be regenerated to ensure accurate
detection� and the time to broadcast a signal along
the wire is proportional to the square of its length�
The speed of light and the clock frequency of the
machine also limit the number of processors which
can be reached by a signal in one cycle� To account
for these limits� we propose a k�constrained recon�
�gurable mesh model in which connected buses of
size at most k can be formed in any cycle� We
use the notation RMk

A to refer to a k�constrained
recon�gurable mesh of area A�

A linear bus is a bus which never branches�
thereby excluding con�gurations of the form �NSE�
W� and �NSEW�� Any recon�gurable mesh algo�
rithm which uses only linear buses can be simulated
by the k�constrained model by propagating signals
k processors at a time� Any algorithm� which in
O�	� time broadcasts on a linear bus of length l�
can therefore be simulated by a k�constrained al�
gorithm in O� l

k
� time� The simulation of a time

optimal algorithm does not produce a time optimal
solution for the k�constrained recon�gurable mesh�
and unless the area of the mesh is reduced� the
algorithm is no longer optimal according to the
AT � metric popularized by Ullman �	���



� Optimal Sorting Algorithms

The fundamental problem of sorting n items on a
recon�gurable mesh of size n�n has been addressed
by several authors� and constant time AT � optimal
solutions are now well known ��� ��� Straightfor�
ward simulations of these algorithms� which use
linear buses of length O�n� on an n�nRMk

n� � have

O�n
k
� running time and O�n

�

k�
� AT � complexity�

Since the running time has been increased without
changing the solution area� the AT � complexity is
no longer optimal when k � n�

In this section� we extend these results to AT ��
optimal algorithms for sorting onRMk

nk with vary�
ing aspect ratio �the ratio of the longer to the shorter
side�� The algorithms we use are extensions of
those in ���� In ���� an algorithm is given for sorting
mn items on an m� n �standard� mesh of proces�
sors in timeO�m�n� using only a constant number
of row and column operations� Assuming p � q� we
show that this algorithm can be adapted to give
a O�p�q

k
��time algorithm for sorting n items on a

RMk
nk of size p�q� which isAT ��optimal� For ease

of explanation� it will be assumed that k divides
p� q and n� and that p and q divide n� Although
these assumptions are fairly restrictive for practical
applications� the results can be generalised� and are
asymptotically identical�

��� Sorting on RMk

nk
of size k � n

We �rst show how sorting n items on a RMk
nk of

size k�n can be achieved in O�n
k
� time� This result

will be used in the generalisation to k�constrained
meshes with arbitrary aspect ratio�

Lemma � Let RMk
n be a linear array of proces�

sors P�� ���� Pn�� and let Pik contain item xi� � �
i � n

k
� Then the items x�� ���� xn

k
�� can be sorted

in O�n
k
� time�

Proof� A straightforward simulation of odd�even
transposition sort on a linear array will sort the xi�

Lemma � Sorting k items stored in the �rst row
of RMk

k� of size k � k can be done in O�	� time�

Proof� It is easy to check that the algorithm in ���
for sorting k items on a k � k recon�gurable mesh
uses only linear buses of length O�k�� Hence� the
same algorithm can be used for the k�constrained
recon�gurable mesh RMk

k� of size k � k to sort in
constant time�

In order to sort n items stored in the �rst row of
RMk

nk of size k � n we assume in the following
that the items have been moved so that xsk�j is in
processor Pj�sk for � � s � n

k
and � � j � k� Each

row j then contains n
k
items at locations �j� sk� for

� � s � n
k
�

In Marberg and Gafni ��� an optimalO�m�n��
time algorithm is given for sorting on anm�n stan�
dard mesh �where

p
n � m�� The algorithm uses

a constant number of row and column phases and
is easily adapted for sorting on the k�constrained
recon�gurable mesh� In outline� the algorithm con�
sists of the following steps�

Procedure RotateSort ���

	� Distribute the range of data contained in the
mesh among its columns

�� Sort the rows of the mesh to the right


� Distribute the elements of each
p
n�pn block

among the columns of the mesh

�� Distribute the range of data contained in eachp
n � n slice of the mesh among the rows of

the slice

�� Distribute the elements of each
p
n�pn block

among the columns of the mesh

�� Perform 
 iterations of Shearsort

�� Sort the rows of the mesh to the right

end RotateSort

Each step of the algorithm involves a �xed�
length sequence of sorts and rotations on the data
contained� alternately� in rows and columns� A
rotation results in a left �right� shift of each da�
tum in a row �column�� The datum at the end of
a row �column� is moved to the opposite end as
a result of the rotation� simulating a wraparound
connection� Since a rotation permutes the data� it
can be emulated by sorting the row �column�� A
rotation therefore takes as much time as it does to
sort�

The algorithm of Marberg and Gafni ��� uses
only the following basic operations�

	� Sort columns with m items�

�� Sort or rotate rows �in either direction� with
n items�


� Rotate the columns of each
p
n�n slice of the

m�n mesh� Each such column has
p
n items�

In the context of the RMk
nk of size k � n� the

operations of the algorithm in ��� can be simulated
on an RMk

nk of size k � n to give an algorithm
SORT�n� k� with the following times for the phases
�for our exposition we replace rows by columns and
vice versa��

	� Sorting �or rotating� rows with n
k
items� O�n

k
�

time by Lemma 	 �and since rotation is no
harder than sorting��



�� Sorting �or rotating� columns �in either direc�
tion� with k items� O�	� time by Lemma 

since there is a k � k block available to sort
each column�


� A rotation operation dependent on the size of
k as follows�

�a� if n
k
�
p
k� rotating rows with

p
k items

in each k � k
p
k slice of the k � n mesh

which takes O�
p
k� time since rotation on

a linear array is no harder than sorting on
a linear array using Lemma 	�

�b� if n
k
�
p
k� and hence k �

p
n
k
� rotating

columns with
p

n
k
items in each

p
n
k
� n

slice of the k�n mesh which can be done
in O�	� time for each column by using the
RMkp

nk
of size

p
n
k
�k which is available�

The total time is then O�n
k
��

It follows from the above argument that�

Theorem � If n items are stored in the �rst row
of a RMk

nk of size k � n then algorithm SORT�n�
k� sorts the items correctly in O�n

k
� time� which is

AT � optimal�

��� Sorting on RMk

nk
of size p� q

For a RMk
nk of size p � q where p � q the opera�

tions of the Marberg and Gafni algorithm lead to a
corresponding algorithm SORTPQ�n�k� for sorting
n items� In this case the mesh is divided into slices
of size p�k� By Theorem 	� the column operations
can be done in O� p

k
� time using the processors in

each slice� The row and column phases can then
be seen to take the following times�

	� Sorting �or rotating� rows with q

k
items� O� q

k
�

time by Lemma 	 �and since rotation is no
harder than sorting��

�� Sorting �or rotating� columns �in either direc�
tion� with p items� O� p

k
� time by Theorem 	

since there is a p � k block available to sort
each column�


� A rotation operation dependent on the size of
p and q as follows�

�a� if q
k
� pp� rotating rows with

p
p items

in each p � k
p
p slice of the p � q mesh

which takes O�
p
p� time since rotation of

a linear array is no harder than sorting a
linear array �Lemma 	��

�b� if q

k
�
p
p and hence p �

p
q

k
rotating

columns with
p

q

k
items in each

p
q

k
� q

slice of the p� q mesh which takes
O�
p

q

k
�k� time using the RMkp

qk
of size

p
q

k
� k which is available for each col�

umn�

The total time is then O�p�q
k
��

From the above argument it follows that�

Theorem � If n items are stored in the �rst n
q

rows of a RMk
nk of size p � q where p � q then

algorithm SORTPQ�n� k� sorts the items correctly
in O� q

k
� time� which is AT � optimal�

� Convex Hull Algorithms

The convex hull of a set S of n planar points is
de�ned as the smallest convex region which con�
tains all the points� The problem of computing the
convex hull is that of identifying the extreme points
which form the boundary of this convex region�
The convex hull can be considered to consist of a
convex chain of points lying above the line joining
the westernmost and easternmost extreme points�
the upper hull� and a similarly de�ned lower hull�
To solve the convex hull problem� it su�ces to com�
pute the upper and lower hulls separately and then
to concatenate the two chains� We shall describe
methods for computing the upper hull which can
be used with straightforward substitutions to �nd
the lower hull�

Two algorithms have recently been proposed for
computing the convex hull of n planar points in
constant running time on an n � n recon�gurable
mesh �	�� 		�� Both methods form linear buses
of O�n� length� Straightforward simulations on
an n � n RMk

n� � in which signals are propagated
k processors at a time� have O�n

k
� running time�

However� the AT � complexity of such simulations

is O�n
�

k�
�� which is not optimal for k � n�

In this section we present two optimal algo�
rithms to solve the convex hull problem for RMk

nk

with di�ering aspect ratios� Both algorithms em�
ploy the divide�and�conquer technique together
with e�cient merging steps� The method used for
each merging step� which requires computing the
supporting line of two separable convex polygons�
is chosen to suit the aspect ratio� For simplicity�
it will be assumed that k divides n and n � k is
a power of �� Should this not be the case� the
data could be padded� until n is su�ciently large�
without a�ecting the asymptotic performance of
the algorithm�

��� Convex Hull Computation on
RMk

nk
of size k � n

We use procedure SupportLine in our algorithms to
compute the line of support between two vertically
separable upper hulls� L and R� whose extreme
points are in general position� The procedure ex�
pects L andR to be of size at most n� and computes
the left and right endpoints of the line of support
from R to L on a recon�gurable mesh of size n� n
in a constant number of steps�



Procedure SupportLine

	� Arrange the points of L� one per row� in the
�rst column of the mesh and broadcast the
points along each row�

�� Similarly� arrange the points of R� one per
column� in the last row of the mesh� and broad�
cast the points along each column�


� Each processor containing a point from L and
R determines the slope of the line from the
point of R to the point of L�

�� Within each column� each processor contain�
ing a slope record checks whether the slope
is locally minimal by checking its neighbours�
Convexity ensures only one slope per column
is identi�ed�

�� Identify the maximum of the slope records
found in the previous step using the method
of �
��

end SupportLine

Theorem � Procedure SupportLine correctly com�
putes the line of support between two n�sized verti�
cally separable upper hulls in general position on a
recon�gurable mesh of size n� n in constant time�

Proof� At the completion of Step 
� each point in
R has determined the slope of the line to each point
of L� For a given point in R� these are arranged in a
column� The general position of points ensures that
only one processor �point� in the column achieves a
minimum slope� and the convexity of L ensures the
processor containing this point can be identi�ed by
checking the values contained in the neighbouring
processors to the north and south� By the end of
Step �� each point in R has identi�ed a tangent to
L� The tangent with maximum slope is the sought
after line of support�

Steps 	 and � take O�	� time since in the recon�
�gurable mesh model broadcasts along arbitrarily
long buses takes a constant amount of time� Step 

is an arithmetic step taking O�	� time� Communi�
cation with neighbouring processors in Step � and
the following comparisons require O�	� time� Step
� requires O�	� time by Proposition 
 of Miller et
al �
�� The total time for procedure SupportLine is
therefore O�	��

Corollary � Procedure SupportLine requires O�n
k
�

time in the k�constrained recon�gurable mesh model�

Proof� Broadcasting buses of lengthO�n� are formed�
hence O�n

k
� time is required to simulate procedure

SupportLine in the k�constrained recon�gurable mesh
model�

We compute the extreme points on the upper
hull of a set of planar points for this mesh organi�
zation as follows�

Procedure UpperHull

	� Load the n points onto the �rst row of the
mesh�

�� Sort the points in order of increasing x�coordinate
using the algorithm SORT�n�k� of section 
�


� Set the switches of the RMk
nk to partition the

mesh into n
k
components of size k � k each�

Blocks of processors then compute the upper
hull of their subsets independently using the
algorithm of Nigam et al �	��� Upon comple�
tion the extreme points are assigned labels in
order of their appearance on the upper hull
and compressed into contiguous processors ready
for merging�

�� Merge the n
k
disjoint upper hulls by performing

O�log�n
k
�� parallel merging stages as in �gure

�� During each stage� odd�numbered com�
ponents are paired with the following even�
numbered components and their upper hulls�
denoted by L and R� are merged� Details of
merging two upper hulls during the ith stage�
	 � i � log�n

k
� are as follows�

Extreme points

Eliminated extreme

Support lines found

After third stop

Support line

Representation

Extreme points

Extreme points
�ipped after step
��a�

of upper hull

after �rst merging
stage

calculations

After �rst stop
in step ��b�

in step ��b�

points deactivated

compressed

Figure �� A second merging stage of procedure
UpperHull �

�a� Partition the upper hull of each L into
at most �i�� contiguous segments of at
most k extreme points each� and  ip the
extreme points of each segment into the



leftmost column of each k�k block� The
extreme points of each R are left in the
last row�

�b� Pipeline the segments of L from left to
right� by repeatedly advancing the groups
k columns at a time� At each stop� com�
pute the support line from the segment
of R to the segment of L using procedure
SupportLine� and store the endpoints of
the line of support with minimum slope
for each segment of R�

After � � �i�� stops� each segment of R
will know its support line with the upper
hull of L�

�c� Among the support lines of segments in R
with the upper hull in L� we select the one
with the maximum slope as the support
line between L and R�

End points of the support line� which
uniquely identify the upper hull of L�R�
are communicated to the processors of
both L and R� The remaining extreme
points are identi�ed� assigned labels in
order of their appearance on the upper
hull� and compressed ready for the next
merging stage�

end UpperHull

Theorem 	 Procedure UpperHull correctly com�
putes the upper hull of a set S of n planar points
on a RMk

nk of size k � n in O�n
k
� time� which is

AT � optimal�

Proof� During the ith merging stage� consider the
jth segment from the right hull�Rj� 	 � j � �i��� to
be the upper chain of vertices of a convex polygon
forming a line of support� rjlk� with each segment
of the left� Lk� 	 � k � �i��� also considered to be
the upper chain of vertices of some convex poly�
gon� Since the Lk together form the upper hull�
L� the line of support from Rj to L must be the
line of support rjlk� 	 � k � �i��� with minimum
slope� because otherwise there is some point of L
above this line� contradicting the de�nition of a
supporting line� Considering the supporting lines
from each Rj to L� the line of support from R
to L must be the line with maximum slope� since
otherwise some point ofR contradicts the de�nition
of a supporting line�

The running time of procedure UpperHull �
CH�n� k�� can be described by the following recur�
rence relation�

CH�n� k� � LOAD�n� � SORT �n� k�

�INIT �Merge�n� k� �	�

Merge�n� k� �

log�n
k
�X

i��

Merge�k�i��� k� ���

During the ith merging stage of step �� the proce�
dure merges upper hulls L and R� each of which
is the upper hull of k�i�� points� The operations
of routing k elements within a block of size k � k
�step ��a�� and of applying procedure SupportLine
to compute the line of support between sets of k
points in a k � k block �in step ��b�� require con�
stant running time� Routing all the segments of L
through O�k�i� columns of the mesh that contain
points of L and R requires O��i� pipelined time�
Thereafter� the remaining extreme points can be
identi�ed and resequenced in constant time� and
the remaining extreme points can be compressed
in O��i� time� Therefore� Merge�k�i��� k� of ���
is performed in O��i� time� It follows directly that
the running time of step � is O�n

k
��

Since LOAD�n�� the running time of step 	� and
INIT � the running time of step 
� require O�	� time
each� and SORT�n�k� takes O�n

k
� time� it follows

that the time complexity of CH�n�k� is O�n
k
��

��� Convex Hull Computation on

RMk

nk
of size

p
nk �pnk

It is easy to see that any algorithm with o�n
k
� run�

ning timemust be executed on aRMk
nk with smaller

diameter� In this section we develop an optimal
algorithm for a square RMk

nk of size
p
nk �pnk�

which follows the same outline as that of procedure
UpperHull of section ��	� The algorithms di�er
mainly in the arrangement of blocks and in the
method used to compute the support line of two
disjoint upper hulls� Before describing the algo�
rithm� we present the geometric properties and the
basic mesh operations that are essential to the ef�
�ciency of the algorithm�

	
�
� Preliminaries

Lemma � ��� Let P and Q be two disjoint convex
polygons and the line passing through the vertices
p � P and q � Q be their upper support line� and let
P � � �a�� a�� � � � � am� and Q� � �b�� b�� � � � � bn� be
convex sub�polygons of P and Q respectively� If the
line passing through ai and bj is the upper support
line of P � and Q�� then at least one of the following
statements is true�

	� p is a vertex of the chain joining ai�� and ai


� p is a vertex of the chain joining ai and ai��

�� q is a vertex of the chain joining bj�� and bj


� q is a vertex of the chain joining bj and bj��



Lemma 	 Let P and Q be two sorted sequences
such that all elements of Q are larger than those
of P� If the two sequences are arranged in row ma�
jor order of two adjacent submeshes of size

p
m �p

m in a k�constrained recon�gurable mesh such
that there is one row of data for every k rows of
processors� then the sorted sequence P � Q can
be arranged into row major order in the combined

mesh of size
p
m � �

p
m in O�

p
m

k
� time�

Point of P

(a) Initial setup

(d) Rows compacted (e) Rows split (f) Final arrangement

(c) Rows merged(b) Rows shuffled

Point of Q

Figure �� Merging sorted sequences P and Q�

Proof� �refer to �gure � for illustration� We main�
tain k 	 	 free rows of processors for every row
of data throughout the proof� Sequences initially
setup as in �gure ��a� are arranged into row�major
order as in �gure ��f� as follows�

	� Shu�e every second row to the opposite side
of the combined mesh as in �gure ��b��

�� Merge the rows corresponding to sequence P
towards the top of the combined mesh� Simi�
larly� merge those from Q towards the bottom
as in �gure ��c��


� Move the sequence P down to the sequence Q
as in �gure ��d��

�� Split the rows of P so as to �ll the hole left
in the last row of Q� whilst preserving the
sequence of P as in �gure ��e��

�� Fill the hole left in each row of P with the
segment from the row above�

Each step can be completed in O�
p
m

k
� time in the

k�constrained recon�gurable mesh model by pipelin�
ing rows of data k rows of processors at a time in
steps �� 
 and �� and k�sized subsequences of data
k columns of processors at a time in steps 	 and ��

A similar statement can easily be derived if the
sequences P and Q are originally stored in rectan�
gular meshes and need to be arranged into a square
mesh�

Lemma � If n points are stored in row�major or�
der in a k�constrained mesh of size m�m with one

row of data to every k rows of processors� the m�

k�

subsequences of k points can be moved into block
shu�ed row�major order in O�m

k
� time�

Proof� The arrangement can be achieved in
log�m

k
�	 	 phases�

In the �rst phase� the points in the upper half
of the upper right quadrant of the mesh are moved
to the upper left quadrant� while the points of the
lower half of the left upper quadrant are moved
to the upper right quadrant� This step can be
achieved by  ipping sequences of k points from the
bottom row of a k � k block into the left �right�
column of a k � k block and pipelining the points
k columns at a time to the left �right� in m

�k steps�
The rows of points originally in the upper half of

the left quadrant are now expanded to assume the
position of every second row of data in the upper
left quadrant� starting with the �rst row� while the
rows of points originally from the upper half of
the right quadrant are also expanded to take up
every second data row in the upper left quadrant�
albeit starting with the second row� Similarly� the
rows of points originally in the lower half of the
left quadrant are expanded to take up every second
data row in the upper right quadrant starting with
the �rst row� while the rows of points left in the
lower half of the upper right quadrant are expanded
to take up every second data row of the upper right
quadrant beginning with the second data row� This
movement takes O�m�k � time�

Identical steps are simultaneously carried out
on the lower half of the mesh and are applied re�
cursively to each quadrant down to meshes of size
�k � �k�

The time to shu�e the data is therefore�

Shuffle�m� �

log�m
k
�X

i��

�i

�
�
�i

�
� � �
�

� O�
m

k
� ���

	
�
� The Algorithm

The main idea of the algorithm is to partition the
set of points into n

k
groups and compute the upper

hull of each group in a block of size k � k� The n
k

disjoint upper hulls are then combined into larger
groups in parallel merging stages� After each stage�
the extreme points of each group are arranged into
row�major order in the combined square or rectan�
gular submesh� Such arrangement facilitates the
e�cient execution of the operations required for
merging two upper hulls� namely� the identi�cation



of equally spaced points� and the routing of subse�
quences through the constrained mesh�

Details of the procedure are as follows�

Procedure UpperHullSM

	� Load the n points by repeatedly presenting the
�rst row with

p
nk points and pipelining them

through the mesh k rows at a time�

�� Sort the points into row major order on in�
creasing x�coordinate using the procedure
SORTPQ�n�k� of section 
�


� Shu�e k�sized subsequences of points into block
shu�ed row�major order using the method of
Lemma ��

�� Set the switches of the RMk
nk to partition the

mesh into n
k
components of size k � k each�

Blocks of processors then compute the upper
hull of their subsets independently using the
algorithm of Nigam et al �	��� Upon com�
pletion� extreme points are assigned labels in
order of their appearance on the upper hull�

�� Compute the �nal upper hull by performing
O�log�n

k
�� parallel stages to merge the n

k
dis�

joint upper hulls generated in the previous step
as in �gure �� During each stage� odd�numbered
components are paired with the following even�
numbered components and their upper hulls�
denoted by L and R� are merged� Recall that
prior to the ith stage� 	 � i � log�n

k
�� extreme

points of L �R� are stored in row major order
one row of data for every k rows of processors

in a block of size k�b
i��

�
c � k�b

i

�
c�
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Figure �� A �fth merging stage of procedure
UpperHullSM �

Details of merging two upper hulls are as fol�
lows�

�a� Compute end points of the support line
of L and R� which uniquely identify the
upper hull of L �R� as follows�
i� Select a sample of elements� which
partitions L into equal length seg�
ments� by choosing a point from each
row in the block of processors storing
L� Route the sample to the block
storing R� The entire set of elements
is selected if there is only one row of
data�

A sample is simultaneously selected
from R in a similar fashion�

ii� Compute end points of the support
line of the two samples� using proce�
dure SupportLine�

iii� If possible� identify the segments of
L or R� which contain the endpoints
of the support line of L and R as
described in ����

iv� Repeat with the newly identi�ed seg�
ment�s� until the support line is com�
puted�

�b� End points of the support line are com�
municated to processors of both L and R�
The extreme points of L � R are labeled
and arranged into row major order using
the method of Lemma 
�

end UpperHullSM

Theorem � Procedure UpperHullSM correctly com�
putes the upper hull of a set S of n planar points
on a RMk

nk of size
p
nk �

p
nk in O�

p
n
k
� time�

which is AT � optimal�

Proof� Correctness of the procedure follows from
simple geometric arguments�

The running time of procedure UpperHullSM �
CHSM�n�k�� can be described by the following re�
currence relation�

CHSM �n� k� � Load�n� � Sortpq�n� k�

� Shuffle�
p
nk� � Init

�Merge�n� k� ���

Merge�n� k� �

log�n
k
�X

i��

Merge�k�i��� k� ���

During the ith merging stage of step �� the proce�
dure merges upper hulls L and R� each of which is
the upper hull of k�i�� points stored in a mesh of

size k�b
i��

�
c � k�b

i

�
c�



The operations of selecting a sample of L and
routing it to the submesh storingR requires O��b

i

�
c�

time� Procedure SupportLine requires O��b
i

�
c� time�

and the identi�cation of at least one row of L or
R containing an endpoint of the support line� ac�
cording to Lemma �� requires further O��b

i

�
c� time�

The geometric property of Lemma � ensures that
step ��a� is executed at most four times� thusO��b

i

�
c�

time is su�cient to complete step ��a�� Using the
method of Lemma 
� step ��b� can be completed

in O��b
i

�
c� time as well� Therefore� Merge�k�i� k�

of ��� can be performed in O��b
i

�
c� time� It follows

directly that the running time of step � is O�
p

n
k
��

To load� sort� and rearrange the data requires
Load�n� � Sortpq�n�k� � Shu�e�

p
nk� � O�

p
n
k
�

time� and it takes Init � O�	� time to perform the
initial convex hull computations� It follows that
the time complexity of CHSM�n�k� is O�

p
n
k
��

� Lower Bounds

Using a bisection width argument� it can be shown
that the VLSI complexity for sorting n numbers on
a square mesh is ��n�� �	��� As sorting is linear
time reducible to the convex hull problem �	��� it
takes at least as much time to solve the convex hull
problem as it does to sort� The recently developed
constant time recon�gurable mesh algorithms for
sorting and �nding the convex hull of n elements
on meshes of size n � n ��� �� 	�� 		� are therefore
optimal with respect to T and AT � complexity
measures� Since these algorithms only use linear
bus con�gurations� they can be simulated on a k�
constrained recon�gurable mesh of size n�n using
O�n

k
� time� which is no longer AT � optimal for

k � n� We are therefore motivated to develop
solutions using less area�

When the solution mesh is no longer square� the
AT � complexity needs to be scaled by the aspect
ratio �	��� For a mesh with p rows and q columns�
with p � q� the AT � lower bound to sort n numbers
increases to �� q

p
� n�� and the lower bound on the

time required to sort on the mesh becomes ��n
p
��

Our algorithms for sorting and for �nding the con�
vex hull of n planar points on a RMk

nk of size
k � n run in O�n

k
� time� which matches the lower

bound when k replaces p� Both algorithms have an
AT � complexity of O�n

k
� n��� which matches the

lower bound when k and n are substituted for p
and q� SORTPQ�n� k� can be shown to be T and
AT � optimal by a similar argument� The second
convex hull algorithm for the RMk

nk� of size
p
nk�p

nk� has a running time of O�
p

n
k
� and an AT �

complexity of O�n��� both of which are optimal�

� Concluding Remarks

With the algorithms derived using our model� we
are able to predict the running time of the sorting

and convex hull problems as functions of the prob�
lem size� the degree of constraint� k� and the aspect
ratio� As is to be expected� we observe a continuum
in performance from the standard mesh of proces�
sors� for which k � 	� to the usual recon�gurable
mesh model� for which k is arbitrarily large� It
can be argued that the constrained recon�gurable
mesh model is asymptotically no faster than the
standard mesh of processors model� since for large
n it is at best k times faster� Furthermore� the k�
constrained recon�gurable mesh requires k times as
many processors as the standard mesh to achieve
this speedup�

Further work is needed to determine how to
handle non�linear buses� and �nd general techniques
for developing optimal Ak� We are also interested
in developing a convex hull algorithm for arbitrary
aspect ratios� which we see as being of practical use
in general purpose computing environments where
the mesh area available to a task may be constrained�
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