A Genetic Breeding Algorithm Which Exhibits
Self-Organizing in Neural Networks

H. B. Penfold!

Q. F. Diesselt

M. W. Bentink}

! Department of Electrical Engineering and Computer Science,
The University of Newcastle, N.S.W. 2308 Australia
} Honeywell Limited, Newcastle, Australia

Abstract

Genetic algorithms have been extensively assessed for ap-
plication to the training of neural networks. The great
majority of the genetic algorithm approaches have thus
far exploited a technique inspired by the process of mu-
tation where populations of neural networks experience
random - and usually small - perturbation in the con-
necting weights and neuron biases. Those which perform
best in a test are retained for future generations.

In this paper we introduce a genetic algorithm which
incorporates the notion of meiosis, That is, the process
through which the genetic code of offspring acquires equal
contributions from each parent. We are thus able to pro-
vide a breeding model which can incorporate many of
the features of evolutionary processes, especially the re-
tention of genetic information in the correct proportions,
from generation to generation. Results obtained from
an algorithm based on these ideas when tested on two
well-known problems are reported and display good con-
vergence properties.

KEYWORDS: Neural Networks, Self-organizing, Evo-
lution, Genetic Algorithms

1 Introduction

The dominant technigues in the training of neural net-
works tend to be variants of the backpropagation method
due to Rummelhart ef a! [1]. The feature shared by
all such methods is that they apply only to forward-
propagating layered networks in which all the intercon-
necting weights are accessible to modification in the light
of some objective function based on the performance of
the network at a training set. There is implied the re-
quirement that all negative feedback (or learning) be ex-
ternal to the network, and have a form arbitrarily pre-
scribed by the learning algorithm. It is well known that
these methods suffer from convergence problems in that
they can be ‘trapped’ by local minima, and that conver-
gence rates fall dramatically for large networks [2].

Optimisation techniques other than backpropaga-
tion have been evaluated in an attempt to add to the
gradient-descent properties of that method desirable sto-
chastic attributes. This work, of which simulated an-
nealing is an example, has a long history [3] and employs
random perturbations to the weights of a network in an
attempt to span the space of the network in search of the
optirmum solution. Such methods are reminiscent of the
biclogical phenomenon of mutation in which small ran-
dom changes are presumed in the describing gene of an
organism to allow it an opportunity to better ‘fit’ its envi-
renment. In a like manner to stochastic gradient descent
such organisms are thought to retain variations found
advantageous.

We extend this biological metaphor in this paper
and observe several motivating issues which are thought
to add impetus to this line of investigation.

¢ It is desirable to extend our capability in the training
of neural networks to include networks with a ‘gen-
eral’ connection. That is, feedback may be tnternal
to the network.

s There is the potential to learn about learning. If we
could apply a genetic algorithm to the above general
network where the objective function, instead of be-
ing performance at a prescribed task, is the ability
to learn a class of tasks, then the structure disclosed
by the network may hold useful insights.

¢ The parallel with biology may in fact be reversible
so that theories of evolution could be quantified by
using neural networks as example populations of el-
ementary species.

We proceed in a manner analogous to biology by
defining a ‘gene’, in this case an ordered set of num-
bers representing the weights of connections inte a neu-
ron from others in the net, and the bias of that neuron.
An ordered set of genes representing the connectivity of
the whole network constitutes a ‘chromosome’. The pro-
cess of breeding requires that genes be selected from the
chromosomes for each parent network. We also gener-
ate the complementary ‘sibling’ network to ensure that




9

the law of genetic retention is observed [4]. During the
breeding process, mutations are permitted to occur, their
incidence and severity being governed by a measure of the
genetic diversity in the population.

The algorithm typically begins with a specified num-
ber of randomly generated nets (generation 0), and pro-
duces generation 1 according to rules. The members of
this generation are tested against the required task and
culled on the basis of performance to derive the parents
of generation 2. If the population performance improve-
ment stagnates, the probability of mutation is increased.

In tests the algorithm has successfully derived nets
which, from a random initial condition, have organised
into a layered network which can perform tasks such as
the 2-input XOR. function, an incomplete parity problem
-both of which are reported here — and several real-valued
continuous algebraic functions.

2 Methodology

We shall adopt as our neural network a conventionally
structured network comprising layers of neurons with
each neuron generating an outpui which is a function
of the weighted sum of the inputs. A bias input or off-
set is also represented. That is, the output of neuron j,
which has inputs i for ¢ = 1,...,n is given by -

i
output; = }'}(Z input; x weight; + bias;)
where F; is taken in this work to be a sigmoid function.

For a genetic algorithm to be definable, we need to
resolve the structure of a data string which we regard as
analogous to a gene, a method for combination of sections
of this data string which is analogous to breeding, and
the mechanism for variations to the data string which is
analogous to mutation.

2.1 Gene Definition

There is considerable latitnde in the selection of a suit-
able data string of real numbers (weights and biases) such
that it will represent an arbitrary network. We have cho-
sen to represent the connectivity of a network as a matrix
of weights where the real number elements (in the range
-1 to +1) represent the degree of interconnection of the
inputs, biases, and other neurons. We propose that this
representation is general in the sense that it permits other
than a layer-to-layer forward propagating network to be
represented. That is, inputs may bypass a layer, and
equally, the output of a neuron may feed back to an ‘ear-
lier’ layer. Such possibilities for internal feedback mark
a departure from the model in which feedback oceurs in
a mechanism external to the network. '

An example of this connection matrix is given in Fig-
ure 1, which represents a 2-input, 2-layer network having
2 neurons per layer. The choice of the characteristics of
this matrix which we consider to be ‘genes’ which we as-
semble into a ‘string to represent the ‘chromosome’ for
this network is open, and the possibilities are indicated
on the diagram. Structure Q represents all inputs to a
neuron from a layer; structure R represents all outputs
from a neuron. Structure S represents all inputs to a
neuron; T represents all inputs to a layer from a layer; U
represents all outputs from a neuron fo a layer.

‘We have chosen structures of the form Q, the inputs
to a neuron from layers as representing the network. The
string of ‘genes’ then is a vector of input weights to a
neuron taken in turn, together with its bias, and repeated
for each neuron in the nefwork.

FROM
layer |

2 5 4

input: layer
npyts yer2 .

b
1
2
$

A B 1

layer 1

-] <l

TO

laver? 4

Figure 1: Connection Matrix

2.2 Breeding

Most work which represents a ‘breeding’ function be-
tween networks uses the crossover operator [5] in which
all bits up to a randomly chosen position in the gene of
one parent are copied to the offspring, with the remaining
bits being copied from the other parent. Whilst this is
well founded in optirnisation theory (and represents the
intersection of two hyperplanes in the optimisation space)
we have chosen to depart from this practice. Instead each
gene’ in the offspring — representing the weight or bias
for one input to a neuron — is selected at random with
equal probability from the two parents. A second off-
spring (or sibling) is simultaneously generated from the
complementary genes. The weights for the initial popu-
lation are generated at random.

Whist our justification for this method is at present
heuristic, substantial experience with the procedure leads
us to believe that the method produces offspring which




bat)

are ‘topologically similar’ to the parent generation. The
quantification for this assertion is under current consid-
eration. The procedure is depicted in Figure 2.

BREEDRING

GENE OF PARENT A :

A J 7

GENE OF PARENT B :

GENE PDSITION 1 GENE POSITION n

GENE POSITION 2

50% CHANCE OF SWAPPING EACH GENE POSITION

GENE OF CHILD AB 1 ;

AAGIIG IR,

GENE OF CHILD AB 2
A

WHICH GIVES:

CHILD1 & CHILD2

Figure 2: Breeding Rule

2.3 Mutation

The other genetic operator usually incorporated is mu-
tation. Indeed, many algorithm rely solely on mutation
for their search of the optimisation space [3] and do not
thus incorporate potentially useful structural information
from one generation to another. It is our experience that
neither a breeding strategy nor a mutation rule alone
can ensure rapid convergence of a genetic algorithm and
guarantee escape from local minima.

Mutation is treated in the work presented here as
a method to reintroduce genetic diversity into a popula-
tion on the occasions when the preservation of structural
similarity imposed by a breeding rule loses that diversity
without having reached optimum performance. That is,
2 local minimum has been reached.

Mutation is accounted for in our model by adding
to a selected weight (gene) a zero mean random variable
of gaussian distribution. The gene selection criterion is a
uniformly distributed random variable which ranges up
to the number of genes in the chromosome; the number of
such mutated genes increases linearly with the stability of
the network from generation to generation. That is, the
mutation rate is ‘driven’ by the failure of the population

to show continued improvement.

3 Test Results

Two example problems are presented here and have been
selected on the basis that they have been widely docu-
mented [5] and are thus useful for comparison with other
methods. Although not reported here, other problems
have been considered, especially those concerning real-
valued functions which change over time.

3.1 XOR Problem

This problem requires the network to learn the exclusive-
or problem shown in the following table.

I Ta z
0 010
0 11
1 o1
1 110

Table 1: Exclusive-or problem

For this task an initial population of two-input, two-
output networks each of two layers was specified with one
of the outputs being nominated as a ‘don’t care’ state.
An initial population size of 20 was used, with selection of
subsequent generations reducing the population to that
size at every generation. The mutation variance was 0.2
and each time population stability was reached, a further
10 percent of the total genes in the chromosome were
mutated.

The results for 10 runs of the algorithm are shown
below and are a considerable improvement over compara-
ble methods. For example Bartlett and Downs [5] report
convergence in between 200 and 1900 presentations of
the learning set, and Rummelhart at af [1] report 250
presentations for the back-propagation algorithm. The
average number of gencrations required for convergence
of the algorithm reported here was 121.

Fach run yielded a discernably different network,
and for one case the elimination of neurons whose input
welghts were all zero, or whose output was connected via
a zero weight resulted in a two-neuron network in which
each input was connected to each neuron, and the neu-
rons were connected to each other. We are accustomed
to expect that the solution to this problem will require
at least three neurons when constrained to a strict layer-
to-layer connection.



D

i

Run | Generations
129
508

4
5
329
14
56
27
30
103

Ewowm-a1o o wa e

Table 2: Exclusive-or Problem Results

3.2 Parity Problem

The training set for the incompletely specified seven in-
put parity problem is shown below. It was learned by
a seven input network with three layers and one output
neuror.

8
—
&
1Y)
8
L
2]
o
&
=)
ix]
-3

HOR O OO MO OO
HE OO RO OO
mooRrrRrooco ool
[l el sl = R B S e B s B o B
- OO0 OO

O OO = OO R

H OO ORFR O OO Oo
P OO R OO0, oo

Table 3: Seven input Parity Problem

An initial population size of 10 was used in this
problem, rather a small number for a problem with so
many degrees of freedom. The mutation increment was
0.04 (a little more than one gene), and the mutation vari-
ance was 0.01. Of ten attempts the algorithm had not
converged on four occasions within 2000 generations and
the run was abandoned. Of the remaining six (shown be-
low), the average number of generations for convergence
was 475.

Run | Generations
i > 2000
2 > 2000
3 > 2000
4 > 2000
5 982
6 467
7 7
8 549
9 479
10 370

Again by way of comparison we mention the results
of Bartlett and Downs [5]. They report that the Matyas’
optimisation technique frequently failed to converge and
that their genetic algorithm converged in an average of
930 generations using a starting population size of 50
(considerable greater than used here). Back propagation
required an order of magnitude longer.

4 Conclusions

There are indications that the method may be a fruit-
ful approach to the derivation of a neural network with
specific capacities, especially those in slowly changing en-
vironments. Some of the observed results are also sug-
gestive of the usefulness of the method in exploring ex-
perimentally some of the issues in evolution theory, such
as the rate of environment change versus group survival
threshold and individual capability. The long-term goal
of the research is to determine whether the method can
derive a network which displays some capacity to learn;
that is to select not for performance at a task, but for
ability to learn a task. This could illuminate some of the
issues in the structure of nets with feedback which theory
has not yet made clear.

References

[1] D.E. Rummelhart, G. E. Hinton and R. J. Williams,
“Learning Internal Representations by Error Prop-
agation”, in Parallel Distributed Processing, Vol.l1,
D. E. Rummelhart and J. L. McClelland Eds., MIT
Press, pp- 318-362, 1986,

[2] J. M. McInerney, K. G. Haines, S. Biafore, R. Hect-
Nielsen, “Back propagation error surfaces have lo-

cal minima”, Int. Joint Confce. on Neural Networks,
Washington, D.C., June 18-22, 1989.

{3] I. J. Fogel, A. J. Owens, M. J. Walsh, Ariificial In-
telligence Through Simulated Evolution, John Wiley
and Sons, 1967.

[4] J. C. Schank and W. C. Wimsatt, “Generative En--

trenchment and Evolution”, PSA 1986 Volume 2 |
pp 33-60.

[5] P. Bartlett and T. Downs, “Training a Neural Net-
work with a Genetic Algorithm”, First Australian
Conference on Neural Networks, Sydney, January,
1990.




