AN INVESTIGATION INTO THE PERFORMANCE
OF A GENETIC ALGORITHM
FOR THE SELECTION OF NEURAL NETWORKS

Bachelor of Engineering
Fourth Year Project Report

~By: Oliver Diessel |
Supervisor: Bruce Penfold W

University of Newcastle
November 1990



Acknowledgements

I would like to thank Bruce Penfold, my supervisor, and Michael Sculley for their assistance

and comments in the course of this investigation.

I would also like to thank my employer, Allco for its support.




Table of Contents

Acknowledgements

Table of Contents

1

2

3

Abstract

Introduction

Description of the model

3.1

3.2

3.3

34

The Network Structure

3.1.1 Nodes
3.1.2 Connections

Computing with the Networks

3.2.1 Representation
3.2.2 Testing

Training

The Genetic Algorithm

3.4.1 The Genetic Structure
3.4.2 The Breeding Cycle

3.4.3 Mutation
344 Generation

Results and Discussion

4.1

42

4.3

4.4

4.5

A Note on Convergence
Rerunning the XOR Task
Approa(_:h to Mutation
Comparison with other Algorithms

4.4,1 Stochastic Methods
4.4.2 Gradient Descent Methods

Seven Input Odd Parity Task

Page

o~

10

10
10

12
12
12
14
15
17
19
19
19
20
26

26
27

27

ii




4,6  Parameter Optimisation

4.6.1 Binary Results
4.6.2 Real Results

5 Further Investigation

5.1 Verification of Results
5.2 Extensions to Results
5.2.1 Rate of Mutation Application
5.2.2 Changing Environment
5.2.3 Identification of Suitable Substructures
53 Variations to the Model
5.3.1 Breeding Model
5.3.2 Network Model
5.3.3 A Network Farm?
6 Conclusion

Appendix A Genetic Algorithm Concepts

Appendix B Program listings

B.1 System Overview

B2 Program Files

B.3 Task Files

B4 Make Files
Bibliography

29

31
36

40
40
40
40
40
41
41
41
44
45
46
48
52

52
33

121
126

130

idi



1 Abstract

This project extends the work carried out by Michael Bentink in a 1989 project "Neural
Networks, a Genetic Breeding Algorithm”, which concerned itself with producing neural
networks with natural abilities for performing particular tasks by combining structural features

of above average networks using a genetic algorithm [1].

The performance of the algorithm, as defined by its capacity to select networks to perform

a given task, was investigated in this project.

The investigation began with verification of Bentink’s results before it focused on the
mutation strategy used by the algorithm to improve its performance. With an improved
mutation model, the algorithm was tested on the XOR task and a seven input parity bit
generation task. The results, which compare favourably with those reported for other genetic
algorithms and conventional neural network training algorithms, were presented at the
IASTED International Symposium on A.LL and Neural Networks in Ziirich, Switzerland in
June, 1990 [2].

The search for optimum performance led to the identification of a higher order parameter
space which governs the performance of the algorithm. Although some work has been carried
out in this area by other researchers, noteably Kauffman & Levin [3], Baba [4] and Bartlet
& Downs [5], there has been no systematic empirical investigation of the effects of parameter
variation on the performance of a genetic algorithm used for the selection of neural networks.
The main result of the investigation is that the perforrnahcc of the algorithm is affected by
variations in key parameters and that their influence is modified by the criterium used for

evaluating fitness.



Ty

[

o

T

ey

SN -

S

[NR————

2 Introduction

There are three main areas of activity in neural network research. The first concems itself
with appropriate structures for neural networks, the second with how to train neural nétworks

to perform a task, and the third with how to apply these results to solve a problem.

Genetic algorithms have recently emerged as a general purpose optimisation technique. As
yet they have not been broadly applied, yet they show promise in optimisation problems
where potential solutions to a problem can be represented as a linear list of solution
characteristics. Even more recently they have been applied to the problem of optimising the
connection weights of neural networks, which is a problem faced by neural network trainers.
Rather than training a network to perform a task, genetic algorithms work by selecting a
network which can perform the task. At present they are competing strategies for the
provision of a network to solve a problem. In any competition it is natural to ask which of
the competitors is best? Unfortunately, the answer to this question is still a long way off,
however, it is worthwhile comparing the performance of the more common training

algorithms with genetic algorithms as a first step.

Most training algorithms are based on a gradient descent optimisation strategy. Of these, by
far the most widely applied is backpropagation. Backpropagation aims to minimise the mean
square error between the actual output of a network and the expected output by relying on
the continuous differentiability of the neural function, For a given error, the required change
in connection weights can be inferred from a knowledge of how a node will treat its inputs.
Hence modifications are propagated back through the network. An iteration of the algorithm
is defined as the modification of all network weights by propagation of the error back through

the network upon presentation of a member of the training set.

The approach is deterministic and reductionist -'the algorithm requires detailed knowledge of
the network structure and neural functions. 1t is a relatively easy approach to analyse, at least
for small networks, and it is easy to appreciate that it will be fast to converge if there is a
good slope in the error. However, if the error is not unimodal, backpropagation, and indeed

any gradient descent method can get trapped by local optima in the error. It will be slow to



ey
—

e

ey
e

————

[

e

[S———

3

converge if the error is (almost) flat. The method is difficult to apply to networks containing
feedback connections, and does not work with neural functions which are not differentiable.
Another drawback is that the method does not scale well, i.e. the effort required to train a
network grows faster than the increase in the size of the network. These problems aside, the
algorithm may lay claim to many successes in the field, and this is probably why it is a

favourite.

In contrast, a genetic algorithm is a stochastic optimisation technique. It also aims to minimise
an error function defined by the difference between the actual and expected network outputs,
but it ne€d not be the mean square error: any L, norm will do, since its purpose is only to
rank a populatibn of networks according to their ability to perform a task, or according to
their fitness. By representing a neural network as a string of connection weights, the algorithm
randomly recombines the strings of a pair of high fitness networks (called parents) to form
a new network (called a child) which hopefully performs the given task better. To compensate
for the fact that a crucial connection is not present in the parents, there is a finite probability
that a connection is mutated when the child is formed. An iteration of the algorithm is defined
as the generation and evaluation of a new (set of) child(ren) to decide whether to include the

new individual(s) in the population or not.

The approach is non-deterministic and holistic - the algorithm is oblivious to the structure of
the network and the neural function. It is difficult to analyse, even for small networks, yet it
is easy to appreciate that it is powerful in terms of its ability to span the space of solutions
defined by the network structure. The method can avoid convergence to non-optimal solutions
since mutations offer the opportunity to investigate the entire solution space. Feedback
connections are treated as any other connection, and so pose no problem. Genetic algorithms
have also been shown to scale well. The difficulty in their application arises from the fact that
they are probabilistic. Results are not reproducible in general, they are sensitive to variations
in parameters such as the mutation variance, and because of their relatively recent entry to

the field, there is not much information available on their implementation.

A brief review of the work carried out by Bentink will serve as motivation for the

investigation carried out in this project.



T
[e—

4

Bentink ran a genetic algorithm on two tasks. The first, the selection of a network capable
of performing the XOR function, is simple and well documented in the literature. It has
become somewhat of a benchmark task in neural network research, not only because of its
impact on the direction of investigations in the field, but also because many researchers report
the performance of their training algorithms on this task. Bentink’s results, although sketchy,
indicated relatively good performance on this task: the algorithm was capable of selecting a
solution within 300 generations, on average, when a bit error scoring method was used [1].
If an iteration of the genetic algorithm is comparable to an iteration of the backpropagation

training algorithm, then the two algorithms could be said to have performed roughly equally

- on the XOR task, since Rumelhart et al reported 250 iterations were required to train a

network to perform the XOR function using this method [6].

The second task attempted was more complicated, although still relatively simple when
compared to the range of uses neural networks have been applied to. The aim was to select
a network which could recognise points on a cubic equation. However, the algorithm failed
to achieve this goal. To begin examining the reasons behind this failure, the approach used,

and the philosophy behind it need to be examined.

Bentink comments that the number of neuron layers in the brain is relatively small (6-10
layers), although he notes that recurrency can cause extremely long feedback chains. He
points out that the small number of layers accounts for the speed with which we respond to
our environment, and that it indicates a limit to the number of layers required for complex

computation [1].

On the basis of this anatomical fact, Bentink chose to use 4 layer networks with 12 nodes per

layer, since inputs and outputs were to be represented as 12 bit binary numbers.

The networks were presented with an input representing a point in the domain of the function

and were expected to respond with the function value at that point. Feedback to the genetic -

algorithm took the form of individual bit differences. This choice was inappropriate because
the algorithm could not have distinguished between networks having low order errors and

networks which had the same number of errors, but in more significant bits. Although the




—

—— ot

[S——

=

[ ”l

——

-

| ——

-

5

performance of the algorithm on this task may have been affected by the choice of scoring
method, the lack of convergence was probably due to the choice of network structure and
genetic algorithm parameters, which were guided more by the restrictions of the
implementation and the run-time environment than by a consideration of the information
storage and processing requirements of the networks. It was worth attempting the task once
using this approach, yet a broader foundation for the choice of network and genetic algorithm

parameters needs to be found before investigating such tasks further.

Any training or selection algorithm will fail to provide a network which can perform a given
task if the networks they operate on are not complex enough to perform the task. The problem
of finding an adequate structure falls into the first and third areas of activity of neural
network research. This investigation sets out with the assumption that the networks which the
genetic algorithm is expected to operate on have sufficient neurons to be capable of
performing the given task. Although this approach does not necessarily lead to minimal
networks, one of the degrees of freedom in the search for improved performance is
eliminated. The investigation can therefore focus on the algorithmic parameters which affect

performance.

There are two good ways to begin the search for improved performance. One way is to
approach the problem from a theoretical point of view to begin with, before testing deductions
and predictions via simulations. The other is to begin with an empirical approach to get a
better feel for the problem before attempting to explain the phenomena observed from a
theoretical point of view. The latter approach was adopted in this investigation. The
advantages of using this approach are; it is less restrictive, because not so many simplifying
assumptions need to be made; it is more expedient and convenient given the time available;
and it is presurnably easier to draw some conclusions or make broad deductions. Regrettably,

this report contains more deductions than theoretical explanations.

Section 3 of this report describes the current implementation of the algorithm and highlights
the differences between the methods adopted for this investigation and other methods
commonly in use. Section 4 presents and discusses the results obtained in the course of the

investigation. Section 5 identifies areas for further investigation and proposes some feasible




alternative implementations. Section 6 concludes the report by summarising the findings.

Appendix A of the report presents an overview of genetic algorithm concepts in the
framework of a simple game playing example, and Appendix B contains a current listing of

the program used in the course of the investigation.

Much has been written about what neural networks are and how they are used. It would be

difficult to improve on the work done by Lippmann [7], Vemuri [8], Lapedes & Earber 91,

‘and Palmer [10] to explain what forms their structures may take, how they are trained, and

. how they may be applied to the solution of practical problems. To this end, these topics will

not be covered in this report, and the reader is directed to any one of these articles if he or
she is unfamiliar with the field. Readers who are unfamiliar with genetic algorithms may find
the information contained in Appendix A useful, as it introduces the terms and concepts used

in the report.




3 Description of the Model
3.1 The Network Structure

The structure of the networks generated by the genetic algorithm is relatively unconstrained.
They may be viewed as rectangular meshes of nodes, in which any interconnection between
nodes is permitted providing no more than one input to a node originates from any particular

node or external input.
3.1.1 Nodes

In keeping with traditional neural network models, the network nodes perform a non-linear

function on the weighted sum of their inputs. All inputs are "transmitted” to a node via a

connection having a particular weight or gain. All weighted inputs are summed by the node,

and the result is passed through a sigmoid non-linearity with saturation. The sigmoid non-
linearity causes the node to output 0 if the weighted sum is less than or equal to 0 and 1 if

the weighted sum is greater than or equal to 1, otherwise it computes the output
F(5):=645°-165"+ 1085 -02¢

for the weighted sum, s.

The funcﬁon is symmetric about the input and output values of 0.5.

The characteristic is atypical because in most implementations the sigmoid non-linearity is
centred around 0. Also, it is unusual to have the response offset from () rather than some
negative saturation value. That is, typically, the sigmoid non-linearity is chosen to saturate
at an output of -0.5 for extremely negative inputs, and range up to 0.5, say, for extremely
positive inputs. In this model, outputs are constrained to be positive, whereas more generally

this is not the case. These differences are illustrated in Figure 3.1.



e

1.00 o
0.50
-1.50 -1.00 ~CLEO 0.5 1.60 150
~050 )
-1.00"

Sigmeid Functon implemented

1.00
0.80 o
~ .50 100 080 0,50 100 150
0350}
-1.00 -

Sigmoid Funciion typically used

Figure 3.1 - Alternative Sigmoid Non-Linearity Representations

Note that a genetic algorithm does not require the neural function to be continuously
differentiable, since it does not depend on a gradient descent method to optimise connection
weights or biases. Thus a neural function represented as a step non-linearity is quite
acceptable. Genetic algorithms therefore place less restrictions on the neural function than

most training algorithms,



,4.“..

| O

I

9

Any node may have a bias applied to it. The action of the bias may be viewed to be that of
shifting the inflexion of the sigmoid function in a direction which opposes the sign of the
bias. Alternatively, it may be viewed as another term of the weighted sum. Thus, a bias of
0.5 could be viewed as shifting the inflexion towards 0, or it could be viewed as adding 0.5
to the weighted sum of the node inputs. In either case, if the weighted sum of the inputs

without the bias is less than 1.0, the bias will act to increase the output.

The number of nodes in the networks generated is controlled by two parameters : the number
of nodes per layer and the number of layers in the networks, both of which are constant for
a run. The current formulation requires that the number of nodes per layer be equal to the
number of inputs to the network. The number of layers specified for the networks is guided
by a consideration of the task to be performed. For example, in a classification task, the
number of separating hyperplanes required to classify the input into the desired number of

output classes determines the number of nodes or layers required.

Output is obtained from a designated node or set of nodes in the output layer.

3.1.2 Connections

The typés of connections allowed between nodes, and between inputs and nodes, is one of
the strongest features of this model, since the nodes may be interconnected to form a fully
connected graph. Two way connections between nodes may be formed by having the output
of one node inputting to a second, and vice versa. Nodes may connect with themselves or
with no other nodes. Direct connections between the external inputs and the output layer may
be formed as well. Thus the interconnections allowed are quite general: the networks may
display feedback connections to earlier layers; feedforward connections to subsequent layers;

and horizontal connections between nodes within a layer.

The weight of each connection is independent. When the networks are first generated, the
networks are connected with a given probability of connection. If the procedure to generate

these random networks decides a connection should be established between 2 nodes, or an




10

external input and a node, the weight will be assigned by a uniform random variable ranging

in value between -1.0 and 1.0.
3.2  Computing with the nets
3.2.1 Representation

A network may be represented by a matrix whose elements specify the connection weights.
This representation facilitates testing of the network, since the determination of a new network
state is equivalent to multiplication of a vector representing the old network state by the

weight matrix.

To achieve this, the matrix is defined as in Figure 3.2, which illustrates the weight matrix for
a two input two layer XOR network. The column entries are the weights associated with
connections from external inputs or node outputs whilst the row entries are the weights
associated with node inputs. As Row 1 is scanned from left to right the weights associated
with all inputs to node 1 may be read off. Similarly, as Column 3 is scanned, all outputs

associated with Node 1 may be read off.
3.22 Testing

The network is tested by repeatedly multiplying a network state vector by the weight matrix

until a specified number of multiplications has occurred, or until the state vector stabilises.

A state vector, X, is formed from leading entries corresponding to the input state being tested,
and trailing entries equal to 0, the assumed initial state of all nodes. During the computation,
the entries corresponding to the external inputs are held fixed, whilst the node state entries
are updated at the completion of the matrix multiplication. The weighted sum of inputs, s, =
L, W, X, is determined for each node in the network by calculating the usual matrix product
for each row in the weight matrix, W. The bias applicable to node i is added to the weighted
sum, before passing the weighted sum through the sigmoid non-linearity. The next state of

the node, x;” = F( s; ) is then calculated. A new state vector, X', is formed with the same




[

i T
e —_— - )

——y
[

L —

o

S—

i
(.

11

The two input two layer XOR network has the matrix
representation 'W shown below.

Key to network:

(1) wode Connection Weight @ External Input

FROM
taput fayer 1 layer2
’ A v . ST —
A 2] 1 2 3 %
02 o7 o 0 0 o 1)
Y layer 1
0 -G (4] O o 0.3 2%
W= ) TO
0.5 O ~0,1 0.2 0 [ ] 3
v loaver 2
i 0. 0 0 0.1 0 -1, 1 | 4 ]

Figure 3.2 - XOR Network Representation




(S

[N

12

leading (input) entries as X, but with updated node state entries. Computation proceeds until
the state vector stabilises, or until a specified maximum number of cycles (multiplications)
has transpired. Cycling is allowed for because of the instabilities which may arise from the

feedback connections in the network,

The network is tested with each input condition for the task. The output may be passed
through a hard-limiter centred around 0.5 to obtain a binary output, or used directly if real
outputs are desired. Assuming the outputs of the network are unweighted, binary oiltputs are
scored on the basis of the number of bit differences between the actual outputs and the
expected outputs, whereas real outputs are scored on the basis of the mean square error

between the actual and the expected outputs of the network.

A raw score for the network is obtained from the output performance of the network. The raw
score is calculated as a fraction of the maximum (number of) error(s) possible. In addition,
a measure of the network stability is obtained by measuring the percentage change in node
states during the last test cycle for each input condition. This stability score is added to the
raw score to obtain a final score for the network. Without considering the efficiency of the
final network structure, a network which performs the given task without error and achieves

stability during testing is called perfect.
3.3  Training

The networks are not currently being trained in the usual sense. The networks are being

optimised to perform a task by selection.

3.4  The Genetic Algorithm

3.4.1 The Genetic Structure

To implement the genetic algorithm, a genetic structure which could describe the network

structure had to be chosen. The aim of Bentink’s project was to identify neural network

structures with natural abilities. He therefore found it desirable to choose a gene which passed




O —

————
[N

—

13

on significant structural information from parent to child. The gene which was decided upon
describes all connections from a layer in the network to a node in the network, realised as a
list of connection weight values. Since the gene is atomic during the breeding process, this
choice imparts more structural information onto the children than the choice of a single
connection. There are natural alternatives to the chosen structure, as can be seen in Figure 3.3,

however, the performance of the algorithm with these alternatives has not been investigated.

layort

TGO

layor2 |

Figure 3.3 - Altemative Gene Representations

In .Figure 3.3:

Structure Q represents all inputs to a node from a layer
Structure R represents all outputs from a node

Structure S represents all inputs to a node

Structure T represents all outputs from a layer to a layer
Structure U represents all outputs from a node to a layer




14

Having chosen the gene to be all connections from a layer to a node, a set of genes, called
a gene segment, ig needed to describe the interconnectivity of a node in the network because
it may connect with all layers in the network. In addition to specifying a gene to describe the
connections a node may have with the external inputs, the bias associated with the node is
assigned a gene. Hence the number of genes needed to describe the node is two more than
the number of layers in the network. Since the node may connect with all nodes in a layer,
all genes but the bias gene contain as many connection weight entries as there are nodes in

a layer. The bias gene consists only of the bias.

In this way, a network can be represented as a list of genes, called a gene string, to facilitate
breeding. Gene strings are formed by concatenating the gene segments for each node in the

network.

3.4.2 The Breeding Cycle

The breeding cycle commences with the generation of a specified number of random
(unorganised) networks whose degree of connection, or connectivity, is given by a specified
probability of connection. The connectivity is defined as the expressed fraction of all possible
connections. The connection weights are determined by a uniform random variable ranging

between -1.0 and 1.0.

This approach differs from Bentink’s, who for the sake of gene pool diversity, decided the
network designer should provide at least some of the networks for the original generation.
Apart from this approach being more complicated, it biases the first few generations towards
structures prescribed by the network designer. Although this approach may be of benefit when
the networks are small, or when the designer has some idea of what the optimal structure
should be, the power of non-determinism provided by the generation of random networks will
be lost if the designer provides structures which can never be optimal, and the specified nets
are not supplemented by random networks. In this case, the genetic algorithm needs to rely
on mutations to achieve optimality., The possibility of optimising known solutions to tasks

could be investigated using this approach, however, the efficiency of the algorithm decreases




[ ——

15

as the optimality of the solutions increases, especially when optimal solutions are sparse,

therefore it may not be particularly useful.

‘New networks are formed from each possible pair of networks in the population. Each parent
pair defines a pair of children by specifying the contents of each gene in the child gene
strings. The first child is defined by choosing a gene from the two parent genes with equal
probability at each gene location. The second child is defined by assigning to it the parent
gene not chosen by the first child, thus it may be viewed as the complement of the first child.

The structures of the resulting children are therefore a mixture of the structures of the parents.

The method more commonly adopted in the literature is to split the parent genes at some
random position along the gene string and to recombine the complementary fragments to form
a child [4],[5],{11],[12],[13],[141,[15],[16]. The method used in this investigation is more
powerful since it is possible for recombination of this form to occur, whereas the alternative
method requires at least 2 generations to form a child composed of an initial and final section
originating from one parent, and a middle section originating from another. The features of

the two methods are illustrated in Figure 3.4.

3.4.3 Mutation

In addition to producing a pair of children for every pair of parents, the algorithm generates
a mutated copy of each parent during the breeding cycle. Mutations are formed by making
a copy of the parent and adding a normally distributed real random number centred at 0 to
each connection of targeted genes. The severity of the mutation applied to each connection
in a gene is controlled by specifying the variance of the mutation variable. The connection
weight is kept within thg: range -1.0 to 1.0 by reflecting resulting connection weights which

exceed this range back into it.

The number of genes targeted for mutation is determined by the degree of stability in the
population, as measured by the change in average population fitness, and the expected fitness
improvement of the best network, measured as the difference in fitness of the best networks

of successive generations. High stability and poor improvement lead to a




e
| E—

16

GENE OF PARENT A :
CoL5 A Gt o Fo A IR AL,

GEMNE OF PARENT B :

Cocdend sy )

CRRNE POBITECN
LRSS PO IO

With 5086 chance of a child gene coming from etther
parent, chiidven bave the following forns

CGENE, OF CFILI> AR 1 -
r oy
-
GENE OF CHIOID AR 2 ¢

7

Bplitting the parent genes at a random position
and recombining the complementary rpgments results in
children having the formg

GENE OF CHILD AB 1 :
R

GENE OF CHILD AB 2 :

b s s

Figure 3.4 - Alternative Breeding Approaches




—

ey

17

linear increase in the number of genes to be mutated, whereas the converse leads to a linear
decrease. Genes to be mutated are selected by uniform random selection. The increment in

the number of genes to be mutated is user definable.

This differs from typical genetic algorithms, where mutation takes the form of copy errors in
the breeding process and is often realised as the addition of Gaussian noise to some of the

connection weights.,
344 Generation

The algorithm generates a pair of children for each possible couple and one mutant for each
individual in the population. Bentink’s model proceeded to test all individuals in the resulting
population and select a specified number of networks to become the parents of the next
generation. If there were N individuals before breeding, N* individuals were produced during

breeding, resulting in a final population size of N* + N,

For large networks, this sequential implementation of the breed, test and select phases of the
genetic algorithm severely restricted the population size if all networks were to be kept in the
designers working set. To this end the model has been modified to test children and mutants
as they are produced. Only the best N children are kept during breeding so that the maximum
number of networks stored is 2N. After merging the parent and child lists, the worst N are

discarded, leaving N parents for the next generation.

It should be noted that there is another significant difference between this implementation of
the genetic algorithm and genetic algorithms documented in the literature [5],[15],[16]. This
difference arises from forming all possible parent couples to breed children whereby all
parents are replaced by children if N of them perform better than the most fit parent. The
definition of a generation in this model is one breeding cycle as described above. In general,
the algorithms encountered in the literature adopt the following approach: from the population,
a pair of parents is chosen at random to produce a child. The parents are chosen with
exponentially increasing bias towards the most fit end of the fitness spectrum. If the child

produced is more fit than the least fit member of the population, then the least fit member




18
will be replaced by the child, otherwise, the child will be discarded. Although no reference

has been found which defines a generation under this scheme, it is assumed that the process
of selecting parents, breeding a child, testing it, and replacing another member of the

population, or discarding it, is one generation.

In both schemes, an individual’s fitness determines the probability of the individual’s survival

and therefore its expected number of offspring.




19

4 Results and Discussion

4.1 A Note on Convergence

In this report, convergence is said to have been achieved when a network is selected which
performs the required task without error on the basis of the raw score. Note that this does not
mean the network is expected to be stable, so the final score may still be non-zero due to the

stability score.

When binary outputs are expected, performing the task without error is equivalent to
generating the required binary outputs for all input cases. When real outputs are expected,
convergence is assumed to have occurred when the final score (mean square error plus
stability score) is less than the error which would have been generated by a single bit error
had the binary scoring method been used. This definition allows the final scores of networks

scored using either method to be directly compared for convergence.

The network designer needs to decide when a run should be abandoned. All runs reported in
this report were abandoned after 2000 generations if perfection had not been achieved by
then.

4.2  Rerunning the XOR Task

Bentink’s report suffers from a lack of information about the run time parameters used to
obtain results, and on the experimental results obtained. It was decided that his program for

the XOR task would be rerun to obtain this data, and to proceed from there.

To this end, a copy of the program was obtained and converted to compile on a PC using
Botland’s TurboC. It was intended to carry out development work on a PC and conduct runs

on an Apollo Prism.

Once the converted program was ported to the Apollo and recompiled, it was tested on the

XOR task 10 times using an integer random number seed ranging from 1 to 10. In each run,




[

20

the probability of connection {connectivity) was set to 40%, and a maximum population size
of 20 networks was specified. The program was required to generate a two input two layer

solution. Generated networks were tested using the bit error method.

Of the 10 runs conducted, all but one failed to converge to a solution within 2000

generations. When it did converge, it did so at generation 375.

This result demonstrated that the program was able to select a network which could perform
the XOR task, however, it did so with limited success. When the program was run, it was
assumed there were only two differences between the runs conducted and those reported
previously. The first was that a population size of 20 was specified rather than 10. And the
second was that no initial networks were supplied, so the algorithm was expected to work on
an entirely random initial population. It was expected that convergence would occur more
rapidly and more often with the choice of a larger population size, however, Bentink’s results

could not be achieved.

It was subsequently noticed that a bug had been introduced during the conversion process. If
the network contains more output layer nodes than required, the unused output layer nodes
should be treated as "don’t care” outputs. The bug caused the program to require these "don’t

care” outputs to be 0 for all input cases, thereby complicating the task the network was

~ expected to perform. However, the original program was not rerun with this bug removed as

explained below.

4.3  Approach to Mutation

To improve the performance of the algorithm, it was decided to focus on the approach taken
to mutation. Originally, genes were targeted for mutation if a normal random variable (i =
0.5, 02 = 0.2) was less than the "severity of mutation”, a number based on the improvement
in the fimess of the best network and the average fitness of the population over the previous
generation. Targeted genes were modified by multiplying the individual connections of the

gene by a normal random variable or by breaking or establishing connections with varying




21

probabilities. It was felt that apart from this approach being cumbersome, insufficient

mutation was occurring.

To improve the situation, it was decided to linearly increase the number of genes targeted for
mutation if the fitness of the best network did not improve sufficiently, or the average fitness
of the population (a measure of genetic stability) did not change sufficiently during the
previous generation. Conversely, if sufficient improvement did occur, and the population did
not stagnate, the number of genes targeted for mutation would decrease linearly. The target
genes would be selected by uniform random selection, and the mutation would be applied by
assigning a new normally distributed weight (L = 0.0, o2 = 0.5) to each connection of
targeted genes. This choice was inspired by the observation that Bentink’s program performed

better when the connection weights were assigned a new value, rather than being modified.

Using this approach, the network designer specifies the expected improvement in fitness per

generation, the improvement requirement, and the expected difference in average fitness of

the population between generations, the stagnation threshold. These factors affect the rate at

which mutation is applied to the gene string. The designer also specifies the increment in the
fraction of the gene string to be mutated if the expected fitness improvement and stagnation
threshold are not exceeded (the mutation increment). This factor defines the granularity of
mutation application by specifying how much more of the gene string is to be mutated with
successive generations of stability. In addition, the designer may specify a base mutation

fraction which is the minimum fraction of the gene string to be mutated.

The program was rerun with the following parameters:

Number of runs ' 10
Population size 20
Connectivity 0.4
Mutation increment 0.1
Improvement requirement 0.01
Stagnation threshold 0.01
Base mutation fraction 0.0

The results appear listed in Table 4.1,



22

The program was found to perform considerably better, with 7 out of the 10 runs converging.

For those runs which converged, the average generation at which convergence occurred was

found to be 573,

Random Number Seed

Generation at which
convergence occurred

>2000

399

1178

874

>2000

308

>2000

299

Ol le|lwia|lvwis lw|w |~

166

f—
o

785

Table 4.1 - Linear increase in mutation, new weight assiened.

The more usual approach taken by genetic algorithms is to add some Gaussian noise to genes

targeted for mutation rather than assigning new values to the connections of targeted genes.

This approach was implemented next, with the designer being allowed to specify the variance

of the noise to be added. The procedure to generate random networks was also modified to

produce networks having connections determined by a uniform random variable ranging

between -1.0 and 1.0 rather than a normal random variable (u = 0.0, 62 = 0.5). This was

done because it does not seem reasonable to bias the connection weights towards 0 given that

a general network design procedure is sought. It also presupposes that the desired structure

should have connection weights biased towards 0.



N

The program was rerun with the following parameters :

23

Number of runs 10
Population size 20
Connectivity 04
Mutation increment 0.1
Mutation variance 0.2
Improvement requirement 0.01
Stagnation threshold 0.01
Base mutation fraction 0.0

The results appear listed in Table 4.2.

Random Number Seed Generation at which

convetrgence occurred

>2000
227
1209
161
>2000 I
>2000
393
- >2000
1288 l
Er—

Wl | NN il W N =

-

Table 4.2 - Linear increase in mutation, Gaussian noise added.

|-
>

The program was found to perform slightly worse overall, with 6 out of the 10 runs
converging. For those runs which converged, the average generation at which convergence

occurred was found to be 675.

Although the performance of the algorithm could be said to have decreased with this
approach, the runs cannot be compared for tlie following reasons. For any random number

seed, the initial population generated would have been quite different as a result of the new




24

definition for generating random networks. The sequences of random numbers generated to
breed and mutate children would also have been quite different. As the sample size of 10 runs
is possibly too small to resolve differences in performance, the relative merits of the two

approaches need to be argued from a theoretical basis.

If the connection is assigned a new weight, it can be likened to a severe mutation. This has
advantages when the task is unimodal (possesses a unique optimum) and in the initial stages
of the run, when the algorithm randomly samples the solution space trying to find a rough
solution [3]. When a solution is found, large discontinuities in connection weights are less
likely to drive the network to a more optimal solution. Therefore, one would expect initially
rapid convergence, followed by an exponential increase in the time required to achieve
optimality, given the ever smaller changes in connection weights required to locate the
optimum. The same problem can occur with the second method if the variance is too large,
however, for small variance, one can expect asymptotic convergence to a local opthﬁum [4].
Ideally, a compromise between early rapid convergence and late fine tuning of solutions is
desired. This cannot be achieved by assigning a new weight but it might be achieved by
reducing the variance as optimality is approached. Kauffman & Levin suggest applying a
range of variances at every generation [3]. Thus in the early stages of the runm, rough
approximations to the solution should easily be found, and tuning is catered for by having
small mutation variance. Final convergence to non-global optima is avoided by continuing to

sample solutions a long distance away in the solution space with large mutation variance,

Although adding Gaussian noise of a specified variance goes someway towards this solution,

Kauffman’s approach has not been tested.

A final modification to the algorithm was carried out when it was noticed that the program
was testing all output layer nodes rather than just the node(s) designated for output (see
Section 4.2).

When the program was rerun with the same parameters as in the previous run, the results of
Table 4.3 were obtained. As may be seen from the table, all runs converged, with the average

number of generations required to achieve convergence being 121.




25

It may be assumed that the presence of the bug would have had a similar effect on all
previous runs. Since the results of Table 4.2 indicate a better performance than the run using
Bentink’s original program, it can be assumed that, although the original program may have
performed better with the bug removed, it would probably not have performed as well as the
results listed in Table 4.3. The average number of generations required to achieve
convergence was 129, which compares favourably with Bentink’s claim that most runs "took
300 generations to find a suitable network” [1, p. 33]. However, Bentink did not report how
many runs were made, nor how a suitable network was defined. The approach to mutation

used here seems to result in better average performance of the algorithm.

Random Number Seed Generation at which

convergence occurred

129
508 ﬂ

329
14 I
56 |
27 |
30
103

Wi |9 || | Wi | =

—
=]

Table 4.3 - Linear increase in mutation, Gaussian noise added,
Output bug fixed.

Note that there is considerable variability in all results. This is probably due to the
dependence of the algorithm on beneficial sequences of random events. In the results of Table
4.3, in runs 3 and 4 for example, it is obvious that a good initial population was generated,
or rather, good genes were generated initially, and it took only a few generations to combine

them in a way that produced a network which could perform the task. Runs 2 and 5 depict




26

the bad end of the scale, where the generation of poor genes in the original population meant
the algorithm depended on mutations to improve the solutions derived from the initial set of
genes and that the mutations were usually not good. Mutations are by nature random, and it
can take some time before a suitable mutation occurs. It is more likely that a good chain of

mutations is required to make a solution possible.

44  Comparison with other Algorithms

4.4.1 Stochastic Methods

~ The algorithm used selected networks which could perform the XOR task in an average of

129 generations. Bartlett & Downs report their genetic algorithm took between 200 and 1900
generations with an average of 680 generations to select networks which could perform the

task [5]. The differences between their algorithm and the one used here are:

1. Bartlett & Downs use individual connection weights as genes.
2. They use the conventional genetic crossover operator during breeding.
3. They select breeding candidates with an exponentially decreasing likelihood from a

parent list ranked by fitness,

4, Their networks differ structurally, as they do not include feedback connections.

5 Their testing method is different as well. Networks are tested using mean square errors

rather than bit differences.

Matyas’ random optimisation technique (a stochastic gradient descent optimisation method)
relies solely on a mutation like operator to vary connection weights [4]. Although the
algorithm is guaranteed to converge to the optimum solution asymptotically, it is not
guaranteed to do so quickly. It was investigated for the XOR task and found to suffer from

convergence problems for mutation variance in the range 0.001 to 1.2 [5]. Convergence




B
e

27

problems in this case means that no solution was found within the 5000 input presentations

allowed. When it did converge, it typically required between 100 and 200 presentations.
4.4.2 Gradient Descent Methods

Rumelhart et af report that backpropagation requires 250 presentations to achieve convergence
on the XOR task [6]. Pineda reports doing slightly better than Rumelhart, using his recurrent

backpropagation training algorithm, achieving convergence after 200 presentations [17].
4.5  Seven Input Odd Parity Task

A second task was investigated to compare the performance of the algorithm against 6ther
methods. Bartlett & Downs report the performance of their algorithm on the selection of a
network which can generate the odd-parity bit for a subset of all 7 bit words. The set they
used appears in Table 4.4.

Input Bits Output Bit
1 2 3 4 5 6 7 1
¢ 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1
0 0 0 0 1 0 1 1
0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 0

Table 4.4 - Incompletely Specified 7 Input Odd Parity Generator




28

Since this task, like the XOR task, falls into a class of tasks having enumerated input/output
conditions, the program was generalised to perform this class of task. To implement and run
any one of these tasks, the network designer needs to modify the network definition file, in
order to specify the desired network structure, and the task definition file, in order to specify

the appropriate output for each input.

The program was run 10 times with a population of 10 three layer seven input networks
having 50% connectivity. The mutation variance was set to 0.01 and the mutation increment

used was 0.04 (4.2 genes). The results obtained appear in Table 4.5.

Random Number Seed Generation at which

convergence occurred

1 >2000

2 >2000 "

3 >2000 “

4 >2000 |

5 982 “

6 467

7 7 !

8 549 "
|| 9 479 _ ||
| 10 370

Table 4.5 - Incomplete Seven Input Odd Parity Task results

For the runs which converged within 2000 generations, the average convergence occurred
within 475 generations. This is much more than for the XOR task but is to be expected with
the decrease in population size and increase in network complexity. The population size
determines how many possible variants there are at any time for a given connection weight,
and therefore what the chance is of generating good connection weights initially. The network

size determines how many degrees of freedom need to be fixed for a solution. An XOR




S

A

29

network consists of 4 nodes and 16 genes, whereas a Parity network consists of 21 nodes and

105 genes. Thus it is considerably more compiex.

Bartlett & Downs report an average of 930 generations to achieve convergence for a
population size of 50, however, they report selecting a network which solved the task within
1350 generations every run. It should be noted that the same differences apply in these results

as in those described for the XOR task.

When Matyas’ random optimisation technique converges, it does so after an average of 1500

presentations, yet it also fails fo converge 4 out of 10 times within 5000 presentations [5].

Backpropagation requires in the order of 10000 presentations [4], which highlights one of the
advantages of genetic algorithins over traditional training methods. They scale well, i.e. their
performance is not affected by the size of the network as much as popular training algorithms

are.
4.6  Parameter Optimisation

Considering the performance of the algorithm on these two tasks versus Bartlett & Downs,
i.e. better performance on the XOR task but worse on the parity task (in terms of the number
of runs which converged), it was decided to investigate the effects of parameter variation on

the performance of the algorithm with the aim of tuning the algorithm.
The user definable parameters in the algorithm are

population size

network size

connectivity

stability threshold and improvement requirement

mutation variance

0 0O 0o O ©

mutation increment




30

Variables beyond user control but subject to question are

o] neuron transfer function - type, and whether it should be static or subject to
compression, expansion and offset changes

o connection weights - range and distribution

o restrictions on interconnections - perhaps an exponential decrease in interlayer

connectivity as the distance in layers increases is more feasible. Such a structure

would be more easily built with current VLSI technology.

selection of gene

how to apply mutation

whether the crossover operator is appropriate

c 0 O 0o

the way the genetic algorithm works - should it use exponential! selection of parents

to breed children, rather than breeding children for all couples in the population

Clearly, there are many factors which could be investigated. The investigation has focussed
on the user definable parameters, with extensive testing for variations in mutation variance,
mutation increment, and connectivity. Consideration is given to the variables not examined

experimentally in Section 5.

Variations in population size were not investigated because its effects are assumed to be
predictable. The more networks that are generated to begin with, the more diverse the gene
pool, and therefore the greater the likelihood of finding a set of genes which may be
combined without mutation into a network which can perform the task. The likelihood of
generating a network which can do the job in the initial population is also increased. If,
however, the original population does not lead to a solution by recombination, the advantages
of a large population size are lost, since the expected improvement due to mutation is a
function of the number of generations over which mutation is applied, rather than the

population size [3].

Clearly, the performance of the algorithm is also affected by the size of the networks used.
If the networks contain insufficient neurons, the algorithm will never produce a network

which can perform the task. If the size of the networks is much greater than necessary, the




PR

[

31

algorithm should be able to select a network which can perform the task, but it will not
necessarily be minimal since superfluous nodes and connections are likely to be included in
the final design. The algorithm will also need to do more work to eliminate those regions of
the solution space which do not contribute to the task. The likelihood of converging to non-
optimal solutions in the short-term is also increased since the number of non-optimal solutions
increases with increased network complexity [3]. For the purposes of this investigation, the

choice of 4 nodes for the XOR task is demonstrably adequate for the task.

Variations in stability threshold and improvement requirement have not yet been investigated.

Although it is unlikely that variations in mutation variance and mutation increment are

independent, they have been tested independently.

The investigation was carried out using the XOR task as a standard test with the effect on the
algorithm being examined for both binary and real valued outputs, i.e. for both bit error and
mean square error raw scoring methods. For each choice of parameter, the program was run
for a population size of 20, an improvement requirement of 0.001, and a stagnation threshold
of 0.001 with a base mutation fraction of 0.0. 10 runs were performed for each parameter

using 10 different random number seeds as before.
4.6.1 Binary Results
Table 4.6 contains the results for the bit-error scoring method.

Each line corresponds to a different choice of parameters. The first set of results relate to
various selections for the mutation variance, 2. The next set relate to various choices for the
mutation increment, (., listed here in terms of the increment in the number of genes to be
mutated. The last set relates to various choices for the probability of connection or
connectivity, ©,, listed here in terms of the fraction of the whole network which was to be
connected. The parameters labelled with a star, *, represent the reference parameters used.
That is, in any set of results, the parameters not being varied were held fixed at a mutation

variance of (.01, a mutation increment of 0.96 genes, and a connectivity of {.5.




[ aiat—
—

Parameter

o2 = 0.0025
¢z =0.01*

o2 = 0.04
o2 = 0.06
o2 =0.09
oz =0.12
¢2 =0.15

W = 0.48
I, = 0.67

Hize = 0.96 *

My = 1.33
W = 1.92
W, = 2.66
Ky, = 4.00

e =03
P, =04
P, =05 *
®, = 0.6
P, = 0.7
®, =038
£, =09

c

@, =0.7,62 =0.09

* = reference

Non- Convergence Final
Converging Score Score
Fraction

0.7 0.70720 0.17500
0.6 0.61000 0.15000
0.5 0.56320 0.12501
0.1 0.37065 0.02515
0.0 0.25275 0.00033
0.0 0.09395 0.00026
0.0 0.11270 0.00015
0.6 0.63470 0.15001
0.6 0.62840 0.15001
0.6 0.61000 0.15000
0.5 0.52120 0.12502
0.6 0.62935 0.15000
0.6 0.62630 0.15008
0.7 0.70680 0.17508
0.6 0.69520 0.15019
0.8 0.84705 0.20003
0.6 0.61000 0.15000
0.3 0.42815 0.07504
0.3 0.33990 0.07501
0.3 0.39265 0.07501
04 0.40250 0.10000
0.0 0.04890 0.00004

32

Perfection Performance
Score Index
0.89770 0.61998
0.63575 0.49894
0.64400 0.45805
0.48480 0.24515
0.43445 0.17188
0.71545 0.20241
0.49575 0.15215
0.78695 0.54292
0.68630 0.51618
0.63575 0.49894
0.68895 0.45879
0.69340 0.51819
0.78955 0.54148
0.79785 0.59491
0.90480 0.58755
0.85465 0.67543
0.63575 0.49894
0.50630 0.32737
0.48930 0.30105
0.72060 0.37206
0.50125 0.35094
0.39335 0.11057

Table 4.6 - Parameter Optimisation for XOR Task Bit Error Scoring Method

The columns represent different normalised performance indicators ranging between 0 and 1,

with lower numbers indicating better performance. The definition of the columns is as

follows:

o The Non-Converging Fraction is defined as the number of non-converging runs

divided by the number of runs in the test (set of 10 runs for a parameter value).




———

——

[SR—

33

o The Convergence Score is defined as the sum of the generation numbers at which

convergence occurred for all runs in the test, divided by 20000, which represents the
maximum number of generations per run, times the number of runs in the test. For
non-converging runs, the generation at which convergence occurred was taken to be
2000 (the number of generations in a run). Thus, if no runs in a test had converged,

the Convergence Score would be 1.0.
© . The Final Score is defined as the sum of the final scores for all runs, divided by the
number of runs in the test. For tests where all networks converged, the final scores are

a measure of the stability in the networks at the end of the run.

o The Perfection Score is defined as the sum of the number of generations required to

achieve a perfect score (attain stability as well as perform the task correctly) divided
by 20000. For networks which did not converge, the number of generations required

to achieve perfection was taken to be 2000, as for the Convergence Score.

o] The Performance Index is defined as the average of the above four scores.

In this investigation there have been some surprising results.

Normally it is recommended to keep the amount of mutation variance in a genetic algorithm
small (in the order of 0.01). In these results, it is interesting to note that the performance of

the algorithm improved with increasing variance.

It was expected that the mutation increment would have little effect on performance, because
it matters little for any given variance how many more genes are mutated at each generation.
With the present definition of mutation increment, the amount of the gene string subjected
to mutation is proportional to the length of the gene string. The size of an XOR net is 16
genes, so whether the mutation increment is 2 genes rather than 1 merely means the whole
gene string is being mutated within 8 generations of stability occurring rather than 16. Over
2000 generations, this difference should have little effect, since it typically takes many more

generations before mutation results in a useful variation. Nevertheless, it can be seen that




34

there is room for improvement by optimising the mutation increment, indicating that
performance might be optimised for a particular mutation fraction. The sample size is small,

however, so more runs would be required to establish a correlation,

The optimisation of connectivity is dependent on the size of the network selected and the
complexity of the task to be performed. An optimal feedforward perceptron network solution
to the XOR task consists of 3 nodes and 6 forward connections. For a 2 layer 2 input network
as used in this case, there are 4 nodes and 24 possible connections neglecting bias
connections, which are independently specified in any case. The results indicate that between
60 and 80% connectivity is optimal for the genétic algorithm to operate on this task. This may
be interpreted to mean the designs produced are inefficient, since for optimum performance
of the algorithm between 14 and 19 connections are used where only 6 are needed.
Alternatively, the result may be interpreted to mean that for a population size of 20, between
12 and 16 random connections need to be generated at each location for the algorithm to

achieve optimum performance.

The performance effects of connectivity and mutation variance are not independent, This can
be seen in the bottom line of Table 4.6, in which the connectivity was set to 70%, a mutation
variance of 0.09 was selected, and the mutation increment was left at (.96 genes. The
performance for this test was considerably better than the independent performance for tests
using a connectivity of 70% or a mutation variance of 0.09. The results for this test appear
in Table 4.7 where they are presented with the results obtained in Table 4.3 for comparison,

The average generation at which convergence occurred in this test was 98.

The Parity task was also rerun with the optimal parameter values for the XOR task. The
results obtained appear in Table 4.8 together with the results previously obtained. For those
runs which converged, the average generation at which convergence occutred was 155, which
is considerably better than before. However, 3 out of the 10 runs still failed to converge

within 2000 generations.




Test o, = 04 e, =07 |
gz =(.2 o? = 0.09
Mo = 1.6 Mg = 0.96
Random Convergence Convergence
Seed Generation Generation
" 2 508 161
3 4 3
4 5 164
5 329 179
6 14 3
" 7 56 407
| 8 27 24
I 30 5 |
L 1o 103 15 |

a1

Test 0. 0.5 e = 0.7
o2 =0.01 c2 =0.09
Mo = 4.2 by = 1.0
Random Convergence Convergence
Seed Generation Generation
| 2 >2000 13
I 3 >2000 1000
" 4 >2000 31
5 982 >2000
6 467 Y
7 7 >2000
8 549 8
f 9 479 9
I 10 370 >2000

Table 4.8 - Compatison of Parity results using unoptimised parameters and parameters

optimised for the XOR task.

35



S

[o—
[N

=

36

It is important to note that the definition of the mutation increment, p,., it Tables 4.7 and 4.8
is in terms of the increment in the number of genes mutated (consistent with the other results
in this section), not in terms of the incremental fraction of the gene string mutated, as in the
earlier sections, where the results in the central columns of these tables were first discussed.

!

4.6.2 Real Results

Table 4.9 lists the results obtained for the parameter tests carried out in 4.6.1 using a mean

square error scoring method instead of a bit-error scoring method.

It is again noticeable that performance improves with increasing mutation variance. A
connectivity of between 60% and 80% is also desirable, however, the performance is
optimised with low range mutation increments rather than mid-range increments. It should
also be noticed that the combination of relatively good parameter settings achieved only a

marginal improvement in performance.

Convergence occurs more often using the mean square error scoring methdd because the
algorithin gets better feedback from the testing procedure. This is becanse it is able to
differentiate networks better on the basis of fitness. Using the bit-error method, a network
having an output of 0.7, say, when an output of 1.0 is expected, is assessed as performing as
well as a network having an output of 1.0 when the respective outputs are hard limited. If,
in addition, the network outputting 0.7 is generated first, and is therefore inserted into the list
of ranked children first, the second netwotk may be discarded when the quota of survivors
is attained, because it is not deemed any better. On the other hand, any testing method based

on real outputs will resolve the correct rank of networks on the basis of output performance.

This difference does not account for the fact that perfection occurred less frequently using the
mean square error testing method, nor for the fact that the results are less easily differentiated.
In fact, the mean square error scoring method resulted in extremely long periods of stability,
often with no further improvement after 500 generations. Given that the initial populations
generated for the two testing methods was the same and that mutations generated for the two

methods would have been of the same form, what could have caused such differing results?




Parameter
o2 = 0.0025
6z =001 *
o2 =004
c2 =(.06
oz =0.09
o2 =012
g2 =0.15
Wi = 0.48
. = 0.67
Mo = 0.96
Uy, = 1.33
W = 1.92
Wye = 2.66
Hine = 4.00
e, =03

f. =04

e, =05*
O, =06

0. =07

f, =038

e, =09

®, =0.7,62 =0.09

* = reference

Convergence Final

Non-

Converging Score
Fraction

0.2 0.21570
0.2 0.21580
0.2 0.21565
0.2 0.21575
0.1 0.12665
0.1 0.12035
0.1 0.11805
0.2 0.20345
0.2 0.20745
0.2 0.21580
0.3 0.30070
0.3 0.30070
0.3 0.30860
0.3 0.30100
0.2 0.31415
0.0 0.00135
0.2 0.21580
0.0 0.00075
0.0 0.00065
0.1 0.17605
0.1 0.10525
0.0 0.00065

Score

0.11736
0.11018
0.12159
0.11598
0.10858
0.09231
0.08908

0.10762

0.12792

0.11018
0.17035
0.13735
0.14359
0.15338

0.23019
0.15652
0.11018
0.07581
0.07789
0.03969
0.09395

0.04976

Perfection
Score

0.60005
0.78420
0.78435
0.78425
0.77395
0.78020
0.68965

0.61250
0.61040
0.78420
0.59990
0.59990
0.69140
0.69900

0.88585
0.89865
0.78420
0.89970
0.79990
0.62445
0.79525

0.79995

37

Performance
Index

0.28328
0.32755
0.33040
0.32899
0.27729
0.27321
0.24920

0.28089
0.28644
0.32755
0.34274
(.33449
0.36090
0.36335

0.40755
0.26413
0.32755
0.24407
0.21961
(.23505
0.27361

0.21259

Table 4.9 - Parameter Optimisation for XOR Task Mean Square Error Scoring Method

If the mean square error results are viewed in isolation, one notices that performance is

optimised for low mutation increments. One conclusion which may be drawn from this

observation is that the difficulty the algorithm has in perfecting the networks is due to too

much mutation. The fact that the results are not easily differentiated may just be repeated

observations of the same phenomenon.

To substantiate this claim, consider the fact that XOR nets consist of 16 genes, so the whole

gene string would have been mutated after 16 generations of stability in all tests but those

investigating the effects of varying mutation increment. This means that after 16 generations




38

of stability, all connections in the networks would have been subjected to mutation. In effect,
the mutants could be viewed as new random networks, since all connections of mutants would
have varied by some normally distributed number from the connections of their parents. It is
of interest that for the low mutation variance of 0.0025, the perfection score was reduced,
indicating that solutions either converged to perfection, or convergence occurred at more
advanced stages in the runs. However, since the convérgence scores for this test and the test
using a mutation variance of (.01 are roughly the same, and the same number of runs
converged in these two tests, the reduced perfection score in the case of lower mutation
variance can only be attributed to the selection of a greater number of stable networks, or the
selection of networks which were more stable when the runs finished. Upon further
investigation, it was discovered that more stable networks were selected for the low variance
case as can be seen in Table 4.10, which lists the main events in the runs for the tests vsing
a mutation variance of 0.0025 and a mutation variance of (.01. In this Table, the Generation
of Convergence is the generation at which the final score fell below 0.25 (the value expected

for a single bit error for all input cases for the XOR task), the Generation of Perfection is the

generation at which the final score dropped to 0.0, the Final Scores are the scores of the best
network when the program terminated, and the Generation of Last Improvement is the
generation at which the last improvement in the best network occurred. When a particular
event was not achieved by the end of the run, the generation number was set to 2000 (the
length of a run). As can be seen from the Table, a mutation variance of 0.0025 led to
perfection in two instances, and did so within 4 and 15 generations of convergence
respectively, whereas the higher variance did not lead to perfection at all. The conclusion is
that lower variance leads to mutants which are "less random" or "closer" to their parents in
the sense that the connection weights differ less, and that as optimality is approached, the
likelihood of achieving optimality through the appropriate small variation in connection

weights is increased.




7y

™

39

Random Generation of  Generation of Final Scores , Generation_of
Number Convergence Perfection Last Improvement
Seed 0.0025 001 0.0025 0.01 0.0025 0.01 0.0025 0.01
1 8 10 2000 2000 0.000394  0.000393 20 166
2 2 2 2000 2000 0.093031 0.026232 24 24
3 2 2 2000 2000 0.164783 0.164271 12 14
4 2000 2000 2000 2000 0.250000  0.250000 1 1
5 1 1 16 2000 0.000000  0.000001 16 12
6 2 2 2000 2000 0.206217  0.194334 7 1822
7 295 295 299 2000 0.000000 0.001269 299 1789
8 2 2 2000 2000 0.106643  0.113132 23 13
9 2600 2000 2000 2000 0.250015  0.250015 2 2
10 2 2 2000 2000 0.102549  0.102197 16 13

Table 4.10 - Events in low Mutation Variance Tests

For a population size of 20, if there was no improvement after 500 generations, then 30000
random networks would have been generated without one being found that was better, In
other words, 30000 attermpts were made at generating an improved set of 28 connection
weights without success! It is hard to imagine that success could not have been achieved,
without supposing that improvements to some connection weights were in all cases cancelled
by deterioration in others. This is not an encouraging thought, and it questions the feasibility
of applying the algorithm with mean square error scoring methods to binary combinatorial
tasks. Kauffman & Levin indicate that as the complexity of a system increases, with a fixed
mutation rate, selection becomes unable to pull an adapting population to those local optima
which may be achieved through mutation via fitter variants [3]. In this way, any problems
experienced with a simple XOR network would become more noticeable on more complex

tasks, or rather, with more complex networks.

The bit-error scoring method may not have been troubled as much by the effects of
competitive connection weight improvements, because the hard limiting of the outputs
eliminated differences in the outputs between unstable well performing networks and more
stable poorer performers. The bit-error method therefore only needs to roughly optimise

outputs before concentrating on obtaining stable networks.




4‘,\
[N—

[ ——

40

5 Further investigation

5.1 Verification of Results

The results indicate certain trends for parameter optimisation on the XOR task which led to
an improvement in the Parity task as well. The question which this raises, and remains
unanswered, is can these results be generalised? Which other tasks can they be applied to?
To answer this question definitively would require carrying out tests and examining the results
for other tasks. The XOR task is an example of a Boolean task. There is evidence to suggest
that the trends observed and the problems encountered in this investigation occur in‘any
complex optimisation problem (of which the selection of neural networks to perform Boolean
tasks is a special case) [3]. It is likely, therefore, that the trends would be observed in general,

however, more tests need to be carried out to verify this.
5.2  Extensions to results
5.2.1 Rate of Mutation Application

The severity of mutation and the granularity of mutation have been investigated in the guise
of the mutation variance and the mutation increment. The factors controlling the rate of
mutation application, stagnation threshold and improvement requirement have not been

investigated. For the sake of completeness, this should be done.
5.2.2 Changing Environment

The results obtained relate to a static environment, or one in which the task does not change
during a run. Thus, testing has focussed on the ability of a network to perform a task, rather
than the ability of a network to learn a task, which is a desirable trait for networks which
must adapt to a changing environment. Adaptation to a changing environment should be

investigated as a generalisation of the work carried out.




41

5.2.3 Identification of Suitable Substructures

It is still unknown which substructures, if any, impart high fitness. The performance of the
algorithm could be improved if it could decide which particular parts of networks need to be
combined to produce a high performer. Testing of networks is performed holistically, i.e. the
network is treated as a black box as far as the testing algorithm is concerned, and its
performance at all parts of the task is examined in total. If networks were evaluated with
different permutations of genes, then the genetic algorithm might be modified to understand
which substructures are worth keeping, and which substrucfures do nothing to increase fitness.
By trying different combinations of genes, the algorithm may be able to identify those
structures which are good. To apply such an exhaustive search would, in general, be

impractical. To this end the selection and evaluation of genes could be done randomly.
5.3  Variations to the Model

5.3.1 Breeding Model

The loop used in this investigation

REPEAT FOREVER

{
' CHILDREN = BREED(ALL COUPLES FROM SET OF PARENTS)

SCORES(CHILDREN+PARENTS) =
TEST_AGAINST_ENVIRONMENT(CHILDREN+PARENTS)

PARENTS = SELECT_BEST(CHILDREN+PARENTS) BASED ON
SCORES(CHILDREN+PARENTS)




42

is often replaced in the literature by the loop

REPEAT FOREVER

{
PARENTS = CHOOSE_RANDOM_COUPLE(POPULATION)
CHILDREN = BREED(PARENTS)
FOR EACH CHILD
IF SCORE(CHILD) > SCORE(WORST(POPULATION))
DISCARD WORST(POPULATION)
ADD CHILD TO POPULATION
ELSE
DISCARD CHILD

The first of these loops only allows progress via fitter variants, whereas the second allows for

progress by incorporating features of less fit variants and is therefore more powerful.

The difference may be subtle, yet it can defer specialisation, a problem which occurs with the
first loop, when all networks in the population have converged to have almost identical
structures and connection weights. Because the networks are virtually identical, they tend to
produce similar offspring, which in tum perform roughly the same. The ability to distinguish
between individuals is therefore lost, and the ability to improve the population is restricted
to the capabilities of the mutation operator. Thus, the algorithm becomes purely mutation
driven, rather than primarily recombination driven, and the genetic algorithm performs more
like a random search algorithm. Another problem is that the genetic heritage of the networks
is lost because ancestors are discarded when an improved network swamps the population,
which can happen when all children spawned from the improved network are improved
performers destined to replace all other members of the population. Thus recombination with
ancestors, to incorporate genes which were previously poorly regarded because they had not
realised their full potential is not possible and ancestral genes which may only now prove
useful can only be realised or reappear by mutation. For example, when an improved
individual is produced for the XOR task, the entire population is replaced by it’s children
within three generations (repetitions of the loop). From this it can be estimated that the
earliest possible ancestors an improved network could combine with are contemporaries of

its great-grandparents.




43

The second loop suffers less from this problem because ancestors are kept until they are the
worst performers in the population and a child with higher fitness is produced. The criterium
for selecting a couple of parents is on the basis of fitness (and in some implementations, on
the fitness of their offspring). The population is ranked on this criterium and a couple is
chosen from the list of ranked individuals with exponentially decreasing likelihood towards
the low fitness end of the list. Breeding therefore, does not occur "simultaneously” for all

possible couples in the population as in the first model, but for a selected couple at a time.

One problem with this method, as with the first, is that a lot of identical networks can be
generated, especially when the population converges towards a local optimum. This can be
avoided by searching the population for networks which differ by less than some tolerance
from a newly generated individual. If a duplicate exists, then the child would not be added.
If the population is ranked on fitness, then only those networks with relatively similar fitness
need to be checked. However, the time to compare the conmections of two networks is
proportional to the size of the network squared, so for large populations of large individuals
this approach may be too computationally demanding. Another solution might be to eliminate
individuals on the basis of fitness. If the spread of scores is large enough to distinguish
networks on this basis, then by defining uniformly sized fitness intervals over the range of
scores, all individuals but the best in each interval could be eliminated. The remaining
networks all score differently, so the population could be assumed to have regained acceptable

diversity.

The Genetic Retention Law states that the proportion of a gene in a population must remain
constant during breeding. Bentink comments [1, p.24] that the elimination of duplicates
contravenes the Genetic Retention Law, and hence it should not be adopted. This is incorrect.
The Genetic Retention Law ensures the process of breeding is not biased towards any
particular gene, and hence that particular genetic structures are not favoured by the breeding
process. The elimination of duplicates occurs after breeding, when the Genetic Retention Law
no longer applies. Therefore it cannot be contravening the law. The purpose of obeying thé
Genetic Retention Law is to avoid stagnation brought about by the production of
overwhelming numbers of (almost) identical individuals. The elimination of duplicates has
similar aims and should therefore be viewed as a complementary concept applying to

individuals at a different stage in their development.




(AR

44

Whether the Genetic Retention Law is a valid concept in nature is questionable. For any gene
or characteristic which partitions a population into 2 groups (those which have the gene, and
those which don’t), the ratios of these 2 groups can only be maintained by the production of
offspring in the same proportions. Since any normmal child cannot possess a fraction of a gene,
multiple children must be bred simultaneously in the required proportions to obey the law

strictly.

5.3.2 Network Model

The network model used by this implementation is that of a completely connected graph,
where each connection is a two way independently variable line. This structure is impossible
to implement using current VLSI technology because of the potentially large number of
overlapping wires. It is also unlikely that semiconductor technology would ever advance to
the stage where processors would be capable of having fan ins and fan outs in the order of
1000, which is the case with neurons in the human brain. Whether in fact this would be
necessary given that artificial neurons switch much faster than natural neurons is another
matter. However, the fact remains that the model represented by this implementation becomes
impossible to implement with more than 4 neurons, given that two layers of metallisation is
the current state of VLSI art, Some restrictions on internodal connections is required to

implement the designs developed by the algorithm,

To implement natural neural structures would ideally require the ability to implement three-
dimensional tree structures. Current technolbgy is restricted to planar implementations in
which the tree is a less than ideal computational model because of the differences in wire
lengths at different levels of the tree. In a three dimensional tree, however, connection lengths
could be independent of depth if it were implemented as a sphere with the root at the centre.
However, using this hypothetical structure, unlimited processor interconnections are also not
feasible. A restriction which seems reasonable to impose is to enforce variation in the density
of interconnections between layers. The further a layer is from a particular node (in terms of

intervening layers), the less likely it would be that the node has any connections with that




o
——

45

layer. The distribution of connections between layers might be normal or exponentially

decreasing with increasing distance.

A second variation worth investigating is to examine the fitness of networks whose neural
functions vary, rather than whose connection weights are varied during training. Having
decided on a particular base neural function, variations might be to compress or expand the
function; offsets and saturation levels should also be allowed to vary. This would seem to be
a more accurate neuronal model and may prove to result in more efficient networks and
training algorithms since optimising the connections weights is a dimensionally bigger

problem.
5.3.3 A Network Farm?

The genetic algorithm, as described here, is a method by which good substructures of
networks are recombined to form new networks having the same gross structure as their
parents. This gross network structure is defined by the network designer, and may be based
on assumptions which are invalid, or constrain the algorithm to perform poorly. A variation
could be envisaged where the population of networks which represent approximate solutions
to a task is replaced by a pool of networks having differing structures and capable of
performing different tasks. Providing the genetic structure of any network in the pool can be
represented, with appropriate combination operators, networks coﬁld be combined much like
lego blocks to form new structures. Similarly, networks might be blown apart to form smaller
structures so that there is always an adequate supply of fundamental building blocks. The pool
could contain fundamental network blocks such as MAXNET [7], all networks which perform
the two input Boolean functions, and good solutions to previous tasks. When a task is to be
perforimed by a network, the algorithm searches for networks in the pool which can perform
the task. If none are available, then they are built up from the blocks available, or randomly

generated. The connections to the inputs are generated and the genetic algorithm proceeds.



[NSE—

M

[
L

[E——

Ty

[—

S—

]
— s

46

6 Conclusion

The performance of a genetic algorithm applied to the selection of neural nets has been

investigated in this project.

The algorithm was tested on the XOR task using various mutation strategies. Of the mutation
strategies investigated, a strategy which allowed the user to specify the severity of a point
mutation, the rate at which mutation was applied to a network, as well as the granularity of
mutation application performed best and was thought to be most flexible. A variation in which
the severity of point mutations, or the mutation variance is itself allowed to vary is thought
to be an even better approach but it was not implemented. Results obtained with the best
strategy on two Boolean tasks indicate the genetic algorithm compares favourably with the

popular backpropagation training method.

With the aim of optimising the performance of the algorithm, the performance was
investigated for several user definable algorithmic parameters and two different scoring
methods. The observation was made that the performance of the algorithm is govemed by the
choices made for these parameters, provided the network structure chosen is appropriate for
the task. It was also observed that the choice of scoring method influences the effect of these

parameters on the performance of the algorithm.
Tests carried out on the XOR task indicate that:

o When the networks are tested using a mean square error scoring method, the mutation
variance should be at least as low as 0.0025 if perfection is desired. If it is more
desirable to achieve rapid convergence, a mutation variance as high as (.15 would be
more appropriate. If a bit-error scoring method is used, as seems reasonable for

Boolean tasks, variances as high as 0.15 provide good convergence and perfection.

o There is evidence to suggest that for the bit-error scoring method the granularity of
mutation application, or the increment in the amount of the network mutated with

prolonged stagnation, can be optimised. When the mean square error scoring method




[

[ ———

47

is used, the mutation increment should be kept low.

o] The rate at which mutation is applied to the networks needs to be investigated. It may
be that with lower rates of mutation application, the mean square error method would

achieve perfection more easily.

0 The connectivity of the original population seems to be a factor affecting performance.
For the XOR task, 60 to 80% connectivity seems optimal for both scoring methods.
This figure indicates the final networks contain more connections than are needed, or
that 12-16 random connections need to be generated at each possible location to

achieve optimal performance.

It was unexpected that the ability of the algorithm to perfect a network would be lower for
the mean square error testing method than for the bit-error scoring method because it was felt
the genetic algorithm would get better feedback about the performance of the netwotks from
the testing procedure. The poor performance of the algorithm on this score is thought to be
due to the cancellation of beneficial changes to some connection weights by detrimental
changes to others. It is felt that this problem would become more pronounced as the network
size grows. Nevertheless, the bit-error scoring method performed reasonably well on this
score, thus for tasks where it is possible to hard-limit the output, this method should be

adopted in preference.

Whether genetic algorithms or training algorithms are better at providing neural networks
remains to be seen. In this investigation it was found that the algorithm can be difficult to
apply to the "provision problem" without a theoretical basis for making appropriate choices

of algorithmic parameters.




48

Appendix A Genetic Algorithm Concepts

A genetic algorithm is a probabilistic optimisation procedure loosely based on the processes
of reproduction, natural selection and mutation. Before describing the algorithm, some terms

used in the description need to be defined.

To use a genetic algorithm we need to be able to describe solutions to a problem as a linear
list of solution characteristics, Each characteristic is called a gene. Candidate solutions are
called individuals and are described by a list of genes called a gene string or chromosome.
A chromosome may be thought of as being a representation of the genotype of the individual
and the solution it expresses as representing the phenotype of the individual. Each individual
has an attribute called its fitness which is a measure of how well it solves the problem. The
fitness associated with an individual is usually some function of the difference between the

solution it expresses and the expected solution.
This is how the algorithm works:

Given a set of suboptimal or incomplete solutions to a problem, the 2 best elements on the
basis of fitness are chosen to become parents of the next generation. Children are formed by
splitting the chromosomes of the parents at some random position and recombining the
complementary fragments. There is a good chance that the child will have even greater
fitness. The algorithm proceeds by repeatedly selecting suitable parents and producing
offspring until an optimal child is found.

These concepts are demonstrated by the following example [11]:

VECTOR is a game played by two people. Player A secretly writes down a string of 6 binary

digits. Player B must deduce the string using as few guesses as possible.

This demonstration will show that it is possible to play the part of Player B using a genetic
algorithm. With reference to Figure A.1, Player B starts by generating 4 random strings which

player A scores on the basis of matching bits. Player B next selects the 2 highest scoring




49

strings and generates 4 new guesses by splitting the previous best solutions randomly and
recombining them. In this case, Player B chooses to split the solutions after the second and
fourth most significant bits in successive generative steps. The resulting strings are again

scored by Player A.

Parent String Guess/Child String Score
A) 010101 1
B) 111101 1
C) 011011 4
D) 101100 3
C)  01:1011 E) 01:1100 3
D) 10:1100 F) 10:1011 4
¢  0110:11 G) 0110:00 4
D) 1011:00 H) 1011:11 3
F) 1:01011 ) 1:110600 3
G) 0:11000 D 0:01011 5
F) 101:011 K)  101:000 4
G)  011:000 L) 011:011 4
1) 0010:11 M) 0010:00 5
K) 1010:00 N) 1010:11 4
I 00101:1 O) 00101:0 6
K) 10100:0 P) 10100:1 3

Figure A.1 - VECTOR. Example

Picking 2 of the top scorers, F and G say, Player B generates 4 more children by splitting
after the first and third most significant bits. Choosing J and K as the parents of the next
generation, again 4 children are generated and this time a perfect score results. The advantage
over a random search is obvious, since only 16 guesses were made as opposed to the 32

expected for the 64 possible strings.

To see how the genetic algorithim optimises the solution characteristics the strings F and G




[
L S———

[SR—

[E— ——

NE——

~~ N
[R—

30

should be considered. These strings are points on the vertices of a unit hypercube in 6
dimensional space. Any point can be considered as a sample of the points in a lower
dimensional hyperplane in this space, so that the fitness of a point is an estimate of the
average fitness of all points in that hyperplane. For example, if * is a wildcard character,
denoting either a § or a 1, then F is a sample of the points on the two-dimensional hyperplane
H, of Figure A.2 and of the points on the two-dimensional hyperplane H,, and F’s fitness is

an estimate of the average fitness of these hyperplanes {3].

H) 1010** H,) *01011

Figure A.2 - vaerplanes in 6 dimensional space

Given that F and G have been chosen as two parents becavse they have high fitness, a
crossover might occur after the most significant bit. Since F’s fitness is an estimate of the
fitness of points on the one-dimensional hyperplane H, and G’s fitness is an estimate of the
fitness of points on the five-dimensional hyperplane H, the offspring produced, J, is the point
at the intersection of these two (high-fitness) hyperplanes, and it can be expected that it will
be a high-fitness individual.

Each individual is a sample of 2° hyperplanes, but many of these hyperplanes will be
destroyed by the crossover operation. However, for a population of N individuals, the number
of hyperplanes which are usefully processed is N’ [12]. Holland calls this implicit parallelism
- a genetic algorithm processing a small number of bit strings automatica]lj\r processes a large
number of hyperplanes. Because bit strings are removed on the basis of fitness, a genetic
algorithm reduces the effective dimensionality of the optimisation problem. For example, if
an individual always exhibits poor performance when a particular bit has a value 1, the
population will quickly have few individuals with a 1 in that position; the dimensionality of
the problem is reduced. As the algorithm progresses, it can be expected that poor-performing

hyperplanes will become less common in the population [5]. Once bad parent strings are




]

| A

"

P
-

51

eliminated their offspring are automatically eliminated. Each step is evaluating present and

potential strings in parallel.

This example should demonstrate a problem with the genetic algorithm as stated. That is if
no string contained a 1 in the third most significant position when initially generating the
random guesses, then no amount of selection and recombination could have generated the
secret code. To this end the concept of mutation js introduced into the algorithm when no
further improvement is possible and the solution is known to be suboptimal. For example
children might be formed with a finite probability that one or more bits are incorrectly copied,

thereby potentially avoiding convergence to a suboptimal solution.




[R—

M

—
.

52

Appendix B Program Listings

B.1  System Overview

The main functions and interactions of files presented in the listings is as indicated in Figure
B.1. In this figure, boxes represent modules, with the direction of arcs connecting modules

indicating the hierarchy of interaction. The purpose for interaction is indicated along the arc.

Plot results on. acreen

Send random number gentest.c 1askdat.h
main foop o= | tagk definitton
J header
’

Genarate, test )/
& raport on ¢
neiworks [/

Gat normal /
tandom.g & uniform | danetic.c aeldel b
random varlable | genetle & neural Femeeeoaeo- natwork defi-
functions random functions nitlon header
yariablas

(De)allucate
mamory for
networks

A

{Dojallocate
Mernory.c mamory for | serhelols
MSMory manage- screan plotting le
ment tuncllons | Yispiay functions

lists

Figure B.1 - System Overview




B.2  Program Files

Program File
gentest.c

genetich
genetic.c
random.h
random.c
memory.h
memory.c
scrnplot.h

scrnplot.c

53

104
105
107
108
110
111




54

/******************************************************************

**% * %
* % filename: gentest.c Kk
*x programmer: m.bentink * %
* ¥k modified: 9010150fd *%
* % description: main routine for genetic selection of neural **
*k networks * %
*x % * %

******************************************************************/

#include <stdio.h>
#include <string.h>
#include <math.h>

/%

*k TurboC specifics - comment out for run on Apocllo

*/

#include <time.h>

/*

* % Apollo specifice - comment out for run on PC

*/

/*#include <sys/types.h>

*/

#include M"extendc.h" /* C extensions */

#include "netdef.h" /* Network definitions */

#include T"genetic.h" /* Genetic routines */

#include "random.h" /* Random number functions */

f#include "scrnplot.h" /* Screen plot routines */

/*

* % Local definitions

*/

#define  MIN_SCORE 0.000001

/*

*k Local prototypes

*/

wvoid DefineFileNames ( char run name[] );

/*

* % User defined glocbal variables

*/

int DETAILS; /* boolean indicating detailed */
/* reporting is required */

float PCON; /* probability of connection in */

/* randomly generated nets */

float MUTATION INCREMENT; /* mutation factor increment */




P——)

TR

[R——

float MUTATION FACTOR;

float MUTATION FACTOR BASE;
float MUTSD;

float STAGNATION THRESHOLD;
float IMPROVEMENT_REQUI REMENT;
int MAX POPULATION;

int MIN_POPULATION;

int MAX GENERATION;

float PREVIQUS BEST;

float PREVIOUS AVERAGE;

int STABILITY COUNT;

/%

* % names of files used by program
*/

char STARTIN[30}; /*
char DESCOUT[30]; /*
char GENOUT[301]; /*
char SUMOUT[30]; /*

/*
/*
/%

/¥

/%
/*

/*
/*
/*
/¥

/*
/%
J*
/%

[*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*
/*

55

factor applied to generation */
scores to determine */
likelihood of mutation */

base mutation factor */

standard deviation of */
mutation operator */

expected minimum change in */
average score below which */
the population is deemed to */
have stagnated */

expected minimum change in */
best score below which the */
population is deemed not to */
be improving quickly enough */

maximum population size */
before breeding */

minimum population size */
before breeding */

maximum number of */
generations in run */

best score from previous */
generation */

average score from previous */
generation */ '

count of number of */
successive generations with */
no improvement */

input network file list */
output network descriptions */
output generation statistics */
output test result summary */



56

void main ( void )
/*
** the main procedure gets the user parameters and runs the genetic
k% algorithm until finished
*/
{ ,

des *PARENTS, *CHILDREN, *TEMP;

int N, I, NO SURVIVORS, GRAFHS, RPTLVL;

float BEST_ SCORE, AV _ SCORE, mutwvar,

WORST_SCORE;

unsigned SEED;

char RUN NAME [30];

int GENERATION _NO = 0;

float MUT_ SD, MUT_FRACT;

FILE *OUT FILE;

printf{ "Testing Genetic Algorithm on %s Task\n\n", TASK NAME );
/*
* % the user specifies a run name which is used to derive the run log
* % file names and the input list of start networks
*/

strcpy ( RUN_NAME, "1234567890" );

while ( strlen( RUN NAME ) >= 9 ) {

printf( "Enter run name (<9 characters): " );:
scanf( "%s", RUN_NAME );

}

DefineFileNames ( RUN NAME );
/*
k% the user is requested to specify the level of on-screen reporting
* % desired to monitor the run. According to the request, the
*% appropriate boolean variables are set
*/

RPTLVL = -1;

while ( RPTLVL < 0 || RPTLVL > 2 ) {
printf{ "Display details 0=None/l=Graphs/2=Full: " );
scanf ( "%d", &RPTLVL);

1

switch ( RPTLVL } {

case 0:
GRAPHS = FALSHE;
DETAILS = FALSE;
break;




/*
* %
* %k

*/

/*

* &

*/

/*.

* %k
*%
* %k
%k

*/

/*
* %
* Kk

*/

57

case 1:
GRAPHS = TRUE;
DETAILS = FALSE;
break;

case 2:

GRAPHS = TRUE;
DETAILS = TRUE;
break;

a random number seed may be specified by the user to control
whether a new sequence of random numbers is to be generated

printf( "\nEnter random number seed : " );
scanf{ "%u", &SEED );

seed the random number generator
Randomize ( SEED );

population sizes are restricted by the amount of main memory
available therefore target machine type sizes may be used in
determining the maximum pre-breed population size. Memory usage
is then calculated on the basis of post-breed population sizes

printf{ "\nSize of a float : %d bytes\n", sizeof( float ) );
printf( "Size of a double : %d bytes\n", sizeof( double )} );
printf( "Size of each descriptor : %d bytes\n", sizeof( des } );

Printf( "\nEnter population minimum : " );
scanf( "%d", &MIN POPULATION );

printf( "Enter population maximum : " };
scanf ( "&d4", &MAX POPULATION ) ;

printf ( "\nPeak working area : %1ld Kbytes\n\n",
(long) MAX POPULATION * (long) (MAX_EOPULATION + 2)
* (long) sizeof( des ) / (long) 1024 );

printf( "\nEnter probability of connection in random nets : " );
scanf( "%£f", &PCON ):;

the number of generations in the run may be specified so that
orderly termination can occur




7

[R——

/*
* %k
* %k

k%

*/

/*
* %k
L
k&
* %
* %
* %

*/

/*
* %
* %

*/

/*

* %k

*/

58
printf( "\nEnter number of generations in run : " );
scanf ( "%d", &MAX GENERATION };
the mutation parameters probably affect the run the most
more comment needed here
printf( "\nEnter stagnation threshold : " );
scanf ( "3%f", &STAGNATION THRESHOLD );

printf{ "Enter improvement requirement ")
scanf( "%f", &IMPROVEMENT REQUIREMENT );

printf ( "\nEnter base mutation factor : " );
scanf ( "%f", &MUTATION_ FACTOR BASE );

MUTATION_FACTOR = MUTATION FACTOR BASE;

printf ( "Enter mutation factor increment : " );
scanf{ "%£", &MUTATION INCREMENT );

printf( "Enter mutation operator variance : " );

gcanf ( "%£", &mutvar );
MUTSD = sqgrt( (double) mutvar );

the algorithm commences by reading in any networks specified in
the user-defined starting network list

initialize the number of networks, and
read in any input networks creating a list of descriptors pointed
to by PARENTS

N = 0;
PARENTS = Read_ Networks( &N );

supplement deficient starting populations with randomly generated
networks

for ( I=N+1 ; I<MIN_ POPULATION+1 ; I++ ) {
generate a random network

TEMP = Generate Rnd Net( I, GENERATION NO );




—

/*

* %k

*/

/*
* %k
* %k

*/

/*

* %

*/

/*
k%
*%x

*/

add it to the 1list of PARENTS

PARENTS = Append Des( TEMP, PARENTS );

rate the nets returning best and average scores, and

report on their performance

Rate ( PARENTS, &BEST SCORE, &AV_SCORE );

PARENTS = Sort ( PARENTS );

Report ( PARENTS, BEST_SCORE, AV_SCORE, N,
GENERATION NO, MUTSD, MUTATION FACTOR );

setup graphs if graph level of reporting selected

if { GRAPHS ) {
InitializeScores();
AddToScoreList(‘GENERATION_NO, BEST_SCORE, AV_SCORE );

added for inline generation and testing of children
determine worst score of generation 0

CHILDREN = PARENTS;

while ( CHILDREN->NEXT != NULL )
CHILDREN = CHILDREN->NEXT;

WORST_SCORE = CHILDREN->SCORE;
NO_SURVIVORS = N;

PREVIOUS_BEST = BEST SCORE;
PREVIOUS AVERAGE = AV_SCORE;
STABILITY COUNT = 0;
MUT_FRACT = 0.0;

MUT_SD = MUTSD;

59

N,




/%

* ok

*/

/*

k%

*/

/*

* %k

*/

/*

%k

*/

60
main loop

while ( GENERATION NO<MAX GENERATION && BEST SCORE>MIN_ SCORE )
{

++GENERATION NO;
PARENTS = Generate( PARENTS, &N, GENERATION_NO, MUT_ FRACT,

MUT_SD, &BEST_ SCORE, &AV_SCORE, &WORST SCORE,
&NO _SURVIVORS) ;

report on the performance of the survivors

Report ( PARENTS, BEST_SCORE, AV_SCORE, NO_SURVIVORS, N,
GENERATION NO, MUT SD, MUT FRACT );

plot the scores on the screen if required |

if { GRAPHS ) {
AddToScoreList { GENERATION  NO, BEST ' _SCORE, AV_SCORE ) ;
PlotScores();

calculate the new mutation potential
Calc_Mutn ( BEST_SCORE, AV_SCORE, GENERATION _NO, &MUT_SD,
EMUT | FRACT Y:
if ( GRARHS )
printf( "\nMUTATION fraction = %f st.dev. = %£f\n",
MUT FRACT,MUT SD);
}
OUT_FILE = fopen( DESCOUT, "a" );
Write Des( PARENTS, OUT _FILE );

fclose( OUT FILE );




P
b

[ S—
———

vo

/*
* %
* %

*/
{
/*

* %

*/

/*

* %

*/

/*

* %

*/

/*
* %

*/

id DefineFileNames ( char RUN NAME[] )

61

defines filenames used to report results in and extract start

nets from

define input network file list name <run_name>.BGN

strcpy( STARTIN, RUN NAME );
streat ( STARTIN, ".bgn" );

define network description file name <run_name>.DSC

strcpy( DESCOUT, RUN NAME ) ;
strcat ( DESCOUT, ".dsc" );

define generation statistics file name <run_name>.GEN

strcpy( GENOUT, RUN_NAME ) ;
strcat ( GENOUT, ".gen" );

define performance summary file name <run_name>.SUM

strcepy( SUMOUT, RUN NAME ) ;
streat ( SUMOUT, ".sum" );



,‘
[Np——

[N

62

/******************************************************************

* %k

* & filename:
*k programmer:

ok
F %k

Tk modified:
*k description:

genetic.h
o.diessel
9010150fd

specifies types used by genetic routines
contains prototypes of genetic routines

* %k
* %
% %
* %k
%k
*k
* %k

******************************************************************[

/%

* % Genetic definitions

*/
#define

/*

k% Genetic type definitions

*/

typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef

typedef

£float
short
float
short
float
float
float

struct

struct

NO_GENES NO NEURONS* { (NO LAYERS + 1) + 1)

net in _out [NO_INPUTS];
chromosome[NO NEURONS] [ (NO_NEURONS+NO INPUTS)];

network state[NO NEURONS + NO INPUTS],

bit array[NO INPUTS],
weight matrix[NO NEURONS] [ (NO_NEURONS+NO INFUTS)];

b1a31ng[NO NEURONS],

gene_type [NO_INPUTS] ;

descr {

weight matrix

biasing
long

int

long

long

char

float

flecat

float

struct descr

} des;
gene string {

gene_type

struct gene string

} gene_str;

WEIGHTS;

BIAS;
CREATURE_NO;
GENERATION_NO;
PARENT A;
PARENT B;
BREEDING METHOD;
SCORE;
ACTIVATION;
DELTA_ACTIVATION;
*NEXT;

GENE ;
*NEXT;




LR

[

T
[—

[
[

o

/*

* % Genetic prototypes

*/
void
void

float

des
gene str

void

void

des

void

int

des

void

int
float

void

void

int

Dispose Gene (
Dispose Des(

Calc_Mutn (

*Gene To_Des (
*Des To_ Gene (

Swap_ Gene (

Add Details(

*Append Des (
Write Des (

Read Net (

*Read Networks (
Integer To Bits({

Bits_To_Integerx(
Neuron Transf (

Schmidt (

Bits_To_Reals(

No_Bit_Errors(

gene_str
des

fioat
float
int

float
float

gene str
des

gene_str
gene_str

des
des
des
int
int
char

des
des

des
FILE

weight matrix

biasing
FILE

int

unsigned
bit_array

bit_array
float

net_in out
bit array
bit_array
net_in out

bit array
bit_array

63

*gene );
*descriptor );

best_score,

average score,
generation_ number,
*mutation_std dev,
*mutation fraction );

*genes );
*degcriptor );

*genel,
*gene2 );

*child,

*parentl,
*parent2,
generation,
number,

breeding method ) ;

*descriptor,
*descriptor list );

*descriptor,
*out_file );

weights,
bias,
*in_file );

*number ) ;

integer,
bits );

bits );
neuron_input);

network out_reals,
net out_bits );

net_in bits,
net in reals);

net out,
expected out);



ey
.\,__4

des

des

des

void

float

void

void

des

des

wvoid

des

des

*Generate Rnd Net (
*Remove Des (

*Sort (

Score

Activate Network(

Test (

Rate (

*Breed (

*Mutate (

Report (

*Create_Generation(

*Select (

int
int

des
des

desg

des
int

net_in out
net_in out
weight matrix
biasing

float

des

des
float
float

des
des
int
int

des
fleoat
fleoat
int
int

des
float
float
int
int
int
float
float

des
int
int
float
float

des
int
float
float
int

number,
generation );

*item,
*ligt );

*des list );

*descriptor,
num_errors );

net_in,
net_out,
weights,
biasg,

64

*average_ activation );

*descriptor );

*des list,
*best score,
*average score );

*parentl,
*parent?2,
generation,
number ) ;

*parent,

mutation fraction,
mutation_ std dev,
generation,
number );

*parents,
best_score,
av_score,
no_survivors,
no_generated,
generation,
mutn _sd,
mutn_fract );

*parents,

*number generated,
generation,
mutation fraction,
mutation std dev );

*children,
*num_survivors,
best score,
av_score,
generation };




[

o
——d

—-—
[EN—)

[

e
[ S———

[N

re

e

void
void

des

int

DigplayList (
DisplayDescriptor (

*Generate (

DisplayTest (

des
des

des
int
int
float
flcat
float
flecat
float
int

des

65
*descriptor_list );
*descriptor );

*parents,
*no_generated,
generation_ no,
mutation fraction,
mutation_std dev,
*best_score,
*av_score,
*worst_score,

*no survivors );

*descriptor );




R

——, ey
[R— Pp—|

0
——

—-

Iy Rl
[

e
[N—

-
[

[ —

66

/******************************************************************

* k

* & filename: genetic.c

*% programmer: m.bentink

*k modified: 9010170fd

*k description: contains genetic and neural functions
k%

LE.
%k
* %
LS
**%
* k&

******************************************************************/

#include
#include

/*

<stdio.h>
<math.h>

*k TurboC specifics - comment out for run on Apollo

*/

#include
/*
*/

/* #include

*/

#include
#include
#include
#include
#include
#include

/*

<time,h>

"extendc.h"
"netdef . h"
"genetic.h"
"random.h"
"memory.h"
"taskdef.h"

<sys/types.h>

/*
/*
/*
/*
/*
/*

**  Apollo specifics - comment out for run on PC

C extension */

network definition file */
genetic function prototypes */
random variable prototypes */
memory allocation prototypes */
network task definition file */

* % constants used in the neuron transfer function:
**k OUT = AN*IN“5 + BN*IN*4 + CN*IN*3 + DN*IN"2

*/

ffdefine AN 6.4

fdefine BN -16.0

#define CN 10.8

#define DN -0.2

L inintalabadt #FFFEF S e
void Dispose Gene{ gene str *GENE LIST )

/*

* ok deletes the genestring pointed to by GENE LIST and places memory
* %k allocated to it back into the free memory pool

*/

{

gene_str *TEMP;




[

—
———

/*

* %

*/

void

/*
* %
L

* *

*/

/*

* %

*/

/%
* %k
*k
* %
* %k
*
* %k
k%

67

free up space for each gene in GENE LIST

while ( GENE LIST != NULL ) {

TEMP = GENE_LIST;
GENE_LIST = GENE LIST -> NEXT;
TEMP~>NEXT = NULL;

Free( TEMP );

Dispose Des( des *DES_LIST )

deletes the list of network descriptors pointed to by DES_LIST
and places memory allocated to them back into the free memory
pool

des *TEMP; -

free up space for each descriptor in DES_LIST

while ( DES_LIST != NULL ) {

TEMP = DES_LIST;

DES_LIST = DES_LIST -> NEXT;
TEMP->NEXT = NULL;

Free( TEMP );

------------------------ FHEH R mm o mm o m e/
Calc Mutn( float BEST_SCORE,
float AV SCORE,
int GENERATION_NO,
float *MUT_SD,
float *MUT FRACT )

returns a number representing the likelihood of mutation
(mutability) during the next generation based on the amount of
change in the best and average scores between this and the last
generation

determines the standard deviation applied to the mutation
operator in Mutate (MUT_SD) and the fraction of genes to mutate




[

L
[——

-

———

=

[
[E——

* %
* %
* %

*/

/¥

* %k

*/

/*
* %k
* %k
* %

*/

/*

* %k

*/

in Mutate (MUT FRACT)

ghould be

extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern

float

called Calc Mutability

float
float
float

float
float
int
float
float
int
float
int

MUTN,

3D;

MUTATION FACTOR;
MUTATION FACTOR BASE;
MUTATION INCREMENT;

STAGNATION THRESHOLD;
IMPROVEMENT REQUIREMENT;
DETAILS;

PREVIOUS_ BEST;
PREVIOUS_AVERAGE;
STABILITY COUNT;

MUTSD;

MAX GENERATION;

report on old mutation factor

if ( DETAILS )

68

printf{ "0ld mutation factor = %8.6F\n", MUTATION FACTOR ) ;

if the population average is stagnating, or the population best
is not improving, then increase the mutation factor, else reduce

it

if ( fabs ( PREVIOUS AVERAGE - AV_SCORE ) <

STAGNATION THRESHOLD Y
MUTATION_EACTOR += MUTATION_TINCREMENT;

else
if

( ( PREVIOUS BEST - BEST SCORE ) <

IMPROVEMENT REQUIREMENT)

elsge

if

MUTATIGN_EACTOR += MUTATION_ INCREMENT;

( MUTATION FACTOR > MUTATION FACTOR_BASE )
MUTATION FACTOR —-= MUTATION _ INCREMENT;

report new mutation factor

if ( DETAILS )
printf( "New mutation factor =

%8.6f\n", MUTATION FACTOR );



[—)

[t—

69
/*

*k try a new approach - mutate between 0 and all genes depending on
* % the mutation factor

*/
if  ( MUTATION FACTOR > 1.0 )
MUTATION_ FACTOR = MUTN = 1.0;
else
MUTN = MUTATION FACTOR;
*MUT_FRACT = MUTN;
/*
*k for graded increase in the standard deviation of the mutation
ok operator, uncomment the next section
*/
/* )

* % determine number of successive stable generations

*/

* % if { { PREVIOUS_BEST - BEST_ SCORE ) <
IMPROVEMENT REQUIREMENT )

* % STABILITY COUNT++;
* % else
*% STABILITY COUNT = 0;
x/ -
/%
* % increase standard deviation linearly up to 1/3 over the number
*% of generations left in run
*/
/*
* % SD = MUTSD + (1.0/3.0 - MUTSD) * STABILITY COUNT
*k / {MAX GENERATION - GENERATION_NO + STABILITY COUNT) ;
* %
**%  *MUT SD = SD;
*/ -
*MUT SD = MUTSD;
/*
*k report mutability
*/

PREVIOUS AVERAGE = AV_SCORE;
PREVIOUS BEST = BEST SCORE;

if ( DETAILS )
printf( "Mutation potential = %8.6f\n", MUTN };

return( MUTN );




des

/*
* %
* &

*/

/*

% %

*/

/*

* %

*/

/*
**
* %

*/

/*
* %
* %

*/

/*

L

*/

70

*Gene_ To Des( gene str *GENES )

converts the gene string pointed to by GENES to a pointer to a
descriptor

int TO, I, LAYER;
gene_str *TEMP;
des *DESCR;

allocate memory for the new descriptor
DESCR = New( des )

assign pointer to beginning of gene string
TEMP = GENES;

convert each gene in the gene string into the synaptic weights
of inputs from one layer into each neuron
for ( TO = 0; TO < NO_NEURONS; TO++ ) {
for { LAYER = 0; LAYER < NO LAYERS + 1; LAYER++ ) {
for (I = 0; I < NO_INPUTS; I++ )
DESCR->WEIGHTS[TO] [LAYER * NO_INPUTS + I] =
TEMP—>GENE[I];

TEMP = TEMP~->NEXT;

assign the biasing to each neuron from the end of the gene
fragment for each neuron

DESCR~>BIAS[TO] = TEMP->GENE[0];
TEMP = TEMP->NEXT;

dispose of the gene string

Dispose Gene{ GENES );




(_.
[SR——

r_—_
[N —)

/*

* ke

*/

71

terminate the descriptor list

DESCR->NEXT = NULL;

return{ DESCR };

gene str *Des To Gene{ des *DESCR )

/*
*x
*

*/
{

/*
* %k
* %

*/

/*

kk

*/

converts the descriptor pointed to by DESCR into a pointer to a
gene string

int LAYER, TO, I; ;
gene_str *HEAD, *TEMP; !

for each neuron, create a gene containing the synaptic weights
of all connections with each layer

for ( TO = 0; TO < NO _NEURONS; TO++ ) {

for ( LAYER = 0; LAYER < NO_LAYERS + 1; LAYER++ ) {

if ( ( TO==10) && ( LAYER == 0 } )
TEMP = HEAD = New( gene_str );
else {

TEMP->NEXT = New( gene_str );
TEMP = TEMP->NEXT;
}

for (I = 0; I < NO INPUTS; I++ )

TEMP->GENE [I] = DESCR->WEIGHTS[TO] [LAYER *
NO_INPUTS + I];

create gene containing bias for neuron
TEMP->NEXT = New( gene str );
TEMP = TEMP->NEXT;

for ( I = 0; I < NO_INPUTS; I++ )
TEMP-~>GENE[I] = 0.0;

TEMP->GENE[0] = DESCR->BIAS[TO];



/*

* %

*/

/*
%k
* &

%

*/

/*

* %

*/

void

/*
* %
**
* %
* %k
ok
* &

*/

72
terminate the gene string

TEMF ->NEXT = NULL;

return( HEAD );

Swap_Gene { gene_str *A GENE,
gene str *B_GENE )
swaps genes between two gene strings

note: check you can’t just reassign pointers

int I; |
float TEMP ;

awap the gene contents for each input

for (I = 0; I < NO INPUTS; I++ ) { ' ,

TEMP = A GENE->GENE[I]; ‘ |
A _GENE~>GENE[I] = B_GENE->GENE[I]; |
B_GENE->GENE[I] = TEMP;

Add Details( des *CHILD,
des *PARENT A,
des *PARENT B,
int GEN_NO,
int N,
char BREED CODE )

£fills in history details of newly produced child

note: should pass in creature no rather than descriptor
but i spose passing in parent allows definition of
identification method to remain unresolved at calling
level



CHILD->CREATURE_NO = 10000 * (long) GEN_NO + (long) N;
CHILD->GENERATION_NO = GEN_NO;

CHILD->PARENT A = PARENT A->CREATURE NO;
CHILD->PARENT B = PARENT B->CREATURE NO;
CHILD->BREEDING_METHOD = BREED CODE;

CHILD->SCORE = 0.0;

des *Append Des ( des *DESCR,
des *DESCR _LIST )

/*
* % appends the decriptor (list) pointed to by DESCR to the

* % descriptor list pointed to by DESCR_LIST i.e. adds DESCR to the

* % end of DESCR LIST
*/ -

des *TEMP;

TEMP = DESCR_LIST;

/*

* % find the end of the descriptor list pointed to by TEMP and add

*x the descriptor (list) pointed to by DESCR to the end
*/

if  ( DESCR_LIST == NULL )
DESCR_LIST = DESCR;

else {
while ( TEMP->NEXT != NULL )

TEMP = TEMP->NEXT;

TEMP~>NEXT = DESCR;

}
return( DESCR LIST );
}
e FHEHE oo
void Write Des|( des *DESCR,
FILE *OUT_FILE )
/*

** writes a descriptor out to a file in a standard format

*/

73




T
[N

/*

* %

*/

/*
*k
**%

*/

int

/*
* %
*%
*%
* %
* %

*/

/*
%%
*k

*/

74
int T, FROM;
identify the descriptor being written out to file
fprintf( OUT FILE, "Creature %81d\n", DESCR->CREATURE_NO ) ;

write out the synaptic weights of all connections as well as the
bias for each neuron
for ( TO = 0; TO < NO NEURONS; TO++ ) {

for ( FROM = 0; FROM < (NO_NEURONS + NO_INPUTS); FROM++ )
fprintf( OUT FILE, "%f ", DESCR->WEIGHTS[TO] [FROM] );

fprintf( OUT FILE, "%f\n", DESCR->BIAS[TO] );

————————————————————————— = o m o mmemmeeee/
Read Net ( weight matrix WEIGHTS,

biasing BIAS,

FILE *IN FILE )

reads in the weight and bias matrices for a network from the file
pointed to by IN FILE returning a boclean indicating read success

note: perhaps should define status type or something rather
than using ints for boolean flags

int TO, FROM, SCAN STAT;

for ( TO = 0; TO < NO_NEURONS; TO++ ) {

read in conhection weights from each neuron to each neuron,
exiting if error

for ( FROM = 0; FROM < (NO_NEURONS + NO_INPUTS); FROM++ )
{
SCAN STAT = fscanf( IN _FILE, "3%f",
EWEIGHTS [TQO] ([FROM] );
if ( ( SCAN _STAT == 0 ) || ( SCAN STAT == EOF ) )
return( FALSE );




N

[N

—

/*

* %

*/

des

/*
% %
* %
* %
* %k

*/

/*

* %

*/

/*

* %k

*/

/*

* %

*/

75

read in biasing for each neuron, exiting if error

SCAN STAT = fscanf( IN_FILE, "%f", &BIAS[TO] );
if ( ( SCAN_STAT == 0 ) || ( SCAN_STAT == EOF ) )}
return( FALSE );

}
return{ TRUE );

------------------------- FEEFH - mmm o m e e/
*Read Networks ( int *PTR N )

reads in a set of networks from files named in <run_ name>.BGN

the function returns a pointer to the first network read in
and the number of networks read in

extern int MAX POPULATION;
extern int DETAILS;

extern char STARTIN[30]; /* contains <run name>.BGN */

FILE *IN_FILE, *IN__NAMES__FILE;
char FILENAME[30];

int N = 0;

int READ OK;

des *HEAD, *TEMP, *INDES;

initialize number of networks read in
*PTR N = 0;
exit if <run_name>.BGN not found, or error opening
if ( ( IN _NAMES FILE = fopen( STARTIN, "r" ) ) == NULL )
return{ NULL );
HEAD = NULL;

get first input network file name

fscanf( IN NAMES FILE, "%s", FILENAME );




-—
-l

/*
*k
*%*
* %
* %
L
L.
* %
k%

*/

while more input network files, and population maximum not
exceeded

open input network file

read first network in

while more networks in file

read network in
close input network file
get next input network file name

while ( ( feof( IN_NAMES FILE ) == FALSE ) &&
( N < MAX POPULATION ) ) {

IN FILE = fopen( FILENAME, "r" );
INDES = New( des );

76

READ OK = Read Net ( INDES->WEIGHTS, INDES->BIAS, IN FILE );

while ( READ OK && ( N < MAX POPULATION ) ) {

if ( HEAD == NULL )
HEAD = TEMP = INDES;
else {

TEMP->NEXT = INDES;
TEMP = TEMP->NEXT;

}

N++;

TEMP->CREATURE _NO = (long) N;
TEMP—>GENERATION_NO = 0;

TEMP->PARENT A = TEMP->PARENT B = (long) 0;
TEMP->BREEDING_METHOD = 'I7;

TEMP->SCORE = 0.0;

TEMP->NEXT = NULL;
INDES = New{ des ):;

READ OK = Read Net ( INDES->WEIGHTS, INDES->BIAS,
IN FILE );
}
fclose( IN_FILE };
fscanf( IN NAMES FILE, "$s", FILENAME );

}

fclose( IN NAMES FILE );
*PTR N = N;

if { DETAILS )
printf( "\n %d networks read in\n", N );

return{ HEAD );




77

void Integer To Bits( ungigned X,

/%
*k
* %k

*/
{

/*

* %

*/

int

/*
k%
%k

*/

/*

* k

*/

bit_array ARRAY )

converts the unsigned integer X into a linear array of bits as
wide as the network input layer

unsigned int K, I;

K = 1;

set those locations in ARRAY which correspond to bits set in X

for (I = 0; I < NO_INPUTS; I++ ) {
ARRAY[I] = (( K & X ) / K);
K = K<<l; '
}
------------------------- FEHHH R oo oo/
Bits_To_Integer ( bit_array ARRAY )}

converts the array of bits ARRAY into the integer returned by the
function

unsigned int K, N, I;

N
K

0;
1;

add the binary values represented by the ARRAY locations to N

for (I = 0; I < NO _INPUTS; I++ ) {

N + K * ARRAY([TI];
K<<1;

N
K
}

return( N );




—

P

e

78
float Neuron Transf( float IN )

/*
* % calculates a sigmoid neuron response
* %

* % should be called sigmoid(in)
*/

{ .
float OQUT;

if  ( IN < 0.0 )

QUT = 0,0;
else |
if ( IN > 1.0 )
ouT = 1.0;
else
OUT = ( ( (AN * IN + BN ) * IN + CN ) * IN + DN) * IN
* IN;
}
return( OUT );
}
[ K e R e L EEEEEEEE S */
void Schmidt( net in out REAL,
bit_array BIN )
/*

** applies a hard limiting function to the array of real numbers REAL
** returning the array of bits BIN

*/
{
int I;
/*
* % set bit array location if real > 0.5 else clear bit array
** location
*/
for (I = 0; I < NO_INPUTS; I++ ) {
if ( REAL[I] > 0.5 )
BIN[I] = 1;
else
BIN[I] = 0O;
}
}




PR

79

void Bits_To Reals( bit_array BIN,
net in out REAL )

/*
** converts the bit array BIN to an array of real numbers REAL

x/
{

int I;
/*
** cast each bit as a real
*/

for ( I = 0; I < NO_INPUTS; I++ )

REAL[I] = (float)BIN[I];

}
[*mmmmmmm e - — o oo m o m o e */

int No_ Bit_Errors( bit_array NET OUT,
bit_array EXPECTED_OUT )

/*
** returns the number of bit differences between the bit array
*k NET_ OUT and the bit array EXPECTED_OUT

* %
*& should be called - no_bit_differ
*/
{ |
int N = 0,1I;
/%
*k count number of location differences
*/
for ( I = 0; I< NO _OUTPUTS; I++ )
if { NET_QUT[I] I= EXPECTED_QUT[I} )
N++;
return( N );
}



—

80

float Cumulative Square Error( float ACC_SQUARE ERROR,
net_in out NET OUT,
net_in out EXPECTED_OUT )

/*
*k returns the accumulated square errors between the network output
**  NET OUT and the expected network output EXPECTED_OUT
*/
{

int TI;
/*
*k count number of location differences
*/

for { I = 0; I< NO_QUTPUTS; I++ )

ACC_SQUARE ERROR += (NET_OUT[I] - EXPECTED OUT[I])
* (NET_OUT[I] - EXPECTED_OUT[I]);

return ( ACC_SQUARE ERROR ) ;
}
JHmmmm e e */
des *Generate Rnd Net( dint N,

int GENERATION NO )

/*
** generates a random network number N in generation GENERATION NO
*/
{

extern float PCON;

des *DESCR;

int TO, FROM;
/%
** allocate space and set up descriptive information
*/

DESCR = New({ des );

DESCR->CREATURE NO = (long) 10000 * (long) GENERATION NO +

{long) N;

DESCR->GENERATION NO = GENERATION NO;

DESCR->PARENT_ A = DESCR->PARENT B = (long) 0;

DESCR->BREEDING METHOD = 'R’;

DESCR~->NEXT = NULL;
/*
% %k

*/

generate random weights for every required connection




1
——— s

[

4

,_
——e

"
[

/‘gg_j

T
[N——

A

/*
* %
* %

*/

/*

* %k

*/

/*
* %
* %

*/

/'k

*k

*/

81
for ( TO = 0; TO < NO _NEURONS; TO++ ) {
for ( FROM = 0; FROM < (NO_NEURONS + NO_INPUTS); FROM++ )

if the gaussian variable with sd=0.2, mean=0.5 < P {connection)
then establish uniform random connection otherwise, don’'t connect

if ( Rand No( 0.2, 0.5 ) < PCON )
DESCR->WEIGHTS[TO] [FROM] = URanq_No( -1, 1 ¥;
else
DESCR->WREIGHTS[TQ] [FROM] = 0.0;

generate a random bias

DESCR~->BIAS[TO]

i

URand No( -1, 1 );

}

return ( DESCR };

*Remove_Des ( des *ITEM,

des *LIST )

removes the descriptor pointed to by ITEM from the descriptor
list peointed to by LIST

- des *HEAD;

assign ITEM->NEXT to the pointer to ITEM within LIST

HEAD = LIST;

if { ITEM == LIST )
HEAD = LIST->NEXT;

else |

while ( LIST->NEXT != ITEM )
LIST = LIST->NEXT;

LIST~->NEXT = ITEM->NEXT;




e A

/*

* %k

*/

des

/%
**
* %

*/

/*
* *
* %
* %

k%

*/

terminate the item to be returned

ITEM->NEXT = NULL;

return( HEAD );

*Sort ( des *DES_LIST )

82

sorts the descriptor list DES_LIST into ascending SCORE value and

returns a pointer to the beginning of the sorted list

des *TEMP, *SORTED, *3SMALLEST;
SORTED = NULL;
while descriptor left in DES_LIST
find the lowest scoring descriptor in DES_LIST
remove the lowest scoring descriptor from DES LIST
append the descriptor removed from DES_LIST to SORTED
while ( DES_LIST != NULL ) {
SMALLEST = TEMP = DES_LIST;
while ( TEMP != NULL ) {

if ( TEMP->SCORE < SMALLEST~>SCORE )
SMALLEST = TEMP;

TEMP = TEMP->NEXT;
}

DES_LIST = Remove_ Des{ SMALLEST, DES_LIST );
SORTED = Append Des( SMALLEST, SORTED ):

}

return( SORTED );




ey
——

T
—_—

ey

Ty

et

—

void

83

Score BE{( des *DESCR,
int NUM ERRORS )

/*
*k computes a modified score based on the number of bit errors in
* %k the output, and the change in average neuron activity on the last
*% test cycle for each input presentation
*k
* % note: should use constants here
*k also, should pass in descr->delta activation and
* & descr->activation and return a score (assuming method
* % of scoring is stable)
*/
{
DESCR->SCORE = (float) NUM_ ERRORS / {(£float) MAX NO_ERRORS
+ 10.0 * DESCR->DELTA . . ACTIVATION;
}
[ ¥ e e R e */
veoid Score_MSE ( des *DESCR,
float MEAN_ SQUARE ERROR )
/* |
* %k computes a modified score based on the mean square error in the
* % output and the change in average neuron activity on the last
* % test cycle for each input presentation
* %
il note: should use constants here
okl also, should pass in descr->delta activation
*% and return a score (assuming method of scoring is
* %k stable)
*/
{
DESCR->SCORE = MEAN SQUARE ERROR / {float) MAX NO ERRORS
+ 10.0 * DESCR->DELTA ACTIVAIION,

}
[Rm e e e e E EE Tttty */
float Activate Network( net_in out NET_IN,

net in out NET OUT,

welght_matrix WEIGHTS,

biasing . BIAS,

float *AV _ACTIVATION)
/*
*k apply the input NET _IN to the network described by WEIGHTS and
* % BIAS and return the change in neuron activation during the last
*k test cycle, the network output NET OUT, and the average neuron
* %

*/

activation during testing in AV _ACTIVATION




JERSERIE,
——s

[UR—

[
)

™
—

/*
* %
* %k

*/

/*
* %
* *

* %

*/

/*
* %
* K

*/

/*
* %k
ko

*/

84

network_state OLD_STATE, NEW_STATE;

int I, J, CYCLES;
float TEMP, ACTIVATION;
float OLD_ACTIVATION = 0.0, DELTA ACTIVATION = 1.0;

gset the initial state of the network by loading the input to the
network and setting all neuron responses to 0.0

for (I =0; I < NO_INPUTS; I++ )
OLD STATE[I] = NET IN[I];

for ( ; I < NO_NEURONS + NO_INPUTS; I++ )
OLD _STATE[I] = 0.0;

test the network until the maximum number of cycles has been
exceeded or the change in average activation of the network is
less than the minimum activation change

for ( CYCLES = (;
{ { CYCLES < CYCLE_MAX ) &&
( DELTA;ACTIVATION > ACTIVATION MIN } ); CYCLES ++ ) {

calculate response of each neuron to excitation from every other
neuron in the network and the bias for the neuron

ACTIVATION = 0.0;
for ( I = 0; I < NO NEURONS; I++ ) {
TEMP = 0.0;

for ( J = 0; J < NO_NEURONS + NO_INPUTS; J++ )
TEMP += OLD STATE[J] * WEIGHTS{I][J];

TEMP += BIAS[I];
NEW_STATE[I] = Neuron Transf( TEMP ):
ACTIVATION += NEW_STATE([I];

determine average neuron activation during cycle and change in
activation between cycles

ACTIVATION /= ( (float) NO_NEURONS );

DELTA ACTIVATION = (float) fabs( (double) ( ACTIVATION -
OLD_ACTIVATION)) ;

OLD_ACTIVATION = ACTIVATION;




- 1
[

85

/*
*k save the network state as initial state for next cycle
*/
for (I = 0; I < NO NEURONS; I++ )
OLD_STATE[I + NO_INPUTS] = NEW_STATE[I];

}
/%
*k set the network response to be returned
*/

for (I = 0; I < NO_INPUTS; I++ )

NET OUT[I] = OLD_STATE[I + NO NEURONS];

/*
* % set the network activation to be returned as the average
k% activation during the last cycle
*/

*AV ACTIVATION = ACTIVATION;
/%
*% return the average change in activation during the last cycle
*/

return( DELTA ACTIVATION );
}
e LT */
void Test ( des *DESCR )
/* :
** test the network pointed to by DESCR
*/
{

float ACT _SUM = 0.0, DELTA SUM = 0.0, ACT;

int N =0, IN;

net_in out NET_IN, NET_OUT;

bit_array BINARY IN, EXPECTED_BIN_OUT;
/*
* % if scoring bit errors, uncomment following lines
* % and comment lines relating to mean square errors
*/
/*
* & bit array BINARY OUT;
¥k int NUM ERRORS = 0;
x/ -
/*
k& end bit errors

*/




/*
%%
k%

*/

/*

* %

*/

* %
* %
% &
*k
*k

*/

/*
*k
* *

*/

*%
* %k

*/
* ok

*/

*k
* X

*/

/*

* &

*/

/*

* %

*/

86

if scoring mean square errors, uncomment following lines
and comment lines relating to bit errors

float ACCUM_ERROR = 0.0;
net_in out EXPECTED_REAL OUT;

end mean sgquare errors

for each input to be presented
convert it to an input array
present the input to the network
sum the last change in activation and average activation
sum the number of bit errors in the network output

for ( IN = TEST MIN; IN < TEST MAX; IN += TEST_STEP ) {

N+

Integer To Bits( tralnlng set [IN] [TRAIN IN], BINARY IN );

B:Lts To Reals( BINARY TN, NET IN );

DELTA SUM += Activate Network( NET IN, NET OUT,
DESCR->WEIGHTS, DESCR->BIAS, &ACT );

ACT SUM += ACT;

Integer To Bits( training set [IN] [TRAIN OUT],
EXPECTED BIN OUT );

if scoring bit errors, uncomment the following lines
and comment lines relating to mean sgquare errors

Schmidt (NET OUT,BINARY OUT);
NUM ERRORS = No_Bit Errors (BINARY OUT, EXPECTED BIN_OUT);

end bit errors

if scoring mean square errors, uncomment the following lines |
and comment lines relating to bit errors

Bits_To_Reals ( EXPECTED_ BIN_OUT, EXPECTED_REAL OUT );
ACCUM _ERROR = Cumulative Square_ Error ( ACCUM ERRCR, NET_ OUT,
EXPECTED REAL OUT );
end mean sgquare errors

}

record the network activation performance



~
~

[N

—

/*
* %
* &
* %
* %

*/

/*
* ok
k%
* %
% *
* k
* %k

*/

87

DESCR->ACTIVATION = ACT SUM / ( (float) N ):

DESCR->DELTA ACTIVATION = DELTA SUM / ( (float) N );

score the network performance

if scoring bit errors, uncomment following lines
and comment lines relating to mean square errors

Score BE( DESCR, NUM_ERRORS );

end bit errors

if scoring mean square errors, uncomment the following lines
and comment lines relating to bit errors

Score MSE( DESCR, (float) sgrt( (double) ACCUM ERROR ) );

end mean square errors

------------------------ T e G EEEE LS L L L LY/
Rate ( des *DES_LIST,

float *BEST_SCORE,

float *AVERAGE SCORE )

function to test the list of descriptors pointed to by DES_LIST
returning the best and average score of all descriptors

note: BEST should be a function of constants used in Score ()
extern int DETAILS;

int N = 0;

float BEST = 4.0, SUM = 0.0;

while more descriptors
display details of network being tested if required
test the network
save the score if best
accumulate the score to determine average
reset pointer to the next descriptor in the list




88

while ( DES_LIST != NULL ) {

if

({ DETAILS )
printf( "Testing creature %4d of generation %4d\n",
N, DES_LIST->GENERATION NO );

Test ( DES_LIST );

N++;

if

( DES_LIST->SCORE < BEST )
BEST = DES_LIST->SCORE;

SUM += DES LIST->SCORE;

DES ILIST = DES_LIST->NEXT;

/* .
* % return the average and best scores for the list
*/
*AVERAGE _SCORE = SUM / ( (float) N );
*BEST SCORE = BEST;
}
e il R R RS T e bbbl bbb */
des *Breed/| des *PARENT A,
des *PARENT B,
int GENERATION_NO,
int N )
/*
%k function to return a pointer to a list of child descriptors
k& numbered from N produced at generation GENERATION NO by
*k "breeding’ the descriptors pointed to by PARENT A and PARENT B
% %
* ok note: N should be returned as a parameter because we don’t
% %k know at the calling level how many children will be
ko produced
*/
{
des *#CHILD1, *CHILDZ;
gene str *A GENE, *B _GENE, *TEMP_A, *TEMP B;
/%
k* convert the two parent descriptors to gene strings
*/

TEMP A
TEMP_B

0o

A GENE = Des_To_Gene( PARENT A );
B _GENE = Des_To_Gene( PARENT B };



/*
L
ek

*/

/*
* %
**

*/

/%
* %
*k
*k
* ok
* %k
* ok

*/

89

1
o

swap genes between the two strings at random with P (swap) .5

while ( TEMP_A != NULL ) {

if ( Rand No(0.2,0.5) < 0.5 )
Swap_Gene ( TEMP_A, TEMP_B );

TEMP_A
TEMP_B

TEMP_A~->NEXT;
TEMP_B->NEXT;

[

convert the two gene strings back into descriptors representing
the children and add the details of their ancestry

CHILDl = Gene_To_Des( A_GENE );

Add Details( CHILD1l, PARENT A, PARENT B, GENERATION NO, N,
!NI )’

CHILDZ = Gene To_Des( B_GENE );

Add Details( CHILD2 PARENT A, PARENT B, GENERATION NO, N+1,
"N7);

convert the two child descriptors into a terminated list of
descritors and return the pointer to the beginning of the list

CHILD1 -> NEXT
CHILDZ -> NEXT

CHILDZ;
NULL;

return{ CHILDLl );

------------------------- e L
*Mutate( des *PARENT,
float MUT FRACT,
float MUT SD,
int GENERATION NO,

int N )

returns a pointer to a mutation having number N at generation
GENERATION NO of the descriptor pointed to by PARENT. The
"severity of mutation" or "propen31ty for mutation" or "mutation
potential"” or "mutability" is represented by MUTATN

IMPLEMENTS MUTATION STRATEGY



- ©
PU—

[

[
|

/*

* %

*/

/*
* %
* %

* %
*/
/*
* %

x/

/*

*k

*/

/*

*k

* %
* %

*/

des *MUTANT;
gene str *M GENE, *TEMP_G PTR;

int I;
short mutation_ indicated[NO_GENES], initial, final;
int j, num mutations;

convert the parent description into a gene string

TEMP G PTR = M GENE = Des_To Gene( PARENT );

for each gene in the gene string
if it should be mutated

modify each code in the gene in some random

determine number of genes to be mutated

if ( MUT_FRACT > 0.5 ) {
num_mutations = NO GENES * ( 1.0 - MUT FRACT );
initial = TRUE;
final = FALSE;

else { :
num mutations = NO_GENES * MUT FRACT;
initial = FALSE; -
final = TRUE;

for ( j=0; j<NO_GENES; j++ )
mutation indicated{j] = initial;

determine which genes are to be mutated
for ( j¥0; j<num mutations; 3j++ )
mutation indicated[Urand( NO_GENES )] = final;

j=0;

for each gene to be mutated

add a gaussian variable to the connection weights

ensuring weight stays in range [-1, 1]

way




ST

while ( TEMP G PTR != NULL ) {

if ( mutation indicated[j] )
for { I =0; I < NO INPUTS; I++ ) |
TEMP_G_PTR->GENE [I] =

" fabs( (double) Rand | No( MUT sD, 0.0 ) )

+ TEMP_G_PTR->GENE[I] + 1.0;
if { TEMP Mc PTR->GENE[I] < 2.0)
TEMPFG_PTR->GENE[I] -= 1.0;
else
TEMP_G _PTR->GENE[I]) = -1.0 *
TEMP G _PTR->GENE[I] + 3.0;
}

TEMP_G PTR = TEMP_G_PTR->NEXT;

++3;

fmf

)i

/%
*% convert the mutant gene string back into a descriptor,
k% add the ancestry details to the descriptor,
* % terminate the descriptor list at the mutant,
*% and return the pointer to the mutant
*/
MUTANT = Gene_ To_Des( M GENE ) ;
Add Details ( MUTANT, PARENT, PARENT, GENERATION NO, N,
MUTANT->NEXT = NULL;
return{ MUTANT );
}
[H e b R i ittty
void Report ( des *PARENTS,
float BEST_SCORE,
float AV_SCORE,
int NO SURVIVORS,
int NO_GENERATED,
int GENERATION NO,
float MUT_SD,
float MUT FRACT )

/*
* %
* %

x/

reports on the performance of the descriptors pointed to by

PARENTS

91




/*

* *

*/

/*

* Kk

*/

/%
* &
* %k

* X
*/

* %k
* %
* %
k&
* %
* %
* %
* %
* %k
k)%
* %k
% %

92

extern int DETAILS;
extern char DESCOUT[30];
extern char GENOUT[30];
extern char SUMOUTI[30];
des *TEMP ;

FILE *OUT_FILE;

time_t CURRENT TIME;
struct tm *timeptr;

time ( &CURRENT_TIME ) I
timeptr = localtime( &CURRENT TIME );

display which generation is being reported on if required

if { DETAILS )
printf{ "Reporting on generation %4d\n", GENERATION NOC );

create the report files if reporting on the initial generation

if { GENERATION NO == 0 ) {
OUT_FILE = fopen( DESCOUT, "w");
fclose{( OUT _FILE );
OUT FILE = fopen( SUMOUT, "w" );

fprintf( OUT_FILE, " Gen Best Average  Num Num"
" DateTime Mutation Mutation\n" );
fprintf( OUT FILE, " Num Score Score Gend Surv"

" %02d-%02d-%2d Fraction Std Dev.\n",
timeptr->tm mday, (timeptr->tm mon}+l,
timeptr->tm_year);

to append the descriptions of any networks not already reported
on to the network description file <run_ name>.DSC, uncomment
the following lines

TEMP = PARENTS;

OUT_FILE = fopen( DESCOUT, "a"™ );

while ( TEMP != NULL ) {
if  ( ( TEMP->GENERATION NO == GENERATION NO )
&& ( TEMP->BREEDING METHOD != 'I' ) )

Write Des( TEMP, OUT FILE );

TEMP = TEMP->NEXT;




[N

4\ __\
e N

———t

* %
* %

*/

* %
* %
* %

*/

* %
* %k
* %k
*k %k
* %
k%
* &
%
* %k
* %k
* ok
* %
* %
* %
* %
* %
* %
* &
* %
* &
* %
% %
* %
* %
* %

*/

* %
* %

*/

93
fclose( OUT_FILE );

to append the results of this generation’s best performers to the
generation results file <run_name>.GEN, uncomment the following
lines

OUT_FILE = fopen( GENOUT, "a" );

fprintf( OUT FILE, "Generation No : %d \n No. Generated : %d\n""
" No. SURVIVORS : %d\n", GENERATION NO, NO_GENERATED,
NO_SURVIVORS ) ;

fprintf( OUT FILE, "Creature No. Parent 1 Parent 2 Breeding"
" Score" );

fprintf( OUT FILE, " Activation D _act #$Err\n" });

TEMP = PARENTS;
while ( TEMP != NULL ) {

if { TEMP->GENERATION_NO === GENERATION;NO )
fprintf ( OUT FILE, " $81ld 3%8ld %8ld %c"
" %8.6f %8.6f %8.6f %2d\n", TEMP->CREATURE_NO,
TEMP~>PARENT_A, TEMP->PARENT RB,
TEMP ->BREEDING METHOD, TEMP->SCORE,
TEMP->ACTIVATICN, TEMP ->DELTA ACTIVATION,
DisplayTest { TEMP ) );

TEMP = TEMP->NEXT;
}

fclose( OUT_FILE );

append a one line summary for this generation to the summary file
<run_name>.SUM

OUT FILE = fopen( SUMOUT, "a" );

fprintf( OUT_FILE, "%4d %8.6f %8.6f %4d %4d "
" %02d:%02d:%02d %B8.6f %8.6f\n",
GENERATION NO, BEST_SCORE, AV_SCORE, NO GENERATED,
NO_SURVIVORS, timeptr->tm_hour, timeptr->tm min,
timeptr->tm sec, MUT_FRACT, MUT_SD ); -

fclose( OUT_FILE );




~
[A—)

-

des

/*
* %k
* %

* %

*/

/*

* %

*/

/*
* &
* %
* %
* %
%k
**
* %k

*/

94

*Create_Generation( des *PARENTS,
int *NO GENERATED,
int GENERATION _NO,
float MUT_FRACT,
float MUT SD )

creates the new generation GENERATION | NO by generating
NO_GENERATED mutant and normal children from the descriptors
pointed to by PARENTS

extern int DETAILS;

des *PARENT A, *PARENT B, *CHILDREN, *CHILD;
int N = 0;

create pointers to the PARENTS and CHILDREN

PARENT A = PARENT B = PARENTS;
CHILDREN = NULL;

for each parent
pair it with every subsequent parent in the list including
itself
1f paired with itself
create a mutant child
else
breed normal children

while ( PARENT A != NULL ) {
while ( PARENT B != NULL ) {
N++;

if ( DETAILS )
printf ( "Creating creature %4d of generation"
" %4d\n", N, GENERATION NO );

if ( PARENT A == PARENT B )
CHILD = Mutate( PARENT A, MUT_ FRACT,
MUT SD, GENERATION NO, N );
else {
CHILD = Breed ( PARENT A, PARENT B, GENERATION NO,
. N );
N++;




R

95

CHILDREN = Append Des{ CHILDREN, CHILD );
PARENT B = PARENT ' B -> NEXT;

}

PARENT A PARENT A -> NEXT;

PARENT B = PARENT A;

/*
*k create a composite list of CHILDREN and PARENTS
*/

CHILDREN = Append Des( CHILDREN, PARENTS );

/*
*% return the number generated
*/
*NO_GENERATED = N;
/*
*k return the pointer to the CHILDREN
x/ ,
return( CHILDREN ) ;
}
/K= e e */
deg *Select( des *CHILDREN,
int *NO __SURVIVORS,
fleat BEST SCORE,
float AV_SCORE,
int GENERATION NO )
/* :
* % returns a pointer to the surviving CHILDREN as well as their
* % count in NO SURVIVORS based on the BEST_SCORE, AV_SCORE,
*x MIN POPULATION, and MAX POPULATION
*/
{
extern int DETAILS;
extern int MAX POPULATION;
extern int MIN POPULATION;
des *PTR;
int N = 0;
float MAX DEV;
/*
* % display which generation is being sorted 1f required and
* %

*/

sort the CHILDREN into increasing scores



,
~

N_
e

.

[R—

———

/*
* k&
* k

*/

/*

* %

*/

/*
* %
%o ke
* %
* %

*/

/*
* %k
* %

* %

*/

96

if { DETAILS )
printf( "Sorting creatures for generation %4d\n",
GENERATION_NO );

PTR = CHILDREN = Sort ( CHILDREN );

determine the maximum deviation from best score to select as a
surviving score

MAX DEV = ( AV_SCORE - BEST_SCORE ) * 0.2 + BEST_SCORE;
report commencement of seléction if required

if ( DETAILS )
printf( "Selecting survivors for generation %4d\n",
GENERATION NO) ;

keep selecting survivors from amongst the children as long as at
least MIN POPULATION are selected, and no more than

MAX POPULATION are selected, and their score deviates less than
MAX DEV from the best score

while ( ( N < MIN POPULATION )
|| ( ( N < MAX POPULATION )
&& ( CHILDREN->SCORE < MAX DEV )

&& ( CHILDREN->NEXT != NULL ) ) ) {
CHILDREN = CHILDREN->NEXT;
N++;

}

dispose of the unselected children, freeing up spces occupied by
them, terminate the list of survivors, and return the number of
survivors as well as a pointer to the survivors

Dispose Des{ CHILDREN->NEXT );
CHILDREN->NEXT = NULL;
*NO SURVIVORS = Ny

return{ PTR );




97

void DisplayList ( des *DESCRIPTOR LIST )

/*
* %
*

*/
{

/*
L
* &

*/

displays the descriptors pointed to by DESCRIPTOR LIST on the
screen

des *TEMP;
int N = 0;

TEMP = DESCRIPTOR LIST;

while more descriptors
display the descriptor on the screen

while ( TEMP != NULL ) {
N++;
printf( "\nbisplay of creature %4d in generation %4d\n",
N, TEMP->GENERATION NO );
printf( M-—- e e e \nA\n");
DisplayDescriptor( TEMP );
TEMF = TEMP->NEXT;

void DisplayDescriptor{ des *DESCRIPTOR )

/*

ok

*/

{

/*

* %k

*/

/*
*k
J ok
* %k

*/

displays the descriptor pointed to by DESCRIPTOR on the screen

int TO, FROM;
display the descriptor details

printf( "Creature number = %1d\n", DESCRIPTOR~>CREATURE NO ) ;
printf ( "Generation number = %4d\n", DESCRIPTOR->GENERATION NO);
printf( "Parent A = %1d\n", DESCRIPTOR->PARENT A );

printf( "Parent B = $£1d\n", DESCRIPTOR->PARENT__B ) ;

printf( "Breeding method = %c\n", DESCRIPTOR->BREEDING METHOD ) ;

for each neuron in the network
display the connection weights from every other neuron
display the bias of the neuron




/‘k

¥ %

*/

/*

* %

*/

int

/*
* %
* %

*/

/*
s %k
¥k

*/
/*

x ok
*k
* %
* %

*/

98
for ( TO = 0; TO < NO_NEURONS; TO++ ) {
for ( FROM = 0; FROM < (NO_NEURONS + NO_ INPUTS); FROM++ )
printf ( "Weight [%4d][%4d] = %8.6f\n",
TO, FROM, DESCRIPTOR->WEIGHTS[TO] [FROM] );

printf ("Bias [%4d] = %8.6f\n\n",TO,DESCRIPTOR->BIAS[TO]);

display the performance of the network

printf( "Score = %9.6f\n", DESCRIPTOR->SCORE );

printf( "Activation = %9.6f\n", DESCRIPTOR->ACTIVATION );

printf( "Delta activation = %9.6f\n", .
DESCRIPTOR~>DELTA;ACTIVATION ):

display the test results for the network

DisplayTest ( DESCRIPTOR ) ;

DisplayTest ( des *DESCRIPTOR )

display the test results for the network pointed to by DESCRIPTOR
and return the number of errors made by the network in all tests

float ACTIV;

int IN, NUM_ERRORS = 0;

net_in out NET IN, NET_ OUT;

bit array BINARY_IN, BINARY OUT, EXPECTED_ OUT;

printf( "Input Expect Output\n" ); :
printf( "--=-= ~---== - \n" );

for each test
derive the input to be presented to the network
test the network
sum the number of errors made in the output



Jr—

ey
—_—

Y
— et

99

for ( IN = TEST '~ MIN; IN < TEST MAX; IN += TEST STEP ) {
Integer To BltS( training set[IN][TRAIN IN], BINARY IN );
Bits _To Reals( BINARY _IN, NET IN );
Activate _Network ( NET "IN, NET _OUT, DESCRIPTOR->WEIGHTS,

DESCRIPTOR->BIAS SACTIV );

Schmidt ( NET OUT, BINARY ~ouT ) ;
Integer To Blts('tralnlng set [IN] [TRAIN OUT], EXPECTED _0UT) ;
NUM_ERRORS += No Blt _Errors{ BINARY OUT, EXPECTED OUT )

/*
k& printf("%5d %$6d %6d\n", IN, F(IN),
* %k Bits_To_Integer( BINARY OUT ) );
*/
}
/*
* & return the number of errors made
*/
return{ NUM ERRORS ) ;
}
[H == e FHHE -~ m e oo */
des *Generate ( des *PARENTS,
int *NO_GENERATED,
int GENERATION NO,
float MUT_FRACT,
float MUT_SD,
float *BEST_ SCORE,
float *AV_SCORE,
float *WORST_SCORE,
int *NO_SURVIVORS )}
/*
* ok creates the new generation GENERATION NO by generating
**  NO_GENERATED mutant and normal children from the descriptors
*k pointed to by PARENTS
*/
{
extern int DETAILS;
extern int MAX POPULATION;
extern int MIN POPULATION;
des *PARENT A, *PARENT ' B, *CHILDREN, *CHILD, *TEMP, *CP,
*WORST CHILD
float SCORE_ SUM = 0. 0, CHILD _SCORE, MAX DEV,
WORST“CHILD SCORE
int NG = 0, NS = 0, NC = 0;
/*
*% create pointers to the PARENTS and CHILDREN

*/




———— A.J

- ey
o ;i

b
[

/*
* %
* %k
* %k
* %
*) %
* %
* %k

*/

PARENT 2
CHILDREN

o

100

PARENT B = PARENTS;
NULL;

for each parent

pair

if paired with itself

alse

while ( PARENT A != NULL ) {

it with every subsequent parent in the list including
itself

create a mutant child

breed normal children

while ( PARENT B != NULL ) {
NG++;
if ( DETAILS )

printf( "Creating creature %4d of generation”
" %$4d\n", NG, GENERATION _NO };

if ( PARENT A == PARENT B ) {
CHILD = Mutate( PARENT A, MUT_FRACT, MUT_SD,
GENERATION NO, NG });
SCORE_SUM += PARENT A->SCORE;

}

else {
CHILD = Breed( PARENT_A, PARENT B, GENERATION"NO,
NG ); :
NG++;

}
TEMP = CHILD;

while ( TEMP != NULL ) {
CHILD = CHILD->NEXT;
TEMP ->NEXT = NULL;
Test ( TEMP );
CHILD_SCORE = TEMP->3CORE;
SCORE S3UM += CHILD SCORE;

if ( CHILD SCORE < *BEST SCORE )
*BEST_SCORE = CHILD SCORE;
if  ( CHILD_SCORE < *WORST_ SCORE )

if  ( NC < MAX POPULATION )
if  { CHILDREN == NULL ) {
CHILDREN = TEMP;
WORST_CHILD SCORE = CHILD SCORE;
WORST CHILD = TEMP;
NC++;

else



101

if ( CHILD SCORE >=
WORST_CHILD SCORE ) {
WORST CHILD->NEXT = TEMP;
WORST_CHILD = TEMP;
WORST_CHILD_ SCORE =
CHILD_SCORE;
NC++;

else
if ( CHILDREN->SCORE >=
CHILD SCORE ) {
TEMP->NEXT = CHILDREN;
CHILDREN = TEMP;
NC++;

elzse { .
CP = CHILDREN; .
while ( CP->NEXT->SCORE
< CHILD SCORE )

CP = CP->NEXT;

TEMP ~>NEXT = CP->NEXT;
CP->NEXT = TEMP;
NC++;

}

if ( CHILD_ SCORE < WORST CHILD SCORE)
{ i

else

CP = CHILDREN;

if ( CHILDREN->SCORE >»=

CHILD SCORE ) {
TEMF ~>NEXT = CHILDREN;
CHILDREN = TEMP;

}

else {
while { CP->NEXT->SCORE
< CHILD_SCORE )

CP = CP->NEXT;

TEMP->NEXT = CP->NEXT;
CP->NEXT = TEMP;

}

while ( CP->NEXT->NEXT != NULL )
CP = CP->NEXT;

WORST_CHILD SCORE = CP->SCORE;

WORST_CHILD = CP;

Free( CP->NEXT );

CP->NEXT = NULL;

}
else
Free( TEMP );
else
Free( TEMP };
TEMP = CHILD;




_~— —
[R——— [

=
[—

—

/*

* %k

*/

/*
* %
* k&

*/

/*

* %k

*/

/*
* %
* k
* %
* %

*/

/*
* %
* %

* %

x/

102

PARENT B = PARENT B -> NEXT;
}

PARENT A
PARENT B

PARENT A -> NEXT;
PARENT_ A;

create a composite list of CHILDREN and PARENTS

CHILDREN = Append Des( PARENTS, CHILDREN);
*AV_SCORE = SCORE_SUM / (*NO_SURVIVORS + NG);

TEMP = CHILDREN = Sort ( CHILDREN );

determine the maximum deviation from best score to select as a
surviving score

MAX DEV = ( *AV_SCORE - *BEST SCORE ) * 0.2 + *BEST_SCORE;
report commencement of selection if required

if ( DETAILS )
printf( "Selecting survivors for generation %4d\n",
GENERATION NO);

keep selecting survivors from amongst the children as long as at
least MIN POPULATION are selected, and no more than

MAX POPULATION are selected, and their score deviates less than
MAX DEV from the best score

while ( ( NS < MIN POPULATION )

Il ( ( NS < MAX POPULATION )

&& ( CHILDREN->SCORE < MAX DEV )

&& ( CHILDREN->NEXT != NULL ) ) } {
WORST CHILD = CHILDREN;
- CHILDREN = CHILDREN->NEXT;
NS++;

dispose of the unselected children, freeing up space occupied by
them, terminate the list of survivors, and return the number of
survivors as well as a pointer to the survivors




-

[

——
——

/*

*k

*/

/*

* %

*/

Dispose Des ( CHILDREN );

WORST CHILD->NEXT = NULL;
*NO_SURVIVORS = NS;

*WORST_SCORE = WORST_CHILD->SCORE;
CHILDREN = TEMP;

return the number generated
*NO_GENERATED = NG;

return the pointer to the CHILDREN

return ( CHILDREN ) ;

103




(e

-

104

/******************************************************************

*k * %
*k filename: random.h * %
k% programmer: o.diessel *k
k% modified: 901021o0fd * %
* % description: Contains prototypes for random functions k&
* % * %

******************************************************************/

filoat Rand No ( float stddev,
float mean );
/%

* returns a random number with expected value, mean, and standard
ok deviation, stddev

*/
[*mmmm oo HHH - - —mmmmem e */

void Randomize ( unsigned seed );

/*
*k seéds a new random number

*/

int Urand ( int max );

/*
* % returns a uniformly distributed random number between 0 and max-1

*/

e A = - oo */
float URand_No ( float min,

float max );
/%
* % returns uniformly distributed random variable between min and max
*/




105

/******************************************************************

* %k hk
* %k filename: random.c k%
¥k programmer : m.bentink . **
* % modified: 901019%0fd *%
* % description: contains random variable functions *k
* % % %
* & *k

******************************************************************/
#include <stdio.h>

/*

k% TurboC specifics - comment out for run on Apollo

*/

ftinclude <stdlib.h>

#define RAND Max 0x7FFF
/*
* % Apollo specifics - comment out for run on PC
*/
/* #define  RAND MAX 2147483647
*/ .
[ R e FHH R = o m oo oo */
float Rand No( float sSD,
float MU )
/*

** function to generate a normally distributed random number with
*k mean: MU and standard deviation: SD
* %
* ok ref: Muller, Marvin E. "A Comparison of Methods for Generating
*k Normal Deviates on Digital Computers", Journal of the A.C.M., VI
*% (1959), 376-383.
*/
{

float SUM = 0.0;

int I;

for (I =0; I < 12; I++ )}
SUM += (float)rand()/RAND MAX;

return( SD * ( SUM ~ 6.0 ) + MU );




106

void Randomize ( unsigned SEED )
/*
* %k seed new random number
*/
{
gsrand( SEED ):
}
e GGt EE e PR e G e LR */
int Urand( int max )
/*

* % returns a uniformly distributed random number between 0 and max-1

*/

return{ {(int) ( (float) rand() /
(float) RAND MAX * (float) max) );

}
[Hmmm L G LEEEE P L L */
float URand No( float min,
flcat max )
/%
*k function to generate a uniformly distributed random number
ok ranging between min and max
*/

{
return( min + (float) rand()} /
(float) RAND MAX * ( max - min ) });




PR

—

—

-——

[—

* %k
* %k
* %k
Je %
* k
* %

107
/******************************************************************
*k

filename: memory.h *k
programmer: o.diessel *k
modified: 89010160fd * %
description: contains prototypes and macro definitions of **
memory functions *

*

* %

******************************************************************/

/*
* %
*/
void
char
void

/*

* %

*/

Memory prototypes

Memory Error(
*New_ Memory (

Free Memory (

#define New (ptr_type)

#define Free (ptr)

void );
unsigned size );

char *memptr,
int size );

Memeory macro definitions

{ptr_type *)New Memory (sizeof (ptr type))

Free_Memory( (char *)ptr,sizeof (*ptr))




108

/*********#********************************************************

* % . k%
*% filename: memory.c *k
*% programmer : m.bentink *k
* modified: 9010160fd *k
**x description: contains functions to allocate and deallocate**
* % memory and keep track of memory usage kR
* %k k%

******************************************************************/

#include <stdio.h>

/%
* TurboC specifics - comment out for run on Apollo

*/

#include <stdlib.h>

/*

* % Definitions

*/

#define  MEM INCREMENT 131072L /* 100k memory increment */
/%

k% Global wvariables

*/

long MEMORY USAGE = 0;
long PEAK = MEM INCREMENT;

void Memory Error( void )

/*
** report fatal memory error and stop
*/
{
printf( "OUT OF MEMORY ERROR\n" );
exit ( 1 );
}
[ K= e FHEF oo */
char *New Memory ( unsigned SIZE )
/*
ok allocate SIZE bytes of memory
*/

char *PTR;



109

/%
*k update record of memory usage
*/
MEMORY USAGE += (long) SIZE;
/%
* & display memory usage whenever an increment in memory usage
k% is made
*/
if  ( MEMORY USAGE > PEAK ) {
printf{ "New peak working set : %1ld Kbytes\n",
MEMORY USAGE / {long) 1024 );
PEAK += MEM_INCREMENT;
}
/*
* % allocate memory and report error if not done
*/
PTR = (char *) malloc( SIZE );
if ( PTR == NULL )
Memory Error();
/*
* % return pointer to memory
*/ '
return{ PTR };
}
A FEHE - e o e e */
void Free Memory ( char *PTR,
int SIZE )
/*

ko frees the block of memory pointed to by PTR and updates
** MEMORY USAGE by SIZE
*/

{
free( PTR );

MEMORY USAGE -= (long) SIZE;



—

———

e

[RE——

i R

, ‘

110

/*******************************************#**********************

* %

k% filename: scrnplot.h

* % programmer : o.diessel

** modified: 9010210fd

* % description: Contains prototypes for screen plotting
* % functions

* &

* %
k&
* %
k&
* %
k%
%k

******************************************************************/

void InitializeScores ( vold )

void AddToScorelist ( int
fleat
float

void PlotScores ( void )

void DisposeOfScores ( void )

r

-

generation_number,

best_score,
average score );



r""‘
—

Pl
~

111

/******************************************************************

* % * %
*k filename: scrnplot.c *k
*k programmer : o.diessel * %
* % modified: 9010210fd * %
*k description: Contains functions to plot scores on screen **
* % *%

******************************************************************/
#include <stdio.h>

#include <string.h>

#include <math.h>

/*
** TurboC specifics - comment out to run on Apollo

*/

#in¢lude <time.h>

/*
** Apollo specifics - comment out to run on PC
*/

/*  #include <sys/types.h>

*/

#include M"memory.h"
finclude T"scrnplot.h"

#define MAX SCORE 100.0
#define MIN SCORE -100.0

typedef gtruct sl { int generation_number;
float best_score;
fleocat average score;
time t completion time;

struct sl *gen next; /* ascending */

struct sl *best next, /* descending*/

struct sl *avg next; ' /* descending*/
} score_list;

typedef struct rl { int gen number;

char marker[20];
struct rl *next;
} range list;

struct score head { int score list length;
struct bs { float max;
float min;
} best_score;
struct as { fleoat max;
float min;
} average score;
time -t last_insert;

score list *gen first; /* ascending*/
acore llst *gen_ last;




———— i

I ~
——

112

score_list *best first; /* descendingk
score_list *avg first; /* descending*/
}: ,

struct score head scores;
/*
*& Local prototypes
*/
range list *AddToRangeList ( range list *rl,
int gen_num,
char *marker );
void PlotRangelist { range list *rl,
float dpoint ) ;
void DisposeOfRangeList ( range list *rl );
[ R o B = === oo %/
range_ list *AddToRangeList { range list *rl,
int gen_num,
char *marker )
/%

k% adds range_list element to range list rl in generation number
*k order returning pointer to new range list

*/
{
range_list *temp, *crp, *prp;
/*
*k create new element
*/
temp = New( range list );
/*
* % get details
*/

temp->gen number = gen_num;
stropy ( temp->marker, marker );
temp->next = NULL;




/*
* %
ek
* %k
* %
*k
* %k
k%
**

*/

113

if list empty
add to front of list
else
if generation lowest
add to front
else
search for generation in list which is greater, and
insert in front

if ({ r1 == NULL )

rl = temp;
else {
if ( ¥l -> gen number > gen_num ) {
temp->next = rl;
rl = temp;
}
else {

crp = prp = rl;

while ( crp != NULL && crp->gen_number < gen num ) {
prp = crp;
cCrp = crp~>next;

}

if ( crp == NULL || crp->gen_number > gen num ) {

temp->next = crp;
Prp->next = temp;

}
}

return( rl );

------------------------ HHHHHHHH - - - ook
PlotRangeLigt ( range list *rl,
' float dpoint )

plots range list rl with domain spacing dpoint

range list *temp;
floeoat f=dpoint;

temp = rl;




114

#

* % while pointing to an element in the list

* % if domain value > generation number for the current element
** set pointer to next element

*k else

* % print spaces and increment domain value by domain
*k spacing

*k until domain value >= generation number

* % if domain value = generation number

* & print element marker

* % increment domain value by domain spacing

* & set pointer to next element

*k else

*k set pointer to next element

*/

while ( temp != NULL ) {

if ( £ > {(float) temp->gen_number )
temp = temp->next;
else {
for ( ; f£< (float) temp->gen number ; f+=dpoint )
printf( " " );

if ( fabs( £ - (float) temp->gen number ) < 1.0 ) {
printf({ "%s", temp->marker );
f+= dpoint;
temp=temp->next;

}
else
temp=temp->next;
}
}

}
JHmmmmm e == ———mmmm oo */
void DisposeOfRangeList ( range list *rl )
/*

*% frees up memory taken by the range list pointed to by rl
*/

{
range_ list *temp;
while( rl != NULL ) {
temp = rl;
rl = rl=->next;
temp->next = NULL;
Free{ temp );
}
}




e

Pt

e

[P —

i

[R——

[R—

[—

115

void InitializeScores( void )

/*
* %
*/
{

/*
**
%

*/

/*

* %k

*/

/*

* %

*/

initializes scores for use

scores.score_list_length = 0;
scores.best score.max = MIN SCORE;
scores.best score.min = MAX SCORE;
sScores.average score.max = MIN SCORE;
scores.average_score.min = MAX SCORE;
scores.last_insert = time (NULL);
scores.gen first = NULL;
scores.gen_last = NULL;
scores.best_first = NULL;

scoresg.avg first = NULL;

------------------------ FEH ey
AddToScorelist ( int generation number,

float best_score,

float average score )

adds new score to scores in ascending generation number order,
descending best score order and descending average score order

score list *sp, *current, *previéus;
allocate space for new score list element
sp = New( score list );

set details of new score list element

sp->generation number = generation_number;
sp->best _score = best_score;

sp->average score = average score;

sp->completion_time = time( NULL ) - scores.last insert;
sp->gen_next = NULL;

sp->best next = NULL;

sp->avg _next = NULL;

insert_into_list:




/*

*k

*/

/*

* %k

*/

/*

* %k

*/

/*

* %

*/

/*
* %k
* %k

*/

if score list is empty insert at front

if ( scores.gen first == NULL ) {
scores.gen_first = sp;
scores.gen last = sp;
scores.best first = sp;
scores.avg_first = ap;

} .

else {

otherwise insert at end in generation order
scores.gen_ last->gen next = sp;
scores.gen_last = sp;

if best score is greatest, insert at front in best

if ( best_score > scores.best_score.max ) {
sp->best_next = scores.best first;
scores.best first = sp;

}

else {
otherwise insert in front of first lower best score

current = scores.best first;
while { current != NULL

a3core

&& current->best_score >= sp->best score ) ({

previous = current;
current = current->best next;

}
sp->best next = current;
previous->best next = sp;

if average score ig greatest,
insert at front in average score order

if { average_score > scores.average score.max ) {

sp->avg_next = scores.avg first;
scores.avg_first = sp;
}

else {

116

order




L
e

[

— ey
——— —

-

e

/'k

%

*/

/*

* %

*/

otherwigse insert in front of first lower average score

current = scores.avyg first;
while {( current != NULL

&& current->average score >= gp->average score )

previous = current;
current = current->avg next;

}
sp->avg_next = current;
previous->avg next = sp;

update scores information

scores.score list length += 1;

if ( best_score > scores.best score.max )
scores.best_score.max = best_score;

if ( best_score < scores.best_score.min )
scores.best score.min = best_ score;

if ( average_score > scores.average_score.max )
scores.average_ score.max = average_score;

if ( average_score < scores.average score.min )

scores.average score.min = average score;

scores.last_insert = time( NULL };

PlotScores{ void )

plots graph of average (a) and best (b) scores for each
generation

determine range parameters

float rmax = (float)} ceil ( scores.average score.max * 10.0)
/ 10.0;

float rmin = {(float) floor({ scores.best score.min * 10.0 )
/ 10.0; -

float range = rmax - rmin;

float rstep = range / 4.0;

float rpoint = rstep / 5.0;




[S——

/*

* %

*/

/*

* %

*/

/%
* %k
L
* %k
* %k
* %k
* %

*/

118

determine domain parameters

int
int
float

score_.

int
float
char

range

ap =
bp =

displ

print

for e

for

dmax = ( scores.score_list length / 51 + 1) * 50;
dstep = dmax / 5;
dpoint = (float) dstep / 10.0;

list *ap, *bp;
i;
£;
marker[20];
list *rl;

scores.avg first;
scores.best_first;

ay current generation information

f( "Scores CURRENT Gen = %4d Best = %8.6f Avg = %8.6f"
" Lifespan %3d:%2d\n", scores.gen last->generation_number,
scores.gen_ last->best score,

scores.gen last->average score,

(int) ( scores.gen last- >complet10n time / 601 ),

(int) ( scores.gen last->completion time % 601 ) );

ach point in the range

display the scale

add best elements which are in range to range list
add average elements which are in range to range list
plot the range list

dispose of the range list

( i=20 , f=rmax ; i >= 0 ; i-- , f-=rpoint ) {

if {1 $5 ==0)
printf( "%6.3f+", £ );

else
printf( " =" )

rl = NULL;

while ( bp != NULL && bp->best score > £ ) {
if ( bp != scores.gen last )

strcpy ( marker, "W )
else ,
sprintf( marker, "CB (%8.6f)", bp->best_score );
rl = AddToRangeList ( rl, bp->generation number,
marker) ;
bp = bp->best_next;




/*

* %

*/

VO

/*

kK

*/

119

while ( ap != NULL && ap->average score > f ) {

if ( ap 1= scores.gen last )
strepy ( marker, "a" );

else
sprintf ( marker, "CA (%8.6£)", ap->average score);

rl = AddToRangelList ( xl, ap->generation_ number,
marker );

ap = ap->avyg_next;

}
PlotRangelList ( rl, dpoint );
DisposeOfRangelList ( rl );

printf( "\n" );
}

printf( " "oy
display the domain scale

for ( i=0 ; i <= 50 ; i++ )
if {1 % 10 == 0 )
printf( "+" );
else .
printf( "|" );
printf({ "\n "oy;
for ( i=0 ; i <= B0 ; i++ )
if {1 % 10 == 0 )
printf( "%4d ", (int) ( i * dpoint ) ):
else
if (1 %2 ==0)
printf( " " );

printf( " Generation\n" );

id DisposeOfScores( void )

frees up memory taken by scores

score list *sp;




while ( scores.gen_first != NULL
sp = scores.gen first;

120
) |

scores.gen first = scores.gen_ first->gen next;

sp->gen_next = NULL;
sp->best_next = NULL;
sp->avg_next = NULL;
Free( sp ),

}

InitializeScores():;




IR
L
(

Ml

B.3 Task Files

Tagk File
xortask.def
xomet.def
partask.def
parnet.def

E
£
[4]

122

123

124
125




e
p——

122

/******************************************************************

%

¥k filenane:

%k programmer:
** modified:

* % description:

xortask.def
o.diessel
9010160fd

*k remark:

* % XOR problem
* % see also: xornet .def
X%

task definition file for XOR problem
copy to taskdef.h and MAKE gentest to run

* %
* %
k%
LA
*k
LA
k%
* %
* %

******************************************************************/

/*

*% the network is presented with the four 2 variable binary input

* %k combinations and is expected to recognize the XOR function

*/
#define  TRAIN IN 0
#define  TRAIN OUT 1

unsigned training set [TEST_ MAX] [2]

{

Lo Y

oo




123

/******************************************************************

ok

k% filename:

* & programmer:
*k modified:

** description:

*x %

* & remarks:
* &k

*x sSee also:
* %

xornet .def
m,.bentink
9010160fd

network definition header for XOR problem

defines network parameters

copy to netdef.h and MAKE gentest to run

¥OR problem
xortask.def

4

* %
* %
* %k
**
k)%
LES
* %k
* %k
* %
k&

******************************************************************/

#define
#define
#define
#define

#define
#define
#define
#define
#$define

#define

#define

NO_INPUTS 2

NO_OUTPUTS 1

NO_LAYERS 2

NO_NEURONS (NO_INPUTS * NO_LAYERS)
TEST_MIN 0

TEST MAX 4

TEST_STEP 1

MAX_NO_ERRORS

CYCLE_MAX 10

ACTIVATION MIN 0.0005

TASK NAME

n XOR"

((TEST_MAX-—TEST_MIN)*NO_QUTPUTS/TES?_STEP)




et

124

/******************************************************************

* % **
*% filename: partask.def * %
* % programmer : o.diessel *x
* % modified: 9010160fd *k
kX description: task definition file for parity problem *k
* % remark: copy to taskdef.h and MAKE gentest to run * %
* % parity problem *x
* % see also: parnet.def * %
* %k L33

******************************************************************/
/%

* % the network is presented with bit strings 7 bits long and is

* % expected to determine whether the string has even parity

* % (output = 1) or odd parity (output = 0)

*/

#define  TRAIN IN 0

#define  TRAIN_OUT 1

unsigned training_ set [TEST MAX])I[2] = { O, 1,
32, O,
2, 0,
8o, 1,
5 1,
40, 1,
10, 1,
84, 0,
21, O,

127, 0 };




—

NS

125

/******************************************************************

%k * %
%k filename: parnet .def : *k
%k programmer: o.diessel *k
%k modified: 9010160fd k%
k% description: network definition header for parity problem **
* % defines network parameters k%
* % remarks: copy to netdef.h and make gentesat to run te ke
* % parity problem k%
*% gsee also: partask.def ke
% % * %

******************************************************************/

#define
fdefine
#define
#define

#define
#define
#define
#define
#define

#define

#define

NO_INPUTS 7

NO_OUTPUTS 1

NO_LAYERS 3

NO_NEURONS (NO_INPUTS * NO_LAYERS)
TEST_ MIN 0

TEST MAX 10

TEST_STEP 1

MAX NO_ERRORS ((TEST MAX - TEST MIN) *NO_OUTPUTS/TEST STEP)
CYCLE_MAX 10

ACTIVATION_MIN 0.0005

TASK_NAME "PARITY"




e

B.4 Make Files

Make File
gentest.prj
makexor

makepar

g
0
[

127
128
129

126




——

R——'

o
[——

127

/******************************************************************

gentest.prj

o.diessel

9010210fd

TurboC project file

Define the appropriate dos PATHNAME,

define the appropriate netdef.h & taskdef.h
files, or copy ???net.def to netdef.h and
???task.def to taskdef.h, and delete this
header to MAKE gentest.exe using Borland’s
TurboC

* &
* k%
* %
*k
* %
* %
k&
*k
* &k
Kk
%k
* %

******************************************************************/

* *
*k filename:

*k programmer:
*k modified:

* % description:
** comment :

* %k

* %k

* %

* &

* %

%k
\PATHNAME\gentest
\PATHNAME \genetic
\PATHNAME\ scrnplot
\PATHNAME \memory

\PATHNAME \ random




128

/******************************************************************

* % * %
~ *x filename: makexor *k
- **  programmer: o.diessel * %
Y **  modified: 9010270fd * %
. * % description: use on Apollo to make XOR program xortest **
}? * % see also: modify #include & #define statements in * ok
V) * % % %

* % gentest.c *k
m k% genetic.c * %
| s random.c *k

*x gcrnplot.c %* %
r *k randonm. ¢ *x

|
| %% **
J KAARKKKARRKAIRAAKARKRK AR AR ARA AR AR AR Rk kh Ak khk kR hhhk kA kR Rk kKA *k /

. OBJS = xortest.o xorgen.o scrnplot.o memory.o random.o

L ~ xortest: $(OBJS)
/bin/ce $(0BJS3) =-o xortest

xortest.o: netdef.h genetic.h extendc.h random.h scrnplot.h
cp xornet.def netdef.h
/bin/cc ~0 -c gentest.c -o xortest.o

. xorgen o: memory.h netdef.h genetic.h extendc.h random.h taskdef.h
cp xornet.def netdef.h

o cp xortask.def taskdef.h

L /bin/cec -0 -c genetic.c -o xorgen.o

; scrnplot.o: memory.h scrnplot.h

o




129

/******************************************************************

Kk * %k
okl filename: makepar * %
*k programmer: 0.diesgsel *x
*k modified: 9010270fd *%
*x description: use on Apollo to make parity program partest **
* % see also: modify #include & #define statements in * %
£ * %
* % gentest.c *%
* % genetic.c **
* % - random.c * %
*% : scrnplot.c *x
*% random. c ok
* % LA

******************************************************************/
OBJS = partest.o pargen.o scrnplot.o memory.c random.o

partest: $(OBJS)
/bin/cc $(0OBJS) -o partest

partest.o: netdef.h genetic.h extendc.h random.h scrnplot.h
¢p parnet.def netdef.h
/bin/cc -0 -c gentest.c -o partest.o

pargen.o: memory.h netdef.h genetic.h extendc.h random.h taskdef.h
cp parnet.def netdef.h
cp partask.def taskdef.h
/bin/ce -0 -c genetic.c -o pargen.o

scrnplot.o: memory.h scrnplot.h




]

T

T

——

130

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

Bentink M., "Neural Networks, A genetic Breeding Algorithm", Fourth Year Bachelor
of Engineering Project, University of Newcastle, {1989)

Penfold H.B., Diessel O.F., and Bentink M.W., "A genetic breeding algorithm which
exhibits self-organizing in neural networks", Presented at IASTED International
Symposium Artificial Intelligence and Neural Networks, Ziirich, Switzerland, June

1990 (proceedings to appear)

Kauffman S. and Levin S., "Towards a General Theory of Adaptive Walks on Rugged
Landscapes”, J. theor. Biol, Vol. 128, pp 11-45 (1987)

Baba N., "A new approach to finding the global minimum of etror functions in neural

networks", Neural Networks, Vol. 2, pp 367-373, (1989)

Bartlett P., and Downs D., "Training a neural network with a genetic algorithm”, First
Australian Conference on Neural Networks, Sydney, January 1990

Rumelhart D.E., Hinton G.E. and Williams R.J., "Learning intemal representations by
error propagation”, in Parallel Distributed Processing, Vol. 1, Eds. Rumelharhart D.E.
and McClelland J.L., MIT Press, Cambridge, MA, pp 318-362, (1986)

Lippmann R.P., "An introduction to computing with neural nets”, IEEE ASSP
Magazine, pp. 4-22 (1987)

Vemuri V., "Artificial neural networks: an introduction”, Neural Networks, Artificial
Neural Networks: Theoretical Concepts, Ed. Vemuri V., JEEE Computer Society Press
Technology Series, pp 1-11 (1988)

Lapedes A. and Farber R., "How neural nets work”, American Institute of Physics

Press




[10]

[11}

[12]

[13]

(14]

[15]

[16]

(17]

131

Palmer R., "Neural Nets', Complex Systems, SFI Studies in the Sciences of
Complexity, Ed. Stein D., Addison-Wesley, Reading, Ma. pp. 439-461 (1989)

Walbridge C.,, "Genetic algorithms - the calculated solution”, The Australian, pp
48,49,56, February 21, 1989

Holland J.H., "Genetic algorithms and classifier systems: foundations and future
directions”, Genetic Algorithms and their Applications, Proceedings of the Second
International Conference on Genetic Algorithms, Ed. Grefenstette J.J., Lawrence
Erlbaum, Hillsdale, N.J., pp. 82-89 (1987)

Cohoon J.P., Hegde S.U., Martin W.N., and Richards D., "Punctuated Equilibria: a
parallel genetic algorithm", Genetic Algorithms and their Applications, Proceedings
of the Second International Conference on Genetic Algorithms, Ed. Grefenstette J.J.,
Lawrence Erlbaum, Hillsdale, N.J., pp. 148-154 (1987)

Anthony D., Hines E., Barham J., and Taylor D., "The use of genetic algorithms to

learn the most appropriate inputs to a neural network”, (unpublished article)

Goldberg D.E., and Richardson J., "Genetic algorithms with sharing for multimodal
function optimization", Genetic Algorithms and their Applications, Proceedings of the
Second International Conference on Genetic Algorithms, Ed. Grefenstette J.J.,
Lawrence Erlbaum, Hillsdale, N.J., pp. 41-49 (1987)

Whitley D., "Using reproductive evaluation to improve genetic search and heuristic
discovery", Genetic Algorithms and their Applications, Proceedings of the Second
International Conference on Genetic Algorithims, Ed. Grefenstette J.J., Lawrence
Erlbaum, Hillsdale, N.J., pp. 108-115 (1987)

Pineda F.J., "Generalization of back-propagation to recurrent neural networks",
Physical Review Letters, Vol. 59, pp. 2229-2232 (1987)




