
Applied Soft Computing 4 (2004) 303–322

FPGA implementation of population-based ant
colony optimization

B. Scheuermanna,∗, K. Sob, M. Guntscha, M. Middendorfc,
O. Diesselb, H. ElGindyb, H. Schmecka

a Institute AIFB, University of Karlsruhe (TH), Germany
b Computer Science and Engineering, University of New South Wales, Australia

c Institute of Computer Science, University of Leipzig, Germany

Received 26 January 2004; accepted 6 March 2004

Abstract

We present a hardware implementation of population-based ant colony optimization (P-ACO) on field-programmable gate
arrays (FPGAs). The ant colony optimization meta-heuristic is adopted from the natural foraging behavior of real ants and
has been used to find good solutions to a wide spectrum of combinatorial optimization problems. We describe the P-ACO
algorithm and present a circuit architecture that facilitates efficient FPGA implementations. The proposed design shows
modest space requirements but leads to a significant reduction in runtime over software-based solutions. Several modifications
and extensions of the basic algorithm are also presented, including the approximation of the heuristic function by a small,
dynamically changing set of favorable decisions.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Ant colony optimization; Ant algorithm; Field-programmable gate array; FPGA

1. Introduction

Natural evolution has yielded biological systems in
which complex collective behavior emerges from the
local interaction of simple components. One example
where this phenomenon can be observed is the forag-
ing behavior of ant colonies[1,2]. Ant colonies are ca-
pable of finding shortest paths between their nest and
food sources. This complex behavior of the colony is
possible because the ants communicate indirectly by
disposing traces of pheromone as they walk along a
chosen path. Following ants most likely prefer those

∗ Corresponding author. Tel.:+49-721-608-3924;
fax: +49-721-693717.
E-mail address:scheuermann@aifb.uni-karlsruhe.de
(B. Scheuermann).

paths possessing the strongest pheromone information,
thereby refreshing or further increasing the respective
amounts of pheromone. Since ants on short paths are
quicker, pheromone traces on these paths are increased
very frequently. On the other hand, pheromone infor-
mation is permanently reduced by evaporation, which
diminishes the influence of formerly chosen unfavor-
able paths. This combination focuses the search pro-
cess on short, favorable paths.

Inspired by this biological paradigm, Dorigo et al.
[3–5] introduced a metaheuristic known as ant colony
optimization (ACO). In ACO, a set of artificial ants
searches for good solutions for the optimization prob-
lem under consideration. Each ant constructs a so-
lution by making a sequence of local decisions. Its
decisions are guided by pheromone information and

1568-4946/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2004.03.008

304 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

some additional heuristic information (if applicable).
After a number of ants have constructed solutions, the
best ants are allowed to update the pheromone infor-
mation along their path through the decision graph.
Evaporation is accomplished by globally reducing the
pheromone information by a certain percentage. This
process is repeated iteratively until a stopping crite-
rion is met. ACO has shown good performance on sev-
eral combinatorial optimization problems, including
scheduling[6], vehicle routing[7], constraint satisfac-
tion [8], and the quadratic assignment problem[9].

Parallel versions of ACO algorithms have been
studied by several authors[10–18]. Most of these au-
thors use the parallel approach simply to gain speedup
by performing the solution construction of the ants in
parallel without any significant changes to the solu-
tion construction and pheromone update mechanisms
[10–13,16]. More interesting parallel, multi-colony
ACO algorithms, in which every processor holds a
colony of ants with their own pheromone information
and where cooperation between the colonies is done
by the exchange of good solutions, have been studied
in [14,17,18]. A different and more fine-grained par-
allel ACO approach that is suitable for large processor
arrays (RMesh model) has been proposed in[15]. The
RMesh is a standard model for reconfigurable proces-
sor arrays, in which the processors are connected by
a dynamically reconfigurable bus system[19]. The
RMesh efficiently supports algorithmic tasks that are
typical of ACO algorithms such as bit-summation and
finding the rank of a number in a set.

In this paper, we adapt an ACO algorithm to field-
programmable gate arrays (FPGAs). To the best of our
knowledge, this is the first implementation of ACO on
commercially available FPGA devices. This imple-
mentation is based on design-concepts introduced by
the authors in[20]. FPGAs are used for a wide range
of applications, e.g. network communication[21],
video communication and processing[22,23] and
cryptographic applications[24]. It has been shown
that FPGAs are suitable for the implementation of
soft computing techniques like Neural Networks
[25–27] and Genetic Algorithms[28–30]. We show
that ACO can also be implemented on FPGAs, lead-
ing to significant speedups in runtime compared to
implementations in software on sequential machines.

We demonstrate that a straightforward hardware
mapping of the standard ACO algorithm is not very

well suited to implementation on the resources pro-
vided by current commercial FPGA architectures.
Instead we suggest using the Population-based ACO
(P-ACO), in which pheromone information is re-
placed by a small set (population) of good solutions
discovered during the preceding iterations[31]. Ac-
cordingly, the combination of pheromone updates
and evaporation has been replaced by inserting a new
good solution into the population, replacing the old-
est solution from the population. Experimental results
indicate that P-ACO performs at least as well as the
standard ACO approach[31]. We show that asymp-
totically the proposed hardware implementation of
the Population-based ACO allows for essential reduc-
tions in hardware resources needed in comparison to
the standard ACO algorithm.

The remainder of this paper is organized as fol-
lows.Section 2provides a brief introduction to FPGA
technology.Sections 3 and 4describe the standard,
respectively the Population-based ACO algorithms
and discuss their characteristics with respect to an
FPGA implementation. The conversion of the P-ACO
algorithm and the mapping into FPGA hardware is
then described inSection 5. Experimental studies in
Section 6gauge the performance of the presented
design, followed by several interesting modifications
and extensions inSection 7. Finally, in Section 8we
give a conclusion and an outline of our future work.

2. Field-programmable gate arrays

A variety of devices is currently available for devel-
oping and implementing digital systems. Usually, a de-
signer can choose from a wealth of software-oriented
devices like general-purpose-processors, micro-contr-
ollers, digital signal processors, or application-specific
instruction set processors (ASIPs). On the other hand,
hardware devices—so-called application-specific inte-
grated circuits (ASICs)—are available, which are de-
signed for predefined processing tasks.

By providing programmable selection of alternate
logic and routing structures, field-programmable gate
arrays can be considered to be located at the inter-
section of software and hardware-oriented systems.
Using modern design software, circuits can be de-
signed and implemented very rapidly, thereby avoid-
ing the up-front cost of designing custom circuits and

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 305

IOB IOB IOB IOB

IO
B

IO
B

IO
B

IO
B

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

input/output block

configurable logic block

routing matrix

CLB

CLB

CLB

CLB

chip boundary

local communication

global communication

Fig. 1. Simplified schematic of an FPGA, top-left corner.

providing a quick means of correcting design errors.
After configuring the circuit onto the FPGA chip, it
is switched into operational mode, upon which the
inherent parallelism and pipelined design style can
offer considerable speedup over instruction stream
processors. FPGAs facilitate system development and
allow easy and quick design changes and verification.
Not only are they suitable for rapid prototyping, they
can also substitute for standard logic and gate array
solutions in small and medium volume productions.
However, their high level of flexibility demands ad-
ditional switches and routing, which in turn increase
circuit delays and chip area relative to custom fabri-
cated circuits.

Fig. 1 depicts a simplified representation of an
FPGA comprising the three major configurable ele-
ments commonly present:

• Configurable logic blocks (CLBs) provide the basic
functional components for implementing logic and
registers.

• Input/output blocks (IOBs) form interfaces between
the routing network and package pins.

• Routing network consisting of horizontal and verti-
cal multi-track channels and configurable switches
allow logic blocks to be interconnected to form
complex computational structures.

Generally, CLBs consist of two or three look-up ta-
bles (LUTs) and two flip-flops. Any LUT can be con-
figured to either compute an arbitrary boolean function
of three or four input signals, or they can be used as
a small RAM providing storage for up to 16 bits. De-
pending on the respective device, additional dedicated
storage elements, carry logic and multiplication cir-

cuits or even complete RISC micro-processors might
be embedded into the FPGA chip area[32–34].

Horizontal and vertical communication resources
provide configurable connections among CLBs or be-
tween CLBs and IOBs. Global busses of different
length connect components across longer distances,
whereas local busses allow for a fast communication
between direct neighbours. User-defined linkages be-
tween bus lines can be established either within rout-
ing matrices or at specific programmable interconnect
points (omitted inFig. 1).

3. Standard ant colony optimization

In this section, the standard ACO approach that has
been followed by most ACO algorithms so far is in-
troduced. We describe the generic decision process,
which is then exemplified by means of three combina-
torial optimization problems. Afterwards, we discuss
some relevant aspects when mapping the ACO algo-
rithm onto an FPGA.

3.1. Description

The objective of ACO is to find good solutions
for a given combinatorial optimization problem[3–5].
The problems considered usually allow solutions to
be expressed as a permutationπ of n given items.
The pheromone information is encoded in ann × n

pheromone matrix [τij]. Depending on the problem
the pheromone valueτij expresses the desirability to
assign itemj to placei of the permutation (place×
item coding) or the desirability to position itemj im-
mediately after itemi in the permutation (item× item
coding).

Three examples for combinatorial optimization
problems and the corresponding types of pheromone
encoding are given below:

• For the single machine total tardiness problem
(SMTTP) [35], n given jobs have to be scheduled
onto a single machine. For every jobj, its dead-
line dj and the processing timepj are given. IfCj

denotes the completion time of jobj in a sched-
ule, thenLj = Cj − dj defines its lateness and
Tj = max(0, Lj) its tardiness. The objective is to
find a schedule minimizing the total tardiness of all

306 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

jobs
∑n−1

j=0Tj. Since the relative position of a job
in the schedule is more important than its prede-
cessor or successor in the schedule a place× item
pheromone matrix is used.

• For the quadratic assignment problem (QAP),n fa-
cilities, n locations, and twon×n matrices [dij] and
[fhl] are given, wheredij is the distance between lo-
cationsi andj andfhl is the flow between facilitiesh
andl. The goal is to find an assignment of facilities
to locations, i.e. a permutationπ of [0, n− 1], such
that the sum of distance-weighted flows between
facilities

∑n−1
i=0

∑n−1
j=0dπ(i)π(j)fij is minimized. So-

lutions are constructed by successively assigning
facilities to places (locations) in the permutation,
which means that, like for SMTTP, a place× item
pheromone matrix is used.

• For the traveling salesperson problem (TSP),ncities
are given with distancesdij between citiesi andj for
i; j ∈ [0, n− 1]. The goal is to find a distance min-
imal Hamiltonian cycle, i.e. a mono-cyclic permu-
tationπ of [0: n− 1] which minimizes

∑n−1
i=0 diπ(i).

Since the neighborhood of cities in the permuta-
tion is important for this problem an item× item
pheromone matrix is used.

Typically, when constructing a solution, ants do not
rely solely on pheromone information, but also have
access to some heuristic informationηij, which signi-
fies the immediate impact that a local decision might
have on solution quality. For example, in TSP the
heuristic value of choosing to visit cityj after the last
chosen cityi is considered to be inversely proportional
to the distance separating them,ηij = 1 = dij .

The standard ACO algorithm (seeFig. 2) starts
by initializing the pheromone matrix, setting every
pheromone entry to an initial valueτinit > 0. For
problems with an item× item encoded pheromone
matrix, e.g. TSP, the pheromone entries on the diag-
onal are set to 0, since no city can be its own succes-
sor/predecessor. In every iteration of the algorithm,m
ants generate solutionsπ0, . . . , πm−1. An ant builds
a solution by making a sequence of local decisions,
i.e. successive selections of items. Every decision is
made randomly according to a probability distribution
over the so far unchosen items in selection setS:

∀j ∈ S : pij =
ταij η

β
ij

∑
z∈S ταizη

β
iz

(1)

START

Initialization

stopping
criteria
met?

END

l := l + 1

Evaluate π
l

Generate
solution π

l

l < m ?

l := 0

Comparison

Update
pheromone

matrix

no

yes

yes

no

Fig. 2. ACO processing flow.

where parametersα andβ are used to determine the
relative influence of pheromone values and heuristic
values. Initially, the selection setScontains all items;
after each decision, the selected item is removed
from S. Every solution is evaluated according to the
respective objective function. Afterm solutions have
been generated, the solution qualities are compared to
determine the best solutionπ∗ of the current iteration.
The pheromone matrix is then updated in two steps:

(1) Evaporation: All pheromone values in the matrix
are reduced by a relative amount:∀i, j ∈ [0, n−
1] : τij 	→ (1 − ρ)τij .

(2) Intensification: The pheromone values along the
best solutionπ∗ are increased by an absolute
amount:∀i ∈ [0, n − 1] : τiπ∗(i) 	→ τiπ∗(i) + ∆.

Note that in some variants of ACO (see[5] for an
overview), not only the best solutionπ∗, but them̄ <

m best solutions of the iteration are allowed to incre-
ment pheromone values. Other approaches keep track
of the best solutionπe found so far, called the elitist
solution, and the pheromone update is also performed
according to this solution.

The ACO algorithm executes a number of iterations
until a specified stopping criterion has been met, e.g.
a predefined maximum number of iterations has been

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 307

executed, a specific level of solution quality has been
reached, or the best solution has not changed over a
certain number of iterations.

3.2. Problems mapping standard ACO to FPGA

When mapping ACO to hardware, we have to con-
sider the restrictions set by the target architecture.
These restrictions concern the number, the type, and
the distribution of available computational, memory
and I/O resources.

A straightforward approach would be to directly
map the pheromone matrix onto the FPGA. This de-
sign comprises all processing and memory resources
for each element of the statically allocated matrix.
Ants could then be piped through the matrix in a sys-
tolic fashion as proposed in[15]. Each ant then oc-
cupies the row of the matrix that corresponds to its
actual decision. Obviously, this approach would result
in space requirements that increase quadratically with
problem sizen.

When developing an ACO design for FPGAs, we
encounter several restrictions that make a hardware
realization difficult:

• Pheromone values and the random numbers used
require a floating point representation. Such a repre-
sentation does not lend itself to a fine-grained pro-
grammable logic implementation.

• Evaporation, and the integration of heuristic infor-
mation, requires multiplication operations. How-
ever, the computational resources available on an
FPGA do not efficiently support the implementa-
tion of multiplication circuits. Only a few FPGAs
have dedicated multiplication blocks and these are
restricted in size.

• To make a selection according to the probability dis-
tributionpij, we have to calculate prefix sums of the
products in the numerator over the as yet unchosen
items in the selection setS(refer toEq. (1)). There-
fore, n circuits for prefix sum calculations have to
be provided, one circuit per row in the pheromone
matrix. The required space and time complexity is
prohibitive even for the comparatively large present
day programmable gate arrays.

For these reasons we suggest implementing the al-
ternative P-ACO approach introduced in the following
section.

4. Population-based ant colony optimization

In this section, we explain the P-ACO approach (see
[31]) and describe the differences to standard ACO.
Furthermore, we discuss the advantages of PACO with
respect to an FPGA implementation.

4.1. Description

One important aspect of P-ACO which makes it in-
teresting for a hardware-based implementation is that
it transfers less and only the most important informa-
tion from one iteration of the algorithm to the next.
Instead of a complete pheromone matrix as in ACO,
P-ACO transfers a small populationP of the k best
solutions that have been found in past iterations.

Since each solution is a permutation of then items,
the population can be stored in ann × k matrix Q =
[qij], where each column ofQ contains one solution.
This matrix is called the population matrix. It con-
tains the best solution of each of the precedingk it-
erations. When employing an elitism strategy, column
j = 0 contains the best solution found so far by the
algorithm in all iterations, and the remaining columns
j = 1, . . . , k − 1 contain the respective best solution
of each of the precedingk−1 iterations. Unless noted
otherwise, we employ an elitism strategy.

After an iteration of ants has constructed solutions,
instead of updating a pheromone matrix, P-ACO up-
dates the population. The best solution of the current
iteration is added, and it replaces the oldest solution
in P, if P already containsk solutions, i.e. the pop-
ulation size remains|P | = k. This means that one
column j ∈ {1, . . . , k − 1} in the population matrix
Q has to be changed. Additionally, if this solution is
also better than the elitist solution, then columnj = 0
is also overwritten by the new solution. Initially the
population is empty. Thus, during the firstk− 1 itera-
tions the population has to be filled, which is done by
inserting the best solution of the respective iteration
without removing an older solution.

Note that columnsj ∈ {1, . . . , k − 1} of the pop-
ulation matrixQ are maintained like a FIFO-queue.
Hence, each solution in this queue has an influence
on the decisions of the ants over exactlyk − 1 subse-
quent iterations. Other schemes for deciding which so-
lutions should enter/leave the population are discussed
in [36].

308 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

In P-ACO, the pheromone matrix (τij) that is used
by ants for solution construction is determined by the
population matrix. Each pheromone value is set to the
initial value τ init and is increased, if there are corre-
sponding solutions in the population:

∀i, j ∈ [0, n − 1]; τij 	→ τinit + ζij∆ (2)

with ζij denoting the number of solutionsπ ∈ P with
π(i) = j, or, using the population matrixQ, ζij = |{h :
qih = j}|.

Observe that a pheromone value possesses one of
k+1 possible discrete values and a population update
corresponds to an implicit update of the pheromone
values:

• A solutionπ entering the population corresponds to
a positive update:

∀i ∈ [0, n − 1] : τiπ(i) 	→ τiπ(i) + ∆

• A solutionσ leaving the population corresponds to
a negative update:

∀i ∈ [0, n − 1] : τiσ(i) 	→ τiσ(i) − ∆

This approach is different to the standard ACO al-
gorithm, in which evaporation is used to reduce all
pheromone values after an iteration (see[4,37]). The
increment value∆ > 0 and the population sizek,
along with the number of ants per iterationm, are all
parameters of the ACO algorithm. The exact value of
τ init is arbitrary, as∆ can simply be scaled accord-
ingly to produce an identical probability distribution
as perEq. (1).

4.2. Advantages of mapping population-based ACO
to FPGA

Whereas the ACO approach requires floating point
representations of pheromone values, in P-ACO the
pheromone information is implicitly stored within the
population. The FPGA implementation can therefore
restrict itself to managing a population of solutions
represented by ann × k matrix of integer numbers
that is better suited to current field-programmable
technology.

For every ant decision in ACO, the probability
distribution in Eq. (1) has to be computed. On a
sequential machine, this operation requiresO(n) mul-
tiplication and addition steps. By implementing in

hardware or by parallelizing this operation the time
complexity could be reduced toO(logn) steps.

Using the P-ACO approach, we show that it is
not necessary to perform time consuming prefix sum
calculations as in ACO. An ant decision in P-ACO is
based onk + 1 possible discrete pheromone values.
Moreover, at leastn − k of the pheromone values in
a row are the same. Time requirements for a decision
can be reduced toΘ(k) simple steps as will be further
explained inSection 5. Note thatk is typically a small
constant because empirical studies have shown that a
population size of 1≤ k ≤ 8 is recommendable[31].
For a problem of sizen, this impliesΘ(nk) time is re-
quired per ant to construct a solution. In comparison,
a sequential processor that uses the ACO approach
requiresO(n2) time per ant to construct a solution.
In addition, the functional parallelism embodied in
processingm ants in parallel on an FPGA allows
m solutions to be formed inΘ(nk) time, compared
to O(mn2) time on a sequential processor using the
ACO approach.

5. Implementation of P-ACO on FPGA

In this section, we first give a general top-level
overview of the P-ACO hardware implementation. We
then explain the implementation of the main modules
in greater detail. This section describes the P-ACO
implementation for SMTTP.

5.1. Overview

At high level, the mapping of the P-ACO algorithm
into the corresponding FPGA design is straightfor-
ward (seeFig. 3) and consists of three main modules:

Fig. 3. P-ACO design with Population, Generator and Evaluation
modules.

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 309

Population, Generator and Evaluation modules. Note
that, for the sake of clarity, the Control module has
been omitted. The Population module contains the
population matrixQ = [qij]n×k comprising the eli-
tist solution in columnj = 0 and the FIFO-queue in
columnsj ∈ {1, . . . , k−1}. For SMTTP, each itemqij

is the number of a job to be scheduled. The Population
module is responsible for broadcasting itemsqih (h ∈
{0, . . . , k−1}) in the ith row of the population matrix
to the Generator module. Furthermore, at the end of
the current iteration it receives the best solution from
the Evaluation module, which is then inserted into the
queue. The Generator module holdsm Solution Gen-
erators working concurrently, one Solution Generator
per ant. The solutions are transferred from there tom
parallel Evaluation Blocks in the Evaluation module.
It is also possible to have less thanm Solution Gener-
ators and Evaluation circuits, which will be discussed
in greater detail inSection 7. The evaluation results of
thesemsolutions are collected in a Comparison block,
which determines the best solution of the current iter-
ation. This best solution also becomes the new elitist
solution, if it is better than the current elitist solution.

5.2. Generator module

The Generator module containsm identical Solution
Generators, each of them simulates the behavior of an
artificial ant constructing a solution using the P-ACO
metaheuristic.

The Solution Generator (cmp.Fig. 4) consists of
the three blocks S-Array, Match Buffer and Selec-
tor. The S-Array stores and maintains selection set
{S, . . . , n−1} of itemssi ∈ S with i ∈ {0, . . . , c} and
c = |S| − 1. Furthermore, the S-Array can be queried
for its contents. When it receives a broadcast item

E
va

lu
at

io
n

M
od

ul
e

l*

address al

selected item sl*

match–count (M)

buffer–address

match–address

Match Buffer Selector

ihitem q

C
on

tr
ol

P
op

ul
at

io
n

M
od

ul
e

matchedquery
result

match
S–Array

compress

query–mode

S–count (c)

selected address a

Fig. 4. Solution Generator.

qih from the Population module, it compares this item
with all remaining items inS. If there exists an item
sl ∈ S with sl = qih (i.e. itemsl has been matched),
then the S-Array returns the addressal, which is the
address ofsl within the S-Array. The Match Buffer
stores these match-addressesal into a register. The
Selector builds-up a probability distribution and ran-
domly selects an itemsl∗ ∈ S which is then sent to
the Evaluation module.

The processing flow within a Solution Generator is
depicted inFig. 5. The Solution Generator starts off by
filling the selection setS with numbers 0, . . . , n − 1
and initializing the S-Counterc. This S-Counter is im-
plemented in an external logic in the Control module.
The current S-Counter value is available to all Solution
Generators. The Match CounterM expresses the num-
ber of match addresses stored in the Match Buffer. In
the loop, which starts after initialization, all itemsqih

with h ∈ {0, . . . , k− 1} in row i of the population are
broadcast to the S-Array. Whenever an itemsl in the
S-Array has been matched, i.e.sl = qih, then the cor-
responding match-addressal is stored into the Match
Buffer. Note that if an item matches multiple times,
its address is also transferred multiple times. After the
last repetition of the loop the Match Buffer contains
all items which appear in rowi of the population as
well as in selection setS. From these matches we are
able to derive a probability distribution over all items
in row i of the pheromone matrix which is implicitly
represented by rowi of the population:

∀j ∈ S : pij = τij∑
z∈S τiz

= τinit + ζij∆∑
z∈S (τinit + ζiz∆)

= ζij∆ + 1

c + M∆ + 1
(3)

310 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

yes

Broadcast q ih c := c−1
Decr. S-Counter

Send s l*

to Evaluation

l*Select address a

Ant makes decision:

M := 0
h := 0, i := n−c−1

Initialize S-Array
S := (0,...,n−1)

c := n−1
Initialize S-Counter

START

at address M

into Match Buffer

store address al

Incr. Match Counter
M := M + 1 h := h + 1

no yes
h = k ?

END

c = 0 ?

S := S \ {s }l*

yes Match
s = q ?ihl

no

no

Fig. 5. Solution generation.

Note that in our P-ACO hardware implementation
we setτinit := 1. Heuristic information is disregarded,
but we outline the integration of a discretized heuristic
as a possible modification inSection 7.2. According
to the probability distribution inEq. (3) the ant (So-
lution Generator) makes a decision for theith place
in the solution vector. It randomly selects an address
al∗ which is sent to the S-Array to query the selected
item sl∗ stored at addressal∗ . The selected itemsl∗
is then transferred to the respective Evaluation block.
With respect to SMTTP, the selected job is evaluated
by calculating its job-tardiness which is then added
to the intermediate tardiness sum over all previously
scheduled job. Afterwards,sl∗ is removed from selec-
tion setSand the process continues making decisions
for the remainingn–c places in the solution vector.

The organization of an S-Array within the Genera-
tor module is shown inFig. 6. It consists ofn S-Cells
connected by a fanout bus broadcasting queries. Each
S-Cell is connected to its successor S-Cell to realize a
right-shift of items during array compression (removal
of the selected item from setS) which is done to guar-
antee that the items inS are always stored in S-Cells
with addressesac, . . . , an−1. Only active S-Cells con-
tain valid items inS as indicated by the Active Flag

(AF). An OR-tree generates the match detection bit
for the entire array. Ann-to-

⌈
log2 n

⌉
encoder is re-

quired to produce the address of the S-Cell which as-
serted the hit signal. This cell-address represents the
select signal of the multiplexer connecting the respec-
tive q-res bus to the query result output sent to the
S-Array.

Shaded cells are deactivated, they no longer contain
an item inS. An S-Cell performs the basic operations
during solution generation and its high level structure
is shown inFig. 7. It contains two comparators, a
register buffering the selected addressal∗ , and two
control signals encoding the current phase.

The operation of the S-Array consists of three
phases: the Broadcast Phase, the Selection Phase and
the Compression Phase. During the Broadcast Phase
the k items in population rowi are broadcast to the
S-Cells (i.e. query= qih). The eq-comparator in the
S-Cell compares the broadcast item with its own
stored item s. If they are equal, the S-Cell emits its
hard-coded addressa as query result and asserts a hit
signal, if the respective S-Cell is active (AF = 1).

After the Selector has randomly selected itemsl∗ ,
the S-Array enters the Selection Phase. The selected
addressal∗ is broadcast to the S-Cells. Each S-Cell

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 311

S-cell

0a ac

S-cell

ac

0s

S-cell

an

cs

S-cell

a1

S-cell

R
eg

is
te

r

compression to the right

Set S

OR-tree

Encoder

compress hit hit

E
va

lu
at

io
n

M
od

ul
e

M
at

ch
 B

uf
fe

r

S
el

ec
to

r
P

op
ul

at
io

n
C

on
tr

ol

query

shift shift shiftshift

query
result

M
od

ul
e

ihitem q

l*address a
selected

match

0

1

query

ce
ll

q-
re

s

AF

s q-
re

s

q-
re

s

AF

sq-
re

s

AF

sq-
re

s

AF

s

hit hit hit

Fig. 6. S-Array.ai = i is the index of celli, andsi is the item inS at this address.

uses its eq-comparator to compare the broadcast ad-
dress to its own addressa.

S-Cell l∗ forwards its stored itemsl∗ as query re-
sult to the Evaluation module. Each S-Cellj also uses
its own le-comparator to check whether it is a prede-
cessor of the selected S-Cell, i.e.aj ≤ al∗ . All pre-
decessor S-Cell set their Match Flag to MF := 1, all
others set MF := 0. These flags are to be used in the
Compression Phase.

The final phase for the S-Array is the Compression
Phase. Each S-Cell sends its Active Flag (AF) and its
stored item (s) to its immediate successor SCell. An
S-Cell latches the corresponding data arriving from
its immediate predecessor S-Cell, if its own Match
Flag was set (MF= 1) in the Selection Phase. A
logical zero is loaded into the AF flip-flop of the first
S-cell. The overall effect is that the selected itemsl∗
is overwritten, and all items to the left of the selected

B

A
CMP
=

O

B

A
CMP
<=

O
0

1

0

1

Q

MF

R

D

E

Q

AF

R

D

E

0

1

Q

R

D

E

A

s

query

compress

query

AF–in

s–in

le
ft

S
–C

el
l

S
–A

rr
ay

C
on

tr
ol

hit / AF–out

q–res / q–out

S
–A

rr
ay

 /
rig

ht
 S

–C
el

la

Fig. 7. S-Cell architecture.

cell (i.e. aj < l∗) are shifted one cell to the right.
After an iteration is complete, the original values of
the data registers in the S-Array are re-initialized by
loading the hard-coded S-Cell address values a into
thes-registers.

The Match Buffer is a simple circuit which stores
incoming match-addresses into a register of sizek, if
the match signal is asserted. After the last broadcast
M indicates the total number of Matches sent to the
Selector. The structure of the Match Buffer is shown
in Fig. 8a.

The Selector (seeFig. 8b) receives the number of
matchesM from the Match buffer. The Selector has
been designed to realize the selection of an item ac-
cording toEq. (3). Here, the upper boundR = c+M∆

for a pseudo random number generator is calculated,
where∆ = 2y has been chosen to be a power of 2 in
order to replace multiplications and divisions, which

312 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

M–1
al0

al 1
al

S
el

ec
to

r

0 1 M–1 M k–1

Match Counter

S–Array
m

at
ch

(a)

selected
address

r
RNG

add
sub

carry out

0

RMatch Counter

S–Counter

Match Buffer

(b)

Fig. 8. (a) Match Buffer (shaded area is empty) and (b) Selector.

are not readily supported by current FPGA technol-
ogy, by simple left and right shifts respectively. A ran-
dom number r is drawn uniformly from the interval
[0, R]. Without large multiplier or divider circuits, it
is difficult to draw a random number uniformly from
an arbitrary interval. Hardware-based random number
generators creating random bits can be used to cre-
ate random numbers from the interval [0, 2x − 1] by
drawing x bits. However, since R+ 1 will most likely
not be a power of 2, we suggest repeatedly drawing a
random number r ∈ [0, R′] until r ≤ R, where R′ =
2�log(R)� − 1 is the smallest power of 2 greater than or
equal to R. Let p = Prob(r ≤ R) = (R + 1/R′ + 1)
denote the probability of drawing a random number
r ∈ [0, R], where 1/2 < p ≤ 1. Then the probability
of drawing a random number r ∈ [0, R] after u − 1
unsuccessful trials is P(U = u) = p(1 − p)u−1, de-
creasing exponentially in u. Hence, the expected value
is E(U) = p

∑∞
u=1u(1 − p)u−1 = 1/p. On average,

random numbers have to be drawn E(U) times, with
1 ≤ E(U) < 2, in order to receive a uniformly dis-
tributed random number r ∈ 2 [0, R]. The random bits
necessary for generating the random number are cre-
ated with the RNG introduced by Ackermann et al.
[38], which is well suited in terms of quality of the
random bits and space requirements.

Once r has been generated, we compare the num-
ber with c to determine whether an item from the
S-Array or a buffer-address in the Match Buffer has
been chosen. If r ≤ c, then al∗ = ar is the index of
the selected item from S. Otherwise, al∗ = aM∗ , with
M∗ = l(r−c)�y, i.e. the Match Buffer is queried for
the actual match-address al∗ . Recall that the Match
Buffer consists of the addresses {al0 , . . . , qlM−1}. Af-
ter al∗ has been determined, the corresponding item sl∗
is queried from the S-Array and sent to the Evaluation
module.

5.3. Evaluation module

The Evaluation module is used to evaluate the
solutions generated by the Solution Generators. A
specific Evaluation block is required for each dis-
tinct optimization problem to be solved using the
P-ACO metaheuristic. Such an Evaluation block takes
problem-specific evaluation parameters (e.g. job pro-
cessing times and deadlines for the SMTTP) and
calculates the objective function value of a solution
arriving from a Solution Generator.

The Comparison block determines the best solution
of the iteration and the new elite solution (if found)
to be stored into the population. The design of the
Comparison block for SMTTP is shown in Fig. 9. A
comparator tree reduces the logic delay of the Com-
parison block. The index (best-index) of the Solution
Generator, which constructed the best solution, is
forwarded to the Population module. An additional
comparator compares the quality of the best solution
in the current iteration with the quality of the elite
solution. If the currently best solution is also better
than the elite solution, then an elite flag is-elite is
asserted.

5.4. Population module

The Population module (see Fig. 10) provides
the storage for the population matrix. This storage
makes use of the block select RAM (BRAM) on
the Virtex and Virtex E/II/II pro architectures. The
Population module receives the index (best-index)
of the best solution from the Evaluation module. A
so-called solution forwarding unit (SFU) is responsi-
ble for transferring the respective best solution to the
BRAM. It also calculates the write-addresses of the
forwarded solution. This solution is then written into

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 313

B

A
CMP
<

O

D

E
value
elite

R

Q D

E
index
best

R

QD

E
flag
elite

R

Q

T(m–1)Σ

C
on

tr
ol

in
pu

ts best value

best index

CMP
TREE

T(0)Σ

C
on

tr
ol

M
od

ul
e

E
va

lu
at

io
n

enable

best–index

P
op

ul
at

io
n

M
od

ul
e

is–elite

Fig. 9. Comparison block for the SMTTP. Reset and clock wires are omitted.

R

QE

i–counter

DOB

DOA

BRAM

ENA
WEA

RSTA
ADDRA
DIA

WEB
ENB
RSTB
ADDRB
DIB

0

1

SFU

G
en

er
at

or
 M

od
ul

e

R

QE

SEL

buffered

next–i
broadcast

elite–en

item

C
on

tr
ol

E
va

lu
at

io
n

M
od

ul
e

item
broadcast–

best–en

best–index

solutions

elite–addr
best–addr

h–counter

Fig. 10. Population module.

the FIFO-queue (columns j ∈ {1, . . . , k − 1} of the
population matrix) via port B of the BRAM. If the
arriving solution is also a new elitist solution (elite-en
asserted), then it is also written into column j = 0
via port A. During the Query Phase the Population
module sends all k items qih stored in population row
i to the Generator modules. Therefore it contains two
counters producing indices h and i as described in
Fig. 5. The outputs of both counters are joint to form
a address bus for the items to be read via port A.

6. Experimental results

6.1. Experimental method

We compare the hardware implementation of
P-ACO with its software counterpart using contem-
porary FPGA technologies. For the hardware imple-
mentation, we encoded the design in register-transfer
level VHDL targeting the Xilinx Virtex family of
FPGAs [32], but we exhausted the largest device in
that family with some of the problem instances. In
order to gather a reasonable amount of sample points
to analyse the hardware requirements statistically, we

performed timing estimations on the latest and largest
architecture from Xilinx, the Virtex-II Pro Platform
FPGA XC2VP125 [34]. We did not utilize the Pow-
erPC cores present in the Virtex-II Pro architecture,
because these are very special to the Virtex-II Pro.
How these embedded CPU cores can be used effi-
ciently for our design is a direction of future work.
We used XST 5.2sp1 on normal optimization effort
for high level logic synthesis, and Xilinx ISE 5.2sp1
Place and Route for implementation on the FPGA.
In software, we programmed the P-ACO to execute
on a AMD Athlon uniprocessor machine clocked
at 1540 MHz to measure timing performance of the
software implementation. In this paper, we restrict to
comparing the implementation on a single FPGA with
a software-based solution on a single processor. Con-
sidering an implementation on a multi-FPGA-board
or a parallel variant of the software implementation
is an interesting aspect for future research.

The optimization problem regarded is SMTTP,
where the problem size, i.e. the number of jobs,
was scaled within the range from 40 ≤ n ≤ 320.
Processing times were chosen randomly from the
interval [1:64]. The number of Solution Genera-
tors (which equals the number of ants per iteration)

314 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

0
10
20
30
40
50
60
70
80

10000

20000

30000

40000

50000

60000

70000

80000

40 64 128 192 256 320

#B
R

A
M

 C
el

ls
 U

se
d

#L

U
T

s
an

d
#R

eg
is

te
rs

 U
se

d

Size of Problem Instance (n)

Resource Requirements for m=8 Solution Generators

LUTs
REGs
BRAM

(a)

0
10
20
30
40
50
60
70
80

10000

20000

30000

40000

50000

60000

70000

80000

2 4 8 12 16 24 32
#B

R
A

M
 C

el
ls

 U
se

d

#L
U

T
s

an
d

#R
eg

is
te

rs
 U

se
d

Number of Solution Generators (m)

Resource Requirements for Problem Size n=64

LUTs
REGs
BRAM

(b)

Fig. 11. FPGA resource utilization—number of BRAM cells, number of LUTs, number of slice registers—for varying problem sizes and
number of implemented Solution Generators. (a) Varying problem sizes n, fixed number of Solution Generators (m = 8). (b) Varying
number of Solution Generators m, fixed problem size (n = 64).

ranged from m = 2 to 32. For the hardware im-
plementation, we recorded the utilization of FPGA
resources, circuit delays, and operational frequencies.
For every problem instance of the software coun-
terpart, we recorded the execution time per iteration
as an average over 100,000 iterations of the P-ACO
algorithm.

6.2. Resource requirements

We measured the resource requirements by counting
the number of look-up tables, slice registers (REGs),
and Block Select RAM cells used by our design im-
plementations. In Fig. 11a, resource requirements are
depicted for a fixed number of Solutions Generators
m = 8 and variable problem size n. The resource re-
quirements shown in Fig. 11b are for a fixed problem
size n = 64 and a variable number of Solution Gen-
erators.

As the problem size increases (see Fig. 11a), the
number of S-Cells, i.e. the width of an S-Array, grows
proportionally. The height of the S-Array, grows log-
arithmically, because each S-Cell stores one item rep-
resented by log(n) bits. Since the S-Arrays occupy the
largest portion of the total P-ACO circuitry, the over-

all consumption of LUTs and REGs grows according
to Θ(n log(n)).

This theoretical assumption is confirmed by the
regression results (see Table 1) which correspond
to the values shown in Fig. 11. As indicated by the
Bravais–Pearon index r ≈ 1, all resource require-
ments show a very strong correlation to m and n, re-
spectively. The number of BRAM cells used remains
on a constant level of 21. For an increasing number
of Solution Generators (see Fig. 11b), all resource
requirements grow linearly. Given a fixed problem
size of n = 64, we need extra 1516 LUTs, 542 REGs,

Table 1
Regression results for number of LUTs, REGs and BRAMs

Fixed Resource Regression function f r

m = 8 LUTs 28.2257n log2(n) + 1531.71 0.999079113
REGs 9.74471n log2(n) + 929.175 0.999861506
BRAM 21 Undefined

n = 64 LUTs 1516.17m + 97.2749 0.999987262
REGs 542.244m + 244.764 0.998796397
BRAM 2.4802m + 1.5297 0.999374327

For every regression function, the Bravais–Pearon correlation index
r is given.

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 315

1

4

8

12

16

20

24

28

32

128 256 384 512 640 768 896 1024

N
um

be
r

of
 S

ol
ut

io
n

G
en

er
at

or
s

(m
)

Size of Problem Instance (n)

Attainable n/m Combinations, Restricted by Available #LUTs

Virtex II pro XC2VP125
Virtex II XC2V8000
Virtex E XCV3200E

Virtex XCV1000

(a)

1

4

8

12

16

20

24

28

32

128 256 384 512 640 768 896 1024

N
um

be
r

of
 S

ol
ut

io
n

G
en

er
at

or
s

(m
)

Size of Problem Instance (n)

Attainable n/m Combinations, Restricted by Available #REGs

Virtex II pro XC2VP125
Virtex II XC2V8000
Virtex E XCV3200E

Virtex XCV1000

(b)

Fig. 12. Attainable combinations of n and m for different types of FPGAs. Restrictions set by the number of available LUTs (a) and REGs
(b).

and 2.5 BRAM cells approximately, if we intend to
extent the P-ACO circuit by an additional Solution
Generator (cmp. Table 1).

Fig. 12 provides an overview of the maximal at-
tainable combinations of m and n for the largest
members of the Xilinx Virtex, Vitex E, Virtex II, and
Virtex II pro FPGA families. Note that in practice
it is inefficient to use very large numbers of ants
(Solution Generators). Therefore, in the diagrams the
upper limit in the range of Solution Generators was
set to m = 32. The left Figure shows all combi-
nations, if the implementations were only restricted
by the number of available LUTs; whereas the right
figure shows all implementations, if they were only
restricted by the number of available REGs. On each
of the considered FPGA devices, the number of LUTs
is equal to the number of REGs. However, in the de-
sign implementation the number of configured LUTs
is about 170% higher than the number of REGs used.
Hence the curves in the right figure are considerably
higher than the respective curves on the left hand
side.

6.3. Time requirements

The generation of a solution for SMTTP consists of
n decision steps (cmp. Fig. 13). For each decision, k
queue items are broadcast and matched. The time re-
quirements for this operation is denoted by tbm. After-
wards, item sl∗ is selected and evaluated, which takes
ts and te time. The time to compress the S-Array is

denoted by tcps. Due to the generic implementation
of the Solution Generators, for a given problem size
n, the total time for any decision td is constant and
does not depend on the optimization problem under
consideration. On the other hand, the time to evalu-
ate an item does strongly depend on the optimization
objective. Thus the time for generating a complete
solution is tg = ntd , if tcps ≥ te, otherwise tg =
max{ntd + te,nte + td} − tcps. We implemented the
P-ACO circuit for SMTTP so that evaluation does not
retard the beginning of the next decision, i.e. tg =
ntd + te − tcps. If a solution cannot gradually be evalu-
ated after each decision, like in QAP, then the complete
solution is evaluated after the last decision has been
made. In every iteration m, solutions are generated in
parallel. Afterwards, these solutions are compared by
their evaluation quality and the population is updated,
which requires tcmp and tu time respectively. Thus the
time to finish a complete iteration is tit = tg+tcmp+tu.
The time to (re-)initialize the Solution Generators is
disregarded.

Table 2 shows the maximum global clock frequen-
cies fgl for a fixed number of Solution Generators
m = 8 and varying problem sizes n. It further gives
an overview of the required clock tics: number of
clock tics for generating a solution cg = tgfgl, clock
tics for comparison ccmp = tcmpfgl, clock tics per
population update cu = tufgl, and clock tics per iter-
ation cit = titfgl = cg + ccmp + cu. Accordingly, the
maximum frequency per iteration can be calculated:
fit = fgl/cit .

316 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

tbm

te

evaluate sl*

tcpsts

select sl* compress

select sl* compress

evaluate sl*

td

time

j+1

j

broadcast/match q , i = 0 ,..., k−1

broadcast/match q , i = 0 ,..., k−1

ij

i,j+1

de
ci

si
on

, e
va

lu
at

io
n

Fig. 13. Schedule of two decisions and evaluations. Here, only one Solution Generator is considered.

In Fig. 14, we present timing results obtained by
synthesizing the VHDL description of our design. The
gap at m = 7 is present as the endpoints of the crit-
ical path changes. For m ≤ 7, the address counter to
the S-Array output is the critical path; whereas for
m ≥ 8, a control signal is the source of the critical
path. In Fig. 14, the increase in critical path length can
be attributed to the increased logic levels as the de-
sign grows in size; the growth in critical path length
for increasing numbers of Solutions Generators im-
plemented is likely to be due to the increased diffi-

Table 2
Operating frequencies for the hardware P-ACO implementation
with m = 8 Solution Generators on the Virtex-II Pro X2VP125-7
device

n Clock Tics Max fgl
(MHz)

Max fit
(kHz)

cg ccmp cu cit

40 403 2 40 445 27.651 61.935
48 483 2 48 533 32.219 60.448
56 563 2 56 621 30.806 49.607
64 643 2 64 709 25.997 36.667
96 963 2 96 1061 26.832 25.289

128 1283 2 128 1413 22.522 15.939
160 1603 2 160 1765 19.899 11.274
192 1923 2 192 2117 21.011 9.925
224 2243 2 224 2469 19.001 7.695
256 2563 2 256 2821 19.789 7.015
288 2883 2 288 3173 15.273 4.813
320 3203 2 320 3525 14.494 4.112

culty of solving the placement and routing problems
for large circuit sizes. In all instances, routing delay
is the major component of the total critical path delay.
Clock skew was a negligible problem for the larger
circuits due to the dedicated clock routing resources
of the FPGA. As we increase the number of Solution
Generators, propagation delays grow only slightly.

In Figs. 15 and 16, we compare the P-ACO algo-
rithm implemented in software against the hardware
realization. Since the software and hardware versions
produce the same solutions, their performances are
compared by means of the required time per iteration.
Note that, except for the first k iterations, the execu-
tion time for every iteration is constant. The figures
on the left compare the time per iteration, whereas the
figures on the right depict the respective speedup val-
ues, where the speedup is defined by:

speedup = time per iteration in software

time per iteration in hardware

In Fig. 15, the execution time per iteration for both
the software and the hardware implementations grow
with a linear trend as the problem size n is increased.
However, for every problem size, the hardware ver-
sion runs faster than its software counterpart. Speedup
values range from a minimum of 2.04 for a prob-
lem size of n = 320 to maximum value of 4.07 for
n = 48.

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 317

0

10

20

30

40

50

60

70

80

40 64 128 192 256 320

P
ro

pa
ga

tio
n

D
el

ay
s

[n
s]

Size of Problem Instance (n)

Propagation Delays

Maximum Pin-Pin Delay
Longest Path Logic Delay

Longest Path Routing Delay
Longest Path Clock Skew

Minimum Cycle Length

(a)

0

10

20

30

40

50

60

70

80

2 4 8 12 16 24 32

P
ro

pa
ga

tio
n

D
el

ay
s

[n
s]

Number of Solution Generators (m)

Propagation Delays

Maximum Pin-Pin Delay
Longest Path Logic Delay

Longest Path Routing Delay
Longest Path Clock Skew

Minimum Cycle Length

(b)

Fig. 14. Delay components contributing to critical path for different problem sizes and number of implemented Solution Generators. (a)
Number of implemented Solution Generators m = 8, varying problem size n. (b) Problems of size n = 64, varying number of implemented
Solution Generators m.

0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 40 64 128 192 256 320

T
im

e
pe

r
Ite

ra
tio

n
[u

se
c]

Size of Problem Instance (n)

Time Requirements for SMTTP

PACO Software
PACO Hardware

(a)

0

1

2

3

4

5

 40 64 128 192 256 320

S
pe

ed
up

Size of Problem Instance (n)

Speedup Hardware over Software Implementation for SMTTP

(b)

Fig. 15. Comparison of hardware and software implementation of P-ACO for fixed m = 8. (a) Time requirements per iteration. (b) Speedup
of hardware over software implementation.

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 8 12 16 24 32

T
im

e
pe

r
Ite

ra
tio

n
[u

se
c]

Number of Solution Generators (m)

Time Requirements for SMTTP

PACO Software
PACO Hardware

(a)

 0

 2

 4

 6

 8

 10

 12

 2 4 8 12 16 24 32

S
pe

ed
up

Number of Solution Generators (m)

Speedup Hardware over Software Implementation for SMTTP

(b)

Fig. 16. Comparison of hardware and software implementation of P-ACO for fixed n = 64. (a) Time requirements per iteration. (b) Speedup
of hardware over software implementation.

318 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

Fig. 16 shows that the time per iteration in software
grows with a linear trend as the number of Solution
Generators is increased; whereas for the hardware
implementation, the time requirements remain on an
almost constant level of approximately 28 �s. The
corresponding speedup values range from 1.59 for
m = 2 Solution Generators to 10.22 at m = 32. We
achieve speedup linear in m, taking into account that
the task of placing and routing the design becomes
considerably more difficult for larger m. From the
P-ACO perspective this means that within certain
constraints we can easily increase the degree of par-
allelism (in terms of concurrently working ants) with
only a marginal decline in execution speed.

7. Modifications

This section deals with modifications to the FPGA
implementation of P-ACO described in Section 5.
Specifically, we propose a technique for reducing the
space needed by the P-ACO algorithm and discuss
how to enable the algorithm to use heuristic informa-
tion.

7.1. Space constraints

Depending on the size of the FPGA designated for
mapping the P-ACO algorithm, we will at some point
be dealing with problem instances too large to fit the
entire algorithm as introduced in Section 5. Specifi-
cally, the “height” of the P-ACO algorithm increases
only logarithmically with n whereas the “width” in-

gen. solutions cmp.

gen. solutions cmp.

gen. solutions cmp.

tg tcmp

tit

tu

1

2

3

cy
cl

es

time

Population update

Fig. 17. Schedule of a complete iteration consisting of g = 3 cycles. After the last cycle, the population is updated. Here, only one Solution
Generator is considered.

creases in a linearly, resulting in an increasingly flat
rectangle shape as a basic structure. Then, fitting the
algorithm can be accomplished by folding, which is
standard technique for this kind of problem.

If a problem size n is given, the available resources
might constrain the number of Solution Generators
that can be implemented on the FPGA device. We pro-
pose implementing only m′ < m Solution Generators
operating in g cycles, where m = gm′ (see Fig. 17).
In every cycle m′, solutions are generated in paral-
lel. Afterwards, these solutions are compared by their
evaluation quality. After each cycle, the newly cre-
ated solutions are compared among each other, and
the best solution of the current cycle is compared with
the best solution of all preceding cycles. Comparison
takes tcmp time, and can be done while the next solu-
tion is being generated. Thus the time to finish a com-
plete iteration is tit = max{gtg + tcmp,gtcmp + tg}+ tu.

Another method to make better use of the avail-
able space takes into account the fact that the selec-
tion set S decreases in size over time. It is possible
at certain points in time to move the currently active
selection sets to an S-Array with a smaller number of
S-Cells. Two examples for this modification are given
in Fig. 18.

The 2/4 S-Array configurations in Fig. 18a and b
save 25/37.5% space at the cost of having the sim-
ulated ants be in different stages of completion due
to their respective starting delays. In both configu-
rations, the left side shows all S-Arrays after a new
ant was started, the right side the moment just be-
fore the selection sets are shifted down and a new ant
starts.

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 319

(a) (b)

Fig. 18. Example of 2 S-Array (a) and 4 S-Array configuration (b) with decreasing size. The shaded area represents the active part of the
row holding set S.

7.2. Heuristic information

Another aspect of ACO algorithms in general
that was neglected in the basic layout described in
Section 5 is the use of heuristic information about
the problem instance. A characteristic of ACO in
general is that heuristic information can often be
easily integrated into the algorithm and is used suc-
cessfully by most ACO algorithms for combinatorial
optimization problems [39]. In this subsection, we
describe a method of utilizing heuristic information
without giving up the short run times of the FPGA
implementation of the P-ACO algorithm.

The integration of heuristic information into the
P-ACO hardware algorithm poses two problems:
heuristic values are generally real-valued, and they
exist for all items of the set S, not just an O(k)
size subset. Therefore, we propose to transform the
information in every row i of the heuristic matrix
�ηi = (ηi,0, . . . , ηi,n−1) ∈ R

n, e.g. the reciprocal of
the distances from city i to all others in TSP, into
a set of l heuristic-vectors {�hi,0, . . . , �hi,l−1} with
�hi,u ∈ [0, n − 1]t and u ∈ {0, . . . , l − 1}, where each
vector �hi,u holds items which have a high heuristic
value. The following method is proposed:

(1) calculate

δi = 1

tl

n−1∑

j=0

nij

(2) do the following n times

(a) determine j∗ so that ηij∗ = maxj=0,... ,n−1ηij

(b) add item j∗ to the pool of numbers for build-
ing the heuristic-vectors.

(c) update nj∗ 	→ ηj∗ − δi.

The quality of the approximation attainable by this
method depends on the values of ηij , t and l. Decid-
ing which items should be placed into a given vector
is accomplished by placing any one item in as many

different vectors as possible and combining it with
the maximum amount of other items. The order of
the items in each vector �hiu is arbitrary. If l > 1, i.e.
there is more than one heuristic-vector for the given
row, then we declare one of the heuristic-vectors �hiu∗
as active, and the other l − 1 as inactive. Only the
active heuristic-vector affects the decision-process of
the ant. After an iteration of m ants has finished, the
active heuristic-vector �hiu∗ is replaced by some other
�hiu with u ∈ [0, l − 1]\{u∗}. Note that the creation of
the heuristic-vectors �hi,0, . . . , �hi,l−1 must take place
before the algorithm is programmed onto the FPGA.
Therefore, problems which require an online computa-
tion of the heuristic values, e.g. most scheduling prob-
lems, cannot be handled by this method.

In the P-ACO algorithm, the pheromone matrix of
the standard ACO algorithm was replaced by a popula-
tion of k good solutions. The necessary calculations to
transform row i in the population matrix Q into the re-
spective values τij were described in Eq. (2). Likewise,
we are now able to transform any heuristic-vector �hiu∗
into the corresponding heuristic value η̂ij describing
the heuristical impact of item j when making a deci-
sion in row i:

∀i, j ∈ [0, n − 1] : η̂ij 	→ ηinit + γij∆H (4)

where ηinit ≥ 0 denotes the base heuristic value as-
signed to every item j and γij describes the number
of occurences of item j in the active heuristic-vector,
i.e. γij = |{v : hiu∗v = j, v = 0, . . . , t − 1}|. These
occurences are all weighted by the same value 7H.

As in standard ACO (cmp. Eq. (1)), ants make ran-
dom decisions according to a probability distribution
pij:

∀j ∈ S : pij = τij η̂ij∑
z∈S τizη̂iz

= (τinit + ζij∆P)(ηinit + γij∆H)∑
z∈S (τinit + ζiz∆P)(ηinit + γij∆H)

(5)

320 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

0
PHakt−1qi,0 hi,u*,0qi,k−1 hi,u*,t−1

P∆ ∆H ∆PHP∆ ∆H ∆PHweights 1 1

P−Buffer H−Buffer PH−Buffer

Match BuffersS−Array

k broadcasts

match addresses

population−vector heuristic−vector

s s Pa Pa Ha Ha PHa0 n−1 0 k−1 0 t−1

Fig. 19. Items in the current Population row i and the respective heuristic-vector �hiu∗ are broadcast. Match addresses are stored in Match
Buffers. Weights for items in S and match addresses are indicated.

In order to distinguish the two types of weights, ∆
in Eq. (2) has been renamed to ∆P. Unlike in standard
ACO, no exponentiations by α and β are required any-
more. Pheromone and heuristic values are weighted by
choosing the init and ∆ parameters accordingly. The
required arithmetic operations better suit the resources
provided by the FPGA architecture. Furthermore, no
prefix sum calculations are required to allow the ant
to draw from this distribution. Instead we extend the
Match Buffer concept introduced in Section 5.2 to
also consider the knowledge stored in the heuristic-
vectors.

Let population-vector (qi,0, . . . , qi,k−1) be the cur-
rent row in the population, and �hi,u∗ = (hi,u∗,0, . . . ,
hi,u∗,t−1) the current heuristic-vector (cmp. Fig. 19).

All k + t items in both vectors are broadcast to
the S-Array that contains the items of selection set S.
The addresses of matched items are then stored into
three different types of Match Buffers. The P-Buffer
stores MP ≤ k addresses of items which are in the
population-vector as well as in set S, i.e. the P-Buffer
is equivalent to the Match Buffer shown in Fig. 8a.
The respective MH ≤ t addresses of items which oc-
cur in the heuristic-vector and in selection set S are
copied into a separate location called the H-Buffer.
Furthermore, since the pheromone and heuristic val-
ues are multiplied in the ACO algorithm, we need
an additional buffer—called PH-Buffer—storing the
items which are in the heuristic-vector as well as in
the population-vector and in set S. Let ∆P = 2yP

be the weight associated with the population-vector
and ∆H = 2yH the weight of the heuristic-vector de-
rived from the heuristic information. Then, ∆PH =
∆P∆H = 2yP+yH is the weight for an item j of
which the address is stored φij = ζijγij times in the
PH-Buffer. After all broadcasts, the PH-Buffer con-
tains MPH ≤ kt addresses. Using the buffer concept

and setting τinit = ηinit = 1, Eq. (5) can now be
transformed to:

∀j ∈ S : pij = τij η̂ij∑
z∈S τizη̂iz

= 1 + ζij∆P + γij∆H + φij∆PH

|S| + MP∆P + MH7H + MPH∆PH

(6)

In order to make an ant decision based on this dis-
tribution, the Selector from the basic layout in Fig. 8b
must be modified as well, since we now choose from
four sets of items with different weights instead of two.
These modifications, however, are essentially only do-
ing two further subtractions and expanding the mul-
tiplexer which chooses the address of the S-Cell. An
efficient parallel implementation of the Match Buffers
and the Selectors on an FPGA allows to perform an
ant decision in Θ(k + t) time, where k and t can be
considered as small constants.

8. Conclusion

We have presented a mapping of population-based
ant colony optimization to an FPGA architecture. In
doing so, we have implemented new ways for dealing
with the pheromone information, which asymptoti-
cally have led to significant improvements in runtime
and area requirements in comparison to the standard
ACO algorithm if it was implemented in hardware.
Test results of an FPGA implementation for the
SMTTP problem have shown a considerable speedup
over a software implementation, especially for a large
number of ants per iteration. Furthermore, we have
shown possibilities for compacting the algorithm
and including heuristic information in the process

B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322 321

of constructing the solutions without asymptotically
increasing runtime or required space.

Our future work will include the implementation
of compaction techniques and item × item encoded
problem instances (e.g. TSP). Furthermore, the effect
of the discretized heuristic on solution quality will be
investigated.

Acknowledgements

This work was supported by the Xilinx University
Programme and the International Office (IB/DLR)
of the German Ministry of Education and Research
(BMBF) within the scope of WTZ-project AUS
00/002.

References

[1] J.L. Deneubourg, J.M. Pasteels, J.C. Verhaege, Probabilistic
behavior in ants: a strategy of errors? J. Theor. Biol. 105
(1983) 259–271.

[2] R. Beckers, J.L. Deneubourg, S. Goss, Trails and U-turns in
the selection of the shortest path by the ant Lasius Niger, J.
Theor. Biol. 159 (1992) 397–415.

[3] M. Dorigo, V. Maniezzo, A. Colorni, Positive Feedback as
a Search Strategy, Tech. Rep. 91-016, Politecnico di Milano,
Italy, 1991.

[4] M. Dorigo, Optimization, Learning and Natural Algorithms
(in Italian), Ph.D. Thesis, Dipartimento di Elettronica,
Politecnico di Milano, 1992.

[5] M. Dorigo, G. Di Caro, The ant colony optimization
meta-heuristic, in: D. Corne, M. Dorigo, F. Glover (Eds.),
New Ideas in Optimization, McGraw-Hill, 1999, pp. 11–32.

[6] D. Merkle, M. Middendorf, H. Schmeck, Ant colony
optimization for resource-constrained project scheduling,
IEEE Trans. Evolut. Comput. 6 (4) (2002) 333–346.

[7] L.M. Gambardella, E.D. Taillard, G. Agazzi, MACS-VRPTW:
a multiple ant colony system for vehicle routing problems
with time windows, in: New Ideas in Optimization, McGraw
Hill, London, UK, 1999, pp. 63–76.

[8] C. Solnon, Ants can solve constraint satisfaction problems,
IEEE Trans. Evolut. Comput. 6 (4) (2002) 347–357.

[9] L.-M. Gambardella, E. Taillard, M. Dorigo, Ant colonies for
the quadratic assignment problem, J. Operat. Res. Soc. 50
(1999) 167–176.

[10] M. Bolondi, M. Bondaza, Parallelizzazione di un algoritmo
per la risoluzione del problema del comesso viaggiatore,
Master’ s thesis, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, 1993.

[11] M. Dorigo, Parallel ant system: an experimental study,
unpublished manuscript, 1993.

[12] B. Bullnheimer, G. Kotsis, C. Strauss, Parallelization
strategies for the ant system, in: R.D. Leone, A. Murli, P.
Pardalos, G. Toraldo (Eds.), High Performance Algorithms
and Software in Nonlinear Optimization, Vol. 24 of Applied
Optimization, Kluwer, 1998, pp. 87–100.

[13] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard, Parallel ant
colonies for combinatorial optimization problems, in: J.R.
et al. (Eds.), Parallel and Distributed Processing, 11 IPPS/
SPDP’99 Workshops, no. 1586 in LNCS, Springer-Verlag,
1999, pp. 239–247.

[14] S. Iredi, D. Merkle, M. Middendorf, Bi-criterion optimization
with multi colony ant algorithms, in: E.Z. et al. (Eds.),
Evolutionary Multi-Criterion Optimization, First International
Conference (EMO’01), LNCS 1993, Springer-Verlag, 2001,
pp. 359–372.

[15] D. Merkle, M. Middendorf, Fast ant colony optimization on
runtime reconfigurable processor arrays, Genet. Programming
Evol. Machines 3 (4) (2002) 345–361.

[16] M. Rahoual, R. Hadji, V. Bachelet, Parallel ant system for
the set covering problem, in: Ant Algorithms, Proceedings
of Third International Workshop ANTS 2002, LNCS 2463,
Springer-Verlag, Brussels, Belgium, 2002, pp. 262–267.

[17] M. Middendorf, F. Reischle, H. Schmeck, Multi colony ant
algorithms, J. Heuristics 8 (3) (2002) 305–320.

[18] M. Randall, A. Lewis, A parallel implementation of ant colony
optimization, J. Parallel Distrib. Comput. 62 (9) (2002) 1421–
1432.

[19] R. Miller, V.K. Prasanna-Kumar, D.I. Reisis, Q.F. Stout,
Parallel computations on reconfigurable meshes, IEEE Trans.
Comput. 42 (6) (1993) 678–692 (a preliminary version of this
paper was presented at 5th MIT Conference on Advanced
Research in VLSI, 1988).

[20] O. Diessel, H. ElGindy, M. Middendorf, M. Guntsch,
B. Scheuermann, H. Schmeck, K. So, Population based
ant colony optimization on FPGA, in: IEEE International
Conference on Field-Programmable Technology (FPT), 2002,
pp. 125–132.

[21] O. Cheung, P. Leong, Implementation of an FPGA based
accelerator for virtual private networks, in: IEEE International
Conference on Field Programmable Technology (FPT), Hong
Kong, 2002, pp. 34–43.

[22] J. Gause, P. Cheung, W. Luk, Static and dynamic
reconfigurable designs for a 2D shape-adaptive DCT, in:
R. Hartenstein, H. Grüunbacher (Eds.), Field-Programmable
Logic and Applications, FPL, Springer-Verlag, 2000,
pp. 96–105.

[23] J. Villasenor, C. Jones, B. Schoner, Video communications
using rapidly reconfigurable hardware, IEEE Trans. Circuits
Syst. Video Technol. (1995) 565–567.

[24] A. Hämäläinen, M. Tommiska, J. Skyttä, 6.78 gigabits
per second implementation of the IDEA cryptographic
algorithm, in: M. Glesner, P. Zipf, M. Renovell (Eds.), Field-
Programmable Logic and Applications. Reconfigurable Com-
puting Is Going Mainstream, LNCS 2438, Springer-Verlag,
2002, pp. 760–769.

[25] S. Bade, B. Hutchings, Fpga based stochastic neural network
implementation, in: Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, 1994, pp. 189–198.

322 B. Scheuermann et al. / Applied Soft Computing 4 (2004) 303–322

[26] P. Lysaght, J. Stockwood, J. Law, D. Girma, Artificial
neural network implementation on a fine-grained fpga, in:
Field-Programmable Logic, 1994, pp. 421–431.

[27] R. Gadea, J. Cerd, F. Ballester, A. Mochol, Artificial
neural network implementation on a single fpga of a
pipelined on-line backpropagation, in: Proceedings of the 13th
Conference on International Symposium on System Synthesis,
2000, pp. 225–230.

[28] P. Graham, B. Nelson, Genetic algorithms in software and in
hardware—a performance analysis of workstation and custom
computing machine implementations, in: IEEE Symposium
on FPGAs for Custom Computing Machines, 1996, pp. 216–
225.

[29] I.M. Bland, G.M. Megson, The systolic array genetic
algorithm, an example of systolic arrays as a reconfigurable
design methodology, in: IEEE Symposium on FPGAs for
Custom Computing Machines, 1998, pp. 260–261.

[30] C. Aporntewan, P. Chongstitvatana, Hardware implementation
of the compact genetic algorithm, in: Proceedings of the 2001
IEEE Congress on Evolutionary Computation, Seoul, South
Korea, 2001, pp. 624–629.

[31] M. Guntsch, M. Middendorf, A population based approach
for ACO, in: S. Cagnoni et al. (Eds.), Applications of
Evolutionary Computing—EvoWorkshops 2002: EvoCOP,

EvoIASP, EvoSTIM/EvoPLAN, no. 2279 in Lecture Notes in
Computer Science, Springer-Verlag, 2002, pp. 72–81.

[32] Xilinx, Virtex 2.5V FPGA Complete Data Sheet, http://direct.
xilinx.com/bvdocs/publications/ds003.pdf (2001).

[33] Xilinx, Virtex-II Platform FPGA, complete data sheet, http://
direct.xilinx.com/bvdocs/publications/ds031.pdf (2002).

[34] Xilinx, Virtex-II Pro Platform FPGA Complete Data Sheet,
http://direct.xilinx.com/bvdocs/publications/ds083.pdf (2003).

[35] J. Du, J.Y.-T. Leung, Minimizing total tardiness on one
machine is NP-hard, Math. Oper. Res. 15 (1990) 483–485.

[36] M. Guntsch, M. Middendorf, Applying population based aco
to dynamic optimization problems, in: M. Dorigo et al. (Eds.),
Ant Algorithms: 3rd International Workshop, ANTS2002, Vol.
2463 of Lecture Notes in Computer Science, Springer-Verlag,
2002, pp. 111–122.

[37] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimi-
zation by a colony of cooperating agents, IEEE Trans. Syst.
Man Cybern.Part B 26 (1996) 29–41.

[38] J. Ackermann, U. Tangen, B. Bödekker, J. Breyer, E. Stoll, J.
McCaskill, Parallel random number generator for inexpensive
configurable hardware cells, Comput. Phys. Commun. 140 (3)
(2001) 293–302.

[39] M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms
for discrete optimization, Artificial Life 5 (2) (1999) 137–172.

http://direct.xilinx.com/bvdocs/publications/ds003.pdf
http://direct.xilinx.com/bvdocs/publications/ds003.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds083.pdf

	FPGA implementation of population-based ant colony optimization
	Introduction
	Field-programmable gate arrays
	Standard ant colony optimization
	Description
	Problems mapping standard ACO to FPGA

	Population-based ant colony optimization
	Description
	Advantages of mapping population-based ACO to FPGA

	Implementation of P-ACO on FPGA
	Overview
	Generator module
	Evaluation module
	Population module

	Experimental results
	Experimental method
	Resource requirements
	Time requirements

	Modifications
	Space constraints
	Heuristic information

	Conclusion
	Acknowledgements
	References

