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Abstract: Field-programmable gate arrays are susceptible to radiation-induced single event upsets. These are commonly dealt
with using triple modular redundancy (TMR) and module-based configuration memory error recovery (MER). By triplicating
components and voting on their outputs, TMR helps localise configuration memory errors, and by reconfiguring faulty
components, MER swiftly corrects them. However, the order in which TMR voters are checked inevitably impacts the overall
system reliability. In this study, the authors outline an approach for computing the reliability of TMR–MER systems that consist of
finitely many components. They demonstrate that system reliability is improved when the more vulnerable components are
checked more frequently than when they are checked in round-robin order. They propose a genetic algorithm for finding a voter
checking schedule that maximises the reliability of TMR–MER systems. Results indicate that the mean time to failure (MTTF) of
these systems can be increased by up to 400% when variable-rate voter checking (VRVC) is used instead of round robin. They
show that VRVC achieves 15–23% increase in MTTF with a 10× reduction in checking frequency to reduce system power. They
also found that VRVC detects errors 44% faster on average than round robin.

 Nomenclature
Symbol Definition

N number of TMR components in the system
Ck component k, k = 1, …, N
Okn Ck is observed for the nth time by checking its voter(s)
Δto time period between successive voter observations

(assumed to be constant for a given system setting)
Δtdk time period between two consecutive observations of Ck
Δtrk time period to recover a faulty module of Ck
Δtk total time period over which Ck can fail
Δtdi j time period between successive observations of Ci and Cj
Δtd′i j average time period between two consecutive observations

of Ci in the interval between two consecutive observations
of Cj

1 Introduction
Owing to their low cost, flexibility, and impressive processing
performance, static random access memory (SRAM)-based field-
programmable gate arrays (FPGAs) are increasingly looked to as
suitable candidates for hosting complex, high-performance space-
based digital systems. However, the designers of such applications
must consider the impact of ionising radiation, i.e. high-energy
charged particles, has on the device [1]. In particular, single event
upsets (SEUs) may alter the logic state of any static memory
element, i.e. configuration latches, user flip-flops, internal block
memory, and other device-specific control registers. Since millions
of configuration latches within an FPGA are programmed to
implement the user functionality, an SEU in the configuration
memory can adversely affect the expected FPGA functionality.

The safe use of FPGAs in harsh radiation environments requires
the implementation of robust SEU mitigation techniques. Hardware
redundancy such as triple modular redundancy (TMR) is a
commonly used technique [2, 3]. TMR can mask any single design
failure by voting on the result of three functionally equivalent
modules. However, TMR is unable to correct errors or eliminate
erroneous values that have become trapped within cyclic user

circuitry or within the configuration memory. Errors trapped in
user circuitry can be corrected by resetting the faulty module or by
resynchronising the module with its functionally equivalent
siblings. To deal with configuration memory errors, TMR is
usually combined with an error recovery technique such as
scrubbing [1, 4, 5] or module-based error recovery (MER) [6]. We
use the term TMR-scrubbing to refer to a TMR system in which
the configuration memory errors are recovered by scrubbing,
whereas TMR–MER is hereinafter used to refer to TMR systems
that rely on MER to correct configuration memory errors.

Both TMR-scrubbing and TMR–MER rely on dynamic partial
reconfiguration (DPR) to correct configuration memory errors.
TMR-scrubbing is typically performed periodically and typically
involves reading back each configuration memory frame of the
device, checking it for errors using in-built error-correcting code
(ECC) or by comparing it with a golden reference, correcting any
errors that are found and writing back any corrected frame. In
contrast, TMR–MER is commonly triggered when repeated errors
are detected by the voter associated with a TMR component and
involves rewriting the configuration memory for the specific
module that has been found to be in error. TMR-scrubbing is thus
more fine-grained than TMR–MER in its corrective action, but
involves reading or writing the entire configuration memory
contents of the device. On the other hand, TMR–MER is more
coarse grained than TMR-scrubbing since the configuration
memory contents of a complete module are rewritten; multiple
configuration memory errors affecting the one frame/module are
thus corrected in a single action, and since only the configuration
memory of the affected module is rewritten, correction is typically
faster with TMR–MER than with TMR-scrubbing.

During the last 20 years, more research has focused on the use
of TMR-scrubbing than on TMR–MER to enhance the reliability of
SRAM-based FPGA systems [2]. However, TMR–MER is being
seen as offering some advantages over TMR-scrubbing. A
significant drawback of TMR-scrubbing is that it results in
unnecessary power consumption when it is invoked despite no
SEU having been occurred. Furthermore, the delay in correcting
errors using TMR-scrubbing may be excessive, particularly for
large FPGA devices. TMR–MER aims to avoid these costs by
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reconfiguring just the portion of the device that is suspected of
being in error and by providing low-latency error detection via the
TMR voters [6]. TMR–MER, thus, aids both the system power
consumption and reliability [7, 8], which are both desirable
outcomes for space-based systems.

Both TMR-scrubbing and TMR–MER utilise a controller to
operate, but TMR–MER also require a means of relaying
reconfiguration requests (RRs) from the voters in the system to a
central reconfiguration controller (RC) (Fig. 1). A star-, bus- or
ring-based RC network (RCN) is often employed to perform this
function [9]. Another alternative is to use the in-built FPGA
configuration infrastructure to access distributed status registers
containing the RRs [9]. Irrespective of the RCN topology and
technique employed, the RRs from voters cannot be checked
concurrently. They must be checked sequentially. Typically, the
RRs are checked in round-robin order [9]. However, the order in
which the voter RRs of TMR components are checked has an
inevitable impact on the overall system reliability. 

In [10], we proposed an on-chip voter scheduling engine (VSE)
to help the RC dynamically adjust the order in which RRs from
TMR voters are checked based on the likelihood of the next
component that is checked being in error. The approach was
implemented based on the idea that the RRs from the more
vulnerable components, i.e. those comprising a greater number of
essential bits [11], are checked more frequently than the less
vulnerable ones. We found that VSE boosted system reliability by
50% relative to a static round-robin voter checking schedule. A
question that work raised, and which we here answer in the
affirmative, is whether a static voter checking schedule could be
found to enhance TMR–MER system reliability beyond the
improvement possible with the dynamic voter checking method.

In this work, we investigate the reliability of TMR–MER
systems consisting of multiple triplicated components operating in
harsh radiation environments such as in geosynchronous orbit
during solar flares, and in high-energy physics laboratories such as
the large Hadron collider, where multiple coincident SEUs are
more likely [12]. Our main interest is in determining the impact of
varying the order and rate at which the voter RRs of TMR
components are checked for errors in overall system reliability.

Our contributions are:

• To derive reliability models of TMR–MER systems that
comprise finitely many TMR components whose voter RRs are
checked in round-robin order and at a variable rate [so-called
variable-rate voter checking (VRVC)]. Previous work has
primarily focused on the effects of single SEU events on SRAM
FPGA-based systems while our analysis considers the impact of
multiple consecutive SEU events, which is an important
consideration in providing a more comprehensive and accurate
analysis of system reliability.

• To propose a genetic algorithm (GA) for finding the optimal
fixed rate at which to check all components so as to maximise
the mean time to failure (MTTF) and the reliability of TMR–
MER systems.

• To show that the power consumed checking for errors can be
reduced by reducing the checking frequency. In this case, VRVC
is capable of ensuring a higher system reliability than the static
round robin and the dynamic VSE approaches.

• To demonstrate that the mean time to detect (MTTD) errors are
reduced by 44 and 30% on average when VRVC is used instead

of a static round robin and dynamic VSE voter checking
regimes, respectively.

In this paper, we build on and substantially extend our earlier
work in [13, 14] as: (i) we provide a background on common error
recovery techniques including TMR with scrubbing and MER as
described in the literature (Section 1); (ii) we provide background
on the reasons we use TMR–MER and the associated control logic
as well as related work on techniques used to improve the
reliability of FPGA-based systems for aerospace applications
(Section 2); (iii) we detail the GAs used to obtain static schedules
of voter checks that maximise the TMR–MER system reliability
(Section 5); and (iv) finally, we report and discuss simulation
results of systems containing 2, 4, 5, 10 and 20 components, and of
an actual CubeSat system containing nine components (Sections 6
and 7).

This paper is organised as follows: Section 2 briefly provides
background on related work on error recovery techniques used to
improve system reliability. Section 3 presents reliability models for
TMR–MER systems that consist of finitely many components
whose voters are checked in round-robin order or at a variable rate.
Section 4 presents the results of a small simulation study used to
assess the models derived in Section 3 on a system comprising two
components. Section 5 describes two GAs used to derive a voter
checking schedule with the objective of maximising the system
reliability when systems are composed of n components. Section 6
describes our simulation experiments to assess the performance of
the proposed VRVC relative to VSE and round-robin voter
checking, while Section 7 details our experimental method, reports
on our findings and discusses the results. Concluding remarks and
directions for further study are given in Section 8.

2 Background and related work
In this section, we provide a brief background on the TMR–MER
approach to recover from configuration memory errors and review
several research activities related to TMR–MER and TMR-
scrubbing methods that use novel techniques to improve overall
system reliability. We conclude with a brief survey of reliability
models for SRAM FPGAs in the presence of SEUs.

2.1 TMR–MER approach

TMR–MER utilises the DPR capability available in modern
FPGAs to recover a faulty module of a TMR component from
configuration memory errors. DPR involves a post-configuration
write operation to the configuration memory that is performed
while the FPGA is operating. After a full configuration is loaded to
the FPGA, DPR allows a system to repair SEUs in the
configuration memory by loading a golden partial configuration
file stored in a radiation-hardened off-chip memory. This file can
be written to a pre-defined reconfigurable region in the FPGA
without affecting the function of user circuits that are located in
those regions of the device that are not being reconfigured [15].

Fig. 1 illustrates an FPGA-based TMR–MER system. The voter
associated with each TMR component identifies which module, if
any, is suffering from a persistent fault, and raises an RR [16]. RRs
from the voters of different TMR components across the device are
observed by an RC via an RCN. If the RC observes a fault in one
of the modules in any of the system's TMR components, it fetches
the partial bitstream corresponding to that module from off-chip
memory and reconfigures it by writing the bitstream to the internal
configuration access port (ICAP) present in advanced FPGAs from
Xilinx. After the faulty module has been reconfigured and
resynchronised with the remaining two modules of the TMR
component, the voter resumes its normal checking function. It
should be noted that RCNs such as star-based, bus-based, and
ICAP-based networks allow the RC to check any one voter in
constant time and in any order [9].

In [9], Agiakatsikas et al. provided a comprehensive study of
TMR–MER using different RCN topologies. They demonstrated
that TMR–MER using an ICAP-based network to aggregate voter
RRs provides the highest reliability in comparison with systems
implementing soft star-, bus- or token ring-based networks. The

Fig. 1  Example TMR–MER system diagram
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ICAP-based network utilises the ICAP to read back configuration
frames (CFs) that contain the health status, i.e. the RRs of the
system's TMR components in user registers [9, 17]. An ICAP-
based communications scheme eliminates the need for a soft
network, and therefore improves reliability while reducing routing
pressure and design implementation time. This approach has the
potential to be scalable as it does not require user routing resources
and utilises a moderate amount of logic to implement the central
RC [9]. While in this work, we employ an ICAP-based RCN, our
conclusions hold for any RCN that allows any voter to be accessed
in a constant amount of time.

It would be possible to design a soft RCN to interrupt the RC
when an error is detected. However, the reliability of the system is
impacted by the considerable additional resources used by a soft
RCN, and by the fact that errors in these RCNs are difficult to
correct by modular reconfiguration because of their distributed
nature. In [9], we compared a polled soft RCN with a polled ICAP-
based RCN. A soft RCN that is interrupt based would use more
resources than a polled one, for very small gains in MTTD errors,
and hence the conclusions of [9] would favour an ICAP-based
polled design even more emphatically.

2.2 Related work

A number of publications report on techniques that have been
developed to decrease the MTTD and correct configuration
memory errors in FPGA-based systems with a view to improve
system reliability. These techniques are based either on TMR–
MER [6, 9, 10, 16–18] or on scrubbing [19–23].

The use of scrubbing has been extensively researched and
numerous studies have shown that scrubbing approaches that are
based on the critical metrics that directly affect system reliability
are more reliable than conventional scrubbing, which periodically
and systematically scrubs from the first to the last frame of the
device. Asadi and Tahoori [20] proposed an approach that reduces
the MTTD errors by scrubbing only those CFs that contain
sensitive bits, which affect the circuit operation when they are
flipped. In [19], Lee et al. presented a heterogeneous scrubbing
approach that varies the scrub rates of different components based
on the number of sensitive bits they contain. In [22], Nazar et al.
presented a mechanism that statistically finds an optimal frame to
commence scrubbing in order to reduce the mean time to repair
configuration memory errors. In addition, Santos et al. [23] showed
that overall system reliability is improved when the rate at which
scrubbing is performed is based on the criticality of user tasks. Our
work presented here checks the voters of TMR components for
configuration memory errors based not only on the number of
sensitive bits of TMR modules, but also on the recovery times of
the modules. This is similar to the approach of [19]; however,
differs from it in that our approach does not involve or require any
further action such as scrubbing or modular reconfiguration, when
errors are not present.

Several models for estimating the reliability of SRAM FPGAs
in the presence of SEUs have been introduced in the literature.
Heron et al. [24] introduced a reliability model in which the overall
reliability of the FPGA is calculated based on physical and SEU
reliability. This model parses the netlist of a design to estimate the
number of essential bits used for configuring essential items such
as look-up tables, multiplexers, flip-flops/latches, wires and switch
resources in the design. However, the model does not consider the
effect of hardware redundancy or the effect of multiple coincident
SEUs. Edmonds presented a reliability model of TMR designs
without recovery that considers coincident upsets [25]. Ostler et al.
[12] introduced a reliability model for a one-component TMR
design employing TMR-scrubbing under harsh radiation
environments, where multiple coincident SEUs are more probable.
Their model requires orbit- and condition-specific SEU rates and
design-specific estimates of the probability of failure during a
single scrubbing period. Our work proposes reliability models of
SRAM FPGA designs, also under harsh radiation environments,
where multiple coincident SEUs may occur, such as [12], but for
TMR–MER designs that contain multiple TMR components. The
requirements of our models are similar to those of [12], but the

probability of failure of a TMR component is estimated during two
consecutive observations of the TMR component voters rather than
during a single scrub period.

Reliability models for TMR–MER systems have not yet been
studied in detail. When they are mentioned, Markov models are
used to compute the system reliability with the assumption that the
recovery of modules of multiple TMR components occurs
independently [9]. While acceptable at low error rates, the problem
with this assumption at high error rates is that the methods for
correcting configuration memory errors are inherently sequential;
hence, the models do not consider the effect of configuration
memory errors on other TMR components while a faulty module is
being reconfigured. In this paper, we develop reliability models
that consider multiple coincident SEUs that may occur in different
TMR components and use these to analyse the impact of the order
in which we check voters for RRs.

3 Reliability model
In this section, we introduce models that estimate the reliability of
TMR–MER systems. These models are then used to estimate the
reliability of FPGA-based designs in harsh radiation environments
when multiple coincident upsets are more probable. We describe a
general reliability model that has been widely used to estimate the
reliability of FPGA-based systems. On the basis of this general
model, we outline a procedure for estimating the reliability of
TMR–MER systems that consist of an arbitrary number of TMR
components and whose voters are checked in round-robin order or
at a variable rate.

3.1 General reliability model

The reliability of a TMR component k over time Δt, Rk(Δt), can be
expressed with respect to (w.r.t.) the component failure probability,
FPk(Δt), which is the sum of the individual likelihoods that the
component fails for all u SEUs that may affect the device during
Δt. These relationships are given in [12] as

Rk(Δt) = 1 − FPk(Δt),

FPk(Δt) = ∑
u = 1

∞
P(Fk |Eu)P(Eu, Δt),

(1)

where the event Fk is the failure of the component k during the
period of time Δt and event Eu is that u SEUs have occurred in the
device during the period of time Δt. Failure of TMR component k
means that at least two of the three modules suffer from errors and
that the component's voter, therefore, fails to produce the correct
output.

P Fk |Eu  can be estimated for various values of u using the
number of sensitive bits per component, for which we use the
number of essential bits reported by the vendor's tools as a worst-
case estimate. Sensitive bits are those bits that cause a functional
error if they change state, while essential bits are those bits
associated with the circuitry of the design [11].

P Eu, Δt , the probability of event Eu occurring during Δt, can
be modelled with a Poisson distribution, P(Eu, Δt) = e−ν(νu/u!),
where ν is the expected number of SEUs suffered by the device
during a period of time Δt and is obtained from the product of the
failure rate of one configuration memory bit of a device λbit , the
number of configuration memory bits of a device nc  and the time
period Δt : ν = λbit × nc × Δt. λbit depends on the radiation level,
the integrated circuit process technology and the circuit
architecture of the FPGA fabric.

Once the failure probability of component k is known, the
failure rate λk of a component k is given by [12]

λk = FPk(Δt)
Δt . (2)

Since a TMR component can fail in different scenarios (see Fig. 2
and associated discussion in Section 3.2) with different failure rates
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λk
i , it is more meaningful to compute the composite failure rate of

each component λk
c . This parameter can be calculated for the

expected proportions ρk
i  in which each scenario occurs

λk
c = ∑

i = 1
ρk

i λk
i . (3)

where ∑ ρk
i = 1. 

Typically, a system contains N TMR components that are
modelled in a series from a reliability perspective such that the
failure of any one component causes the system to fail. The failure
rate of a series TMR system, λs, is the sum of all component failure
rates [26]. The MTTF of the system is given by the reciprocal of
the system failure rate.

3.2 Failure rates of TMR–MER systems in which voters are
checked in round-robin order

On the basis of the general reliability model described in Section
3.1, we estimate the failure rate of systems comprised of two TMR
components connected in series. Hereafter, we say that if the output
of one module of a TMR component repeatedly differs from that of
the other two that the component is suffering from an error, and if,
after the component suffers another one or more SEUs, the outputs
of the remaining two modules repeatedly differ that the component
has failed. We also assume that once a faulty module is detected, it
is dynamically reconfigured to correct the error and to reduce the
likelihood of the component failing [9].

In a two-component system, a component may fail in one of
four different ways that are classified into two groups as shown in
Fig. 2 and using the notation listed in Nomenclature section. Note
that Fig. 2 only describes the modes in which C1 can fail; the
modes in which C2 can fail can be derived in a similar manner.

Group 0: No other component suffers an error

• Case 1 [Fig. 2(1)]: C1 suffers from two or more SEUs that
cause it to fail during the period of time between two
consecutive checks of its voters (e.g. during Δt1 – the period of
time between O12 and O13).

• Case 2 [Fig. 2(2)]: C1 suffers an error from one or more SEUs
during the period of time between two consecutive checks of its
voters [between O12 and O13 in Fig. 2(2)]. Thereafter, C1 fails if
one or more SEUs affect its remaining working modules during
the period of time that it is recovering from the previous error
(e.g. during Δtr1 – from time O13 to the end of the recovery
process of C1).

Group 1: One other component suffers an error

• Case 1 [Fig. 2(3)]: C1 suffers from two or more SEUs that
cause C1 to fail during a period of time between two
consecutive checks of its voters that are longer than usual
because the system is recovering from an error in C2. C1 fails
during the period of time that commences after it is observed to
be without an error (at O12), continues while C2 is checked and
recovered, and finishes when C1 is observed again at O13.

• Case 2 [Fig. 2(4)]: C1 suffers an error from one or more SEUs
during the period of time between two consecutive checks of it
(between O12 and O13) while the system is recovering from an
error in C2. C1 then fails if one or more SEUs affect a second
and/or third modules/module of C1 while it is recovering from
the previous error.

To summarise, in case 1 of either group, component k fails, i.e.
suffers multiple errors to its different modules, between successive
voter checks. In case 2, on the other hand, component k suffers an
error to one of its modules during this period, and then fails
following subsequent upsets to its other modules while recovering
from the first error.

The failure probability of component k in case 1 of either group
is computed based on FPk(Δt) in (1) with corresponding Δtk as
shown in Figs. 2(1) and (3).

The failure probability of component k in case 2 of either group
is the product of the probability that event Mk (i.e. that component
k suffers an error) occurs during the period of time Δtdk as shown
in Figs. 2(2) and (4) and that component k fails during the period of
time Δtrk given the occurrence of an event Mk.

On the basis of (2), the failure rate of the component k λk
i  in

each case is estimated using the corresponding Δtk (Fig. 2).
The proportions ρk

i  are calculated for the likelihood by which
component k fails in each case. For example, the likelihood of
cases in group 0 occurring depends on the likelihood that
component k suffers an error, while that of cases of group 1
occurring depend on the likelihood that both components suffer an
error.

The composite failure rate of component k λk
c  is calculated by

substituting λk
i  and ρk

i  into (3), and the system failure rate can be
computed by summing λk

c for all k.
The reliability of systems comprising any number of TMR

components can be readily computed by extending the approach we
have outlined for two-component systems by considering all
possible cases in which each component may fail [27].

3.3 Failure rates of TMR–MER systems employing VRVC

VRVC is defined as a periodic schedule in which TMR component
voters are checked at specific times and in which the more
vulnerable components’ voters are checked more frequently than
those of the less vulnerable ones. For example, in a system of four
components, one period of a schedule could be 4–3–4–2–4–3–4–2–
3–1 in which each digit represents the component whose voters are
to be checked. In this case, component 4 is deemed more
vulnerable and hence checked more frequently when compared
with the other components, and component 1 is deemed least
vulnerable and hence checked less frequently.

3.3.1 2-Component system: Similar to the cases described in
Section 3.2, we observe that C1 fails in one of four different ways
as partly depicted in Fig. 3 using the notation of Nomenclature
section. Note that p in Fig. 3 denotes the nominal number of times
that C2 is checked between two consecutive checks of C1 due to its
greater susceptibility to SEUs than C1's. In case 1 of group 1
[Fig. 3(3)], we assume that the system detects an error in C2 x
checks after C1 is checked (at O12), where x varies from 1 to p. In
this work, we associate with x = 1…p the number of checks that
the system performs before it detects an error in C2. Thus, each
case of group 1 involves p sub-cases that have the same likelihood
of both components suffering an error ρk

i . For example, given a
schedule of two components in the following order 1–2–2–2–2–1–

Fig. 2  Failure modes for component 1 in two-component systems in which
the voters are checked in round-robin order
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2–2–2–2–1, . where each digit denotes the observation of the
corresponding component, Δtd1 and Δtd2 in group 0 are 5Δto and
1.25Δto, respectively. Please note that errors can affect a
component at any time between two consecutive checks of it. The
impact is worst when the error occurs just after the component has
been checked and is least when the error occurs just before the
component is checked again. The expected impact is, therefore,
calculated as the midpoint of the time interval between two
consecutive checks of the component [21]. Both Δtd12 and Δtd′21 in
group 1 are Δto. Furthermore, with such a schedule, there are four
checks of C2 during the period of time between two consecutive
checks of C1. Thus, x = 1…4. 

The observations of C2 differ slightly from those of C1. C2
may also fail in one of four different ways, but the number of sub-
cases in group 1 is only 1. This is because, between any two
consecutive checks of C2, C1 is checked at most once.

The above observations allow us to compute the system failure
rate.

3.3.2 N-component system: We assume that the components are
numbered k = 1…N and ranked into non-decreasing vulnerability
(number of essential bits) order, and that component k is, therefore,
not checked less frequently than component k–1. After the
reconfiguration of a faulty module is finished, the system checks
all other components in descending order of vulnerability before
recommencing the planned schedule.

The system failure rate can be computed by considering all
possible cases in which each component may fail [27].

4 Simulating two-component systems
We interrupt the main flow of our presentation to report on an early
simulation we undertook to assess the performance of VRVC. In
this section, we present results of simulations that aimed to assess
the reliability of systems comprising two components using both
round-robin and VRVC as the time period between successive
voter observations was varied. As will be seen, non-linearities in
our results suggest that determining an optimal voter checking
schedule is likely to be NP-hard and thus motivate the development
of evolutionary approaches to find good schedules, as discussed in
the next section.

In our paper, we simulated systems comprising two
components, C1 and C2, containing 105 and 10 × 105 essential bits

and having assumed reconfiguration times of 0.2 and 2 ms,
respectively. Simulation parameters were based on a Xilinx Artix-7
XC7A200T device, containing nc = 77, 845, 216 configuration bits
in total, and operating in a geostationary equatorial orbit (GEO)
with an anticipated upset rate of 2.66×10−10 upsets/bit/s [10]. We
used expressions that can be derived by extending the analyses of
Sections 3.2 and 3.3 to calculate the MTTF for a round-robin
checking schedule, as well as for VRVC as the number of checks,
p, of C2 was varied relative to the one check made per period of
component C1. These calculations were performed as the voter
observation period Δto  ranged from 1 μs to 1 s.

Our results, plotted in Fig. 4a, show that a better MTTF is
achieved by VRVC at all voter observation periods. Fig. 4b shows
that the number of checks p of C2 that is needed for each check of
C1 to obtain the best MTTF for VRVC relative to round robin
varies depending on the voter observation period. The results
confirm our intuition that the larger components should be checked
more frequently than smaller ones in order to maximise system
reliability. With the assumptions made in this paper, we found that
use of VRVC rather than round robin to check voters lead to a
significant improvement in system MTTF of up to 70%. 

As can also be seen in Fig. 4b, the maximum benefit of VRVC
(relative to round robin) and the number of checks p of C2 needed
to achieve this optimal MTTF are non-linear functions of the voter
observation period. Unfortunately, it is infeasible to use an
exhaustive search, as we have done in this paper, to determine the
optimal number of checks to perform on each component as the
number of components in the system increases. For this reason, in
the next section, we develop a heuristic approach using
evolutionary algorithms to determine a good checking schedule.

5 Scheduling voter checks
We surmise that the problem of statically determining the optimal
number of voter checks per period in an N-component system is
NP-hard. We, therefore, propose a GA, which is a probabilistic
search method based on an evolutionary approach, to heuristically
determine the rate at which all triplicated components in a system
should be checked so as to maximise the system reliability. We
refer to this GA as the outer GA in Fig. 5. Once the rate at which
components should be checked has been determined, we use the
second GA, as detailed in [28], to generate a schedule in which the
determined number of voter checks are distributed as evenly as
possible per schedule period. We refer to the second GA as the
inner GA in Fig. 5. The schedule produced by the inner GA is
needed to evaluate the fitness of individual solutions to the first
GA, which determines the number of checks to be performed. The
inner GA is, therefore, nested within the outer GA's evaluation
function as shown in Fig. 5. 

5.1 Proposed GA

A typical GA requires a genetic representation of the solution
domain and a fitness function to evaluate the solution domain.
Possible solutions (individuals) are represented by a data structure
called a chromosome. A chromosome is composed of simple
elements called genes. An initial population of possible solutions is
randomly created. As long as the stopping condition (e.g.
exceeding a given number of generations) has not been met, a new
generation is created. This involves computing the fitness value of
each individual in the population. Individuals that represent
desirable solutions (e.g. high fitness values or small system failure
rates in our case) are selected with high probability to produce
offspring. In a crossover process, some parts of the selected
individuals (parent chromosomes) are combined to create a new
individual (a child chromosome). Furthermore, in a mutation
process, the child's chromosome is randomly altered to introduce
new genetic information. The children created by crossover and
mutation are inserted into the new population, thereby replacing
other low-fitness individuals. In our work, the outer GA is used for
finding the number of times each TMR component should be
checked per scheduled period. A flow diagram of the algorithm is
shown in Fig. 5 and the algorithm has the following characteristics:

Fig. 3  Failure modes for component 1 in systems comprising two
components, which employs VRVC

 

Fig. 4  Results of the two-component system
(a) MTTF (years) of the VRVC and round-robin voter checking approaches, (b) Peak
MTTF ratio achieved when varying the voter checking rate relative to checking voters
in round-robin order, and the corresponding rate p at which C2 is checked relative to
C1 to achieve the peak MTTF ratio
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(i) Representation: The solution domain is a population (P) in
which each chromosome in P is an array consisting of N genes
(e.g. d1, …, dN ) representing N TMR components. The values
dk, k = 1, …, N, which are each >0 and arranged into
monotonically increasing order, represent the number of times that
each TMR component must be checked in one period of the
schedule.
(ii) Initialisation: An initial population is formed of individuals that
are created by generating N random numbers between 1 and an
upper bound (UB) value (e.g. 50) that are sorted into ascending
order.
(iii) Evaluation: The fitness value is the system failure rate, as
estimated using the analysis outlined in Section 3, corresponding to
each individual in the population P. Please note that chromosomes
that do not satisfy the constraints on dk (illegal chromosomes) and
duplicate chromosomes are removed from the population before
proceeding to the next step. Eliminating duplicate chromosomes
prevents super chromosomes from dominating the population and
helps maintain the diversity of the population [29].
(iv) Selection: A tournament selection is adopted for the
application of the selection procedure [30]. This approach involves
running several tournaments among a few individuals chosen at
random from the population. The individuals with the best fitness
are selected for the applications of crossover and mutation. Note
that selection is performed on the enlarged sample space in which
both parents and offspring have the same chance of competing for
survival.
(v) Crossover: We use a uniform crossover method in which each
gene of the offspring's genome is independently chosen from the
two parents according to a given distribution [29]. Using a uniform
crossover method eliminates the positional bias of inheritance,
whereby genes that are close together on the chromosome are more
likely to be inherited together. For example, with N = 3, two
chromosomes {1, 3, 5} and {2, 4, 6} may create an offspring of {1,
4, 5} or {2, 3, 5}. The probability of crossover is a user-defined
value (e.g. 0.25, as we expect that on average an offspring inherits
25% genes of the first parent and 75% genes of the second parent).
(vi) Mutation: Mutation alters one or more genes with a probability
equal to the mutation rate (e.g. 10%) of a parent selected during the
tournament. For example, with N = 3, assuming the second gene
of the chromosome {1, 2, 5} is selected for mutation, a new value
is generated by randomly adding 1 to or subtracting 1 from the

mutated number, thus the chromosome after mutation would be {1,
3, 5} assuming addition was selected.

After the mutation function is finished, a new population is
created and the evaluation procedure is repeated. When the GA
function meets the stopping condition, it terminates and returns the
best individual of the current population.

5.2 Scheduling of voter checks

Calculating the system failure rate requires all timing parameters,
most of which can only be obtained from a real schedule. A real
schedule must ensure fair voter checking among all TMR
components. These voter checks, in turn, are required to be evenly
distributed so that the temporal gap between any two consecutive
checks of the same TMR component is as constant as possible. The
problem of creating such a sequence of voter checks belongs to the
class of response time variability problems (RTVPs) [31], which
arise whenever products, clients, jobs or, as in this work, voter
checks, need to be sequenced in such a way that the variability in
the period between the instants at which they receive the necessary
resource is minimised.

The RTVP is formulated as follows. Given N positive integers
d1 ≤ ⋯ ≤ dN associated with the number of checks of N TMR
components, respectively, let D = ∑k = 1

N dk and the rates
rk = (dk /D) for k = 1…n. Let S = s1s2…sD be a vector of length D,
where TMR component k occurs exactly dk times, be a solution of
an instance of the RTVP that consists of a circular sequence of
copies of S. For any two consecutive checks of TMR component k
we define a distance τ between them as the number of voter checks
of other TMR components that separate them plus 1. Since TMR
component k is checked exactly dk times in S, then there are
exactly dk distances τ1

k, …, τdk
k  for k. Note that the sequence is

circular, s1 comes immediately after sD; therefore, τdk
k  is the distance

between the last occurrence of TMR component k in the preceding
cycle and the first occurrence of the same component in the current
cycle. Obviously, the two are the same for dk = 1. Since

τ1
k + ⋯ + τdk

k = D, (4)

then the average distance τ̄k between the TMR component k in S
equals

τ̄k = D
dk

= 1
rk

, (5)

and it is the same for each feasible sequence S. The RTV for TMR
component k is formulated as follows:

RTVk = ∑
j = 1

dk

τ j
k − τ̄k

2, (6)

and the objective is to minimise the total RTV that is formulated as
follows:

RTV = ∑
k = 1

N
RTVk = ∑

k = 1

N

∑
j = 1

dk

τ j
k − τ̄k

2 . (7)

Unfortunately, the RTVP is NP-hard [31]. To solve our RTVP, we
utilise the GA that is detailed in [28] to find the optimal schedule
of voter checks.

5.3 MTTD errors

The MTTD errors are defined as the average elapsed time interval
between a configuration bit being affected by a fault and the instant
that the erroneous TMR module is detected. The MTTD (in units
of Δto) can be estimated as follows:

Fig. 5  Flow diagram of GA-based VRVC schedule generation
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MTTD =
∑k = 1

N ek
D

2dk

∑k = 1
N ek

(8)

where ek denotes the number of errors that occur in component k
and D = ∑1

N dk denotes the length of one period of the voter
checking schedule. If the voters are checked in round-robin order,

dk = 1, ∀k, D = N, and thus MTTD = N
2 .

5.4 Power consumption

The power consumption of the components involved in the ICAP-
based voter checking approach can be divided into two parts: the
power consumed and dissipated by the configuration port and built-
in configuration controllers and power consumed and dissipated by
the RC circuitry. Both parts substantially contribute to the overall
FPGA power consumption and dissipation [4]. It can be expected
that the use of the ICAP for readback introduces power overheads
for the RC. However, the overhead is expected to be quite small
due to the relatively few resources consumed. Unfortunately,
current tools do not allow this overhead to be measured.

Checking voters continuously provide the quickest response to
errors, and therefore the highest reliability. When error rates are
high, this may be necessary. However, for much of the mission, the
error rates may be low enough to allow the checking rate, and thus
the power consumption, to be reduced.

In this paper, we used the Xilinx design tool Vivado 2014.4 to
estimate the static and dynamic powers of the RC and all TMR
components when the RC was run at different clock frequencies.

6 Evaluation – synthetic problems
Simulation experiments were carried out to assess the performance
of the proposed VRVC schedule relative to both round-robin voter
checking and the dynamically determined VSE approach presented
in [10]. These experiments involved simulating FPGA-based
systems comprising sets of TMR components and assessing the
MTTF for each voter checking method at low- and high-radiation
orbits. In the following, we describe our experimental set-up before
presenting the results of the simulations.

6.1 Assumptions and implementations

Our reliability models require an orbit-specific SEU rate and
design-specific parameters such as the total number of
configuration bits in a device, the voter observation time, the
number of essential bits for each module, the recovery time of each
module and the voter observation schedule, which is produced by
the GAs.

Similar to the case study of the two-component system reported
in Section 4, we simulated a Xilinx Artix-7 XC7A200T device
operating in GEO and in low-Earth orbit (LEO). The radiation
levels at these orbits are expected to result in 2.66×10−10 and
8.46×10−12 upsets/bit/s, respectively [10]. The total number of
device configuration memory bits for this device is
nc = 77, 845, 216. We assume that the voter RRs are checked in
1 μs, which corresponds to the fastest CF read time that the ICAP-

based network can provide for this device. To assess the impact on
the reliability of reducing the system power consumption by
reducing the voter checking frequency, we varied the voter
checking period, Δto, from 1 μs to 1 s.

We simulated systems comprising 3–20 TMR components to
assess the performance of the schedules being studied as the
number of components was varied. For each simulation, the size of
each triplicated module, as measured in number of essential bits,
was chosen randomly in a range from 10,000 to 2,000,000 bits
using one of three size distributions: uniform, quadratic and
exponential. For a given number of system components (3–20) and
at each orbit level (LEO and GEO), we evaluated the performance
of each schedule (VRVC, round robin, VSE) over five trials for
each module size distribution (uniform, quadratic and exponential).
Please note that there is no difference in hardware cost between
VRVC and RR as both are controlled by a programmable RC.
However, VSE uses a hardware controller to implement the
checking algorithm in addition to an RC, which is needed to
reconfigure erroneous modules. When comparing the system
reliabilities obtained with VRVC and VSE, we assume that the
VSE controller is not susceptible to errors so as not to distort the
results with the additional hardware used by VSE. In the following,
we report on the average of the five trials carried out for each
distribution.

The recovery time of a TMR module is given as the product of
the number of its CFs and the reconfiguration time per CF. As the
typical ratio of configuration bits not affecting a design to those
(essential) bits that do affect a design ranges between 9:1 and 4:1
[32], we made the pessimistic assumption that the ratio is 9:1 in our
simulations. In other words, we assumed that 10% of the
configuration memory bits per CF were essential. This has the
effect of dilating the time to recover module configuration memory
errors, which in turn increases the likelihood that subsequent errors
occur before recovery from a previous error has been completed.

As detailed in Section 5, two GAs were implemented to obtain
a schedule to yield the best possible system reliability. Fine tuning
the parameters of a GA is almost always a difficult and time-
consuming task [33, 34]. In this section, we undertook
experimentation using the following parameter values; further
experimentation with the GA parameters is reported on in the next
section. The GA to determine the rate at which components should
be checked per period was initialised with 100 random
chromosomes with the value of each gene being randomly chosen
to be in the range 1–50 with a uniform distribution. Since the
simulation experiments are time-consuming, particularly for 20-
component systems, we decided that the GA should be terminated
after 100 generations. In addition, the crossover rate and the
mutation rate were set at 25 and 10%, respectively. As discussed,
we implemented the inner GA from [28] to find the best
distribution of checks once the check rates had been determined.
The same parameter values were used to run the inner GA, namely,
N (size of the population) = 13, p (mutation probability) = 0.013, B
(proportion of best chromosomes) = 0.18 and R (proportion of new
chromosomes) = 0.12. The number of generations was set to 1000
for each run. The inner GA was stopped when the maximum
number of generations was reached, or the schedule was evenly
distributed, which is unlikely.

6.2 Results and discussion

The results of our simulations demonstrate that the use of VRVC
improves TMR–MER system reliability. The results are detailed as
follows.

6.2.1 VRVC versus round robin: The ratio of MTTFs for
systems employing VRVC to those checking voters in round-robin
order is consistently >1, and become larger as the voter observation
time, Δto, is increased (Fig. 6). It can be observed that the ratios are
almost completely independent of the orbital/radiation conditions. 

Fig. 6 also shows that when the number of essential bits of all
TMR components is exponentially distributed, the average ratios
are more than 80% better for all simulated systems and as much as
400% better in 20-component systems, while when they are

Fig. 6  Average ratios of MTTFs for VRVC to those for round robin for
systems consisting of 4, 5, 10 and 20 components in LEO and GEO
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uniformly and quadratically distributed, the average ratios are up to
40% better and 60% better.

We observed that the change in MTTF ratios was not as
consistent as Δto was varied. We believe this observation relates to
the relative reconfiguration times of the modules, which also
influence system reliability.

To summarise, the VRVC approach was found to be always
beneficial, but it is of greatest benefit when the system contains
many TMR components that differ markedly in size.

6.2.2 VRVC versus VSE: In all simulated systems involving 4–
20 components, the MTTFs for VRVC are higher than those for
VSE and the gap between the two approaches increases as the voter
observation time is increased (Fig. 7). However, we also observed
that the gap decreases when the voter observation time becomes >
10−2 s at very high-radiation levels, as present in GEO. This is
because the MTTFs eventually decline to 0, as partly shown in
Fig. 4a, when the voter observation time becomes so large as to
significantly increase the likelihood of component failures since
recoveries are not undertaken frequently enough. Furthermore,
since VSE adopts dynamic voter checks based on the number of
essential bits per TMR component, the MTTF results of the VSE
approach also vary and are unpredictable. 

6.2.3 GA performance: The GAs was implemented in MATLAB
2017a running under 64-bit Windows 7 Professional SP1. The
execution time was obtained using MATLAB's profiling tool. We
used an Intel(R) Xeon(R) 2.8 GHz with 12 GB RAM. The
hardware contains four processors and MATLAB utilised around
30% of central processing unit capacity.

Table 1 shows the average number of calls, the total processing
time and the average processing time of each function in the outer
GA and of the inner GA for systems containing 5, 10 and 20
components. Please note that the processing time of the fitness
calculation of the outer GA also includes the processing time of the
inner GA. The processing time of a GA depends on the initial
population size (PS), the number of new chromosomes created
after applying crossover and mutation and its stopping criteria. In
our experiments, the execution times of the outer GA stopping at
100 generations when simulating systems containing 5, 10 and 20

components are 455, 6140 and 18,852 seconds respectively
(Table 1). 

The profiling shows that most of the processing time is spent
evaluating values in the outer GA. A small fraction of processor
time is used to run the genetic operators of the outer GA. The ratio
of the processing time of the outer GA fitness evaluation to that of
the inner GA increases as the number of system components
increases because of the exponential increase in the number of
cases in which errors may occur in the TMR–MER system (Section
3).

Given the results of Table 1, we believe systems with larger
numbers of TMR components can feasibly be evaluated depending
on the processing power of the system used for scheduling.

7 Evaluation – case study
In this section, we evaluate and compare the performance of the
VRVC approach with that of VSE and round-robin voter checking
when each is implemented on an experimental CubeSat payload
known as RUSH [9, 35]. This exemplar system comprises nine
TMR components and a MicroBlaze (MB)-based RC hosted on an
Artix-7 XC7A200TFBG-484 FPGA from Xilinx, as depicted in
Fig. 8. We assessed the reliability of the system using VRVC, VSE
and round robin for voter checking in LEO and GEO. In the course
of this assessment, we examined the response of the GA used to
schedule VRVC as its parameters were fine tuned. Our experiments
also gauged the trade-off between system reliability and power
consumption for the three methods studied as the clock frequency
of the RC was reduced. Finally, we conducted fault injection
testing of the exemplar system in order to evaluate the MTTD
errors using each of the three methods. 

7.1 Experiments

7.1.1 Implementation: The RUSH system was designed and built
to compare the performance of module- and scrubbing-based
approaches to configuration memory error recovery in SRAM-
based FPGAs as part of the European Commission funded QB50
experiment [9, 35, 37]. The RUSH payload consists of the nine
TMR components listed in Table 2. These components were
selected as being representative of circuits that are commonly
included in space-based applications and that utilise a mixture of

Fig. 7  Average ratios of MTTFs for VRVC to those for VSE for systems consisting of 4, 5, 10 and 20 components for LEO and GEO
 

Table 1 GA execution time profile
Number of
Components

5 10 20

GA Function Number of
calls

Total
time, s

Average, s Number of
calls

Total
time, s

Average, s Number of
calls

Total
time, s

Average, s

inner GA 180 449 2.5 186 798 4.4 229 2,542 11.1
outer GA evaluation 180 455 2.5 186 6,140 34 229 18,852 82.3

selection 100 0.0046 5×10−5 100 0.012 1×10−5 100 0.015 2×10−5

crossover 100 0.0028 3×10−5 100 0.007 7×10−5 100 0.009 9×10−5

mutation 100 0.0036 4×10−5 100 0.014 1×10−4 100 0.017 2×10−4

execution time for
100 generations

455 — — 6140 — — 18,852 — —

 

8 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018



FPGA resources. They include: a single media access controller
(MAC)-based 21-tap finite impulse response (FIR) filter with 16 bit
signal width; an 8–3 bit block adaptive quantiser (BAQ); an 8096-
word deep 32 bit first-in–first out (FIFO); three 32 bit shift
registers (SRs) having different lengths and a variety of
combinational functions between the stages; and three 32 bit binary
search trees (BSTs) of different heights and a variety of
combinational functions at each node. Owing to power limitations
of the CubeSat that deploys the exemplar system, all components
are operated at 10 MHz. 

An RC using the ICAP-based voter checking approach [17] is
used to read the voter status bits. Please note that in [36], the
component voters were checked in round-robin order while in this
paper the RC runs our proposed VRVC algorithm. The RC includes
an MB processor connected to an external memory controller
(EMC), a DMAC and the AXI HWICAP IP accessed via an AXI
bus. The MB processor configuration is created with minimal
features and can be operated at 100, 50, 20 or 10 MHz. The AXI
HWICAP IP combines with EMC and DMAC to reconfigure faulty
modules and is also used for flipping configuration memory bits
during the fault injection experiment described in the next section.

The designs were implemented using Vivado 2014.4 with
default settings.

7.1.2 Fault injection: We performed a fault injection experiment
to assess the MTTD errors in the RUSH system using each of the
three voters checking schedules.

The RC was used to manage the fault injection process. The RC
received a random configuration bit address generated by a host
personal computer. The RC reads the corresponding frame, flipped
the addressed bit and wrote the frame back using the HWICAP to
emulate the occurrence of a memory error due to an SEU. Note that
we did not inject faults into the RC in order to avoid corrupting it
during the experiment. Of the 18,300 CFs in the FPGA targeted in
our study, 17,330 frames were contained in the design under test.
Once a fault was injected, the RC waited for 10 ms and checked
the error status of all voters before reporting which component, if
any, was in error.

7.2 Results and discussion

7.2.1 Example design results: Table 2 reports the number of
essential bits ne  and the recovery times tr  per triplicated module
(tr is the time interval between errors being detected in a module
until the last word of the partial bitstream used to recover that
module is written back to the FPGA via the AXI HWICAP IP).
The table also reports the number of checks dk  made of each
component per VRVC schedule period so that the system MTTF
was maximised when the RC was operated at different clock
frequencies under GEO radiation conditions (we observed similar
dk under LEO conditions). The time periods between successive
voter observations Δto  were 71, 142 s, 355 and 711 μs when the
RC was operated at 100, 50, 20 and 10 MHz, respectively. This is a
consequence of the number of clock cycles needed by the RC at
that frequency to process the instructions to check a voter.

Table 3 reports two metrics. The first is the MTTF in years (and
the percentage MTTF decrease) for systems employing VRVC,
VSE and round robin (and w.r.t. the VRVC system) for voter
checking in GEO. The second is the power consumption in mW of
(i) the RC on its own and (ii) the RC including the nine
components when the RC is operated at different clock frequencies.
The percentage reduction in power consumption, relative to the RC
operating at 100 MHz, is indicated in parentheses. This power
consumption figure relates to the energy expended checking the
voters at intervals of Δto, and therefore applies to all schedules
equally. 

Fig. 8  System layout of RUSH payload [36]
 

Table 2 Results of mapping nine TMR components to Xilinx Artix-7 XC7A200TFBG-484 FPGA
Design Essential bits ne RC tr, ms – number of checks dk

100 MHz 50 MHz 20 MHz 10 MHz
BST3 1,833,235 26.7–47 49.5–45 72.4–47 118.7–49
SR3 1,403,647 19.6–41 43.8–40 64.0–39 104.9–46
BST2 793,534 11.0–28 24.5–31 35.8–34 58.7–36
SR2 515,904 8.5–27 21.7–29 31.7–33 52.0–29
SR1 285,914 6.8–26 13.6–24 19.9–25 32.6–25
BST1 281,604 2.6–23 5.9–23 8.6–20 14.0–25
BAQ 48,963 1.3–15 3.0–18 4.4–18 7.1–14
FIFO 41,842 3.5–12 7.8–12 11.4–13 18.7–13
FIR 12,042 1.2–08 2.6–11 3.9–10 6.3–11
 

Table 3 MTTF and power consumption at various RC clock frequencies in GEO
RC operating frequency 100 MHz 50 MHz 20 MHz 10 MHz
MTTF, years RR 103.0 (–15%) 49.0 (–15%) 28.0 (–20%) 16.0 (–23%)

VSE 116.4 (–4%) 54.9 (–5%) 32.6 (–7%) 19.2 (–7%)
VRVC 121.7 (0%) 57.6 (0%) 35.1 (0%) 20.7 (0%)

power, mW RC 252 (0%) 196 (–22%) 163 (–35%) 152 (–40%)
RC + TMR 456 (0%) 394 (–14%) 357 (–22%) 344 (–25%)
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We found that the TMR–MER system using VRVC is more
reliable than the same system using round robin when the available
power in the system is constrained. Table 3 shows that the system
reliabilities (as given by the MTTF) are proportional to the rates at
which the system recovers from errors. However, for the sake of
saving energy in space-based applications during long missions,
the voter checking frequency can be reduced [4]. For example,
when the RC runs at 10 MHz compared with 100 MHz, the energy
consumption of the RC alone is reduced by 40% and that of the
whole system is reduced by 25% (Table 3). In this case, the ratio of
the MTTF achieved using VRVC to that obtained using round
robin for voter checking increases from 118% for the RC operating
at 100 MHz to 129% at 10 MHz. It can also be observed that the
MTTFs of systems employing VRVC are greater than those that
employ VSE at all four RC clock frequencies.

Fig. 9 plots the ratio of the MTTF for systems employing
VRVC to the MTTF for those checking voters in round-robin order
as the parameters of the proposed GA are varied. The parameters
we varied included the UB for the number of checks to be
performed per period in the initial population. The UB was set to a
small number of 10 initially and increased to 20, 50 and 100. For
each UB, we also varied the PS from 10 to 20, 50 and 100. For
each combination of UB and PS, we run 1000 generations. The
mutation rate and the crossover rate were left at 50 and 25%,
respectively. Here, we show the results of the RC operating at 10 
MHz under GEO conditions. As can be seen in Fig. 9, the GA
tends to attain a similar optimal result in most cases. We also
observed similar trends when the mutation rates were set at 10 and
90% and the crossover rates were set at 50 and 75%. 

The experiments show that the UB affects the performance of
our proposed GA. This is because when UB is small (e.g. 10), the
genetic diversity is limited and the GA is likely to become stuck in
a local optimum. When UB is large (e.g. >50), the GA is more
likely to find the global optimum. On the other hand, PS affects the
starting point of the GA, but it does not significantly affect the final
results.

To summarise, in order to find a schedule for maximising the
system reliability, we found that the proposed GA should be
initialised with a small PS (e.g. 10) to aid rapid evaluation, a
modest UB (e.g. 50) for the sake of obtaining short schedule
lengths and to assist in finding the optimal result, and a large
number of generations (e.g. >1000) to have a good chance of
attaining the optimal result.

7.2.2 Fault injection results: On average, VRVC allows errors to
be detected 44% faster than with round robin and 30% faster than
when VSE is used to check voters. Table 4 provides the average
number of errors in each component that we found after four trials
of one million injected faults. Table 5 tabulates the MTTD errors
using the round-robin, VSE and VRVC approaches as well as the
percentage reduction from round robin to VSE and VRVC when
the RC is operated at different clock frequencies. The MTTDs are
calculated using (8) with the number of checks listed in Table 2,
and in [10], together with the average number of errors per
component, as tabulated in Table 4. 

7.3 Further discussion

It is of some concern that much of the additional logic used to
implement and support TMR–MER such as the RC, the RCN and
voters may be implemented in a non-redundant manner, and
therefore introduce single points of failure. Nevertheless,
irrespective of the configuration MER approach taken, FPGA-
based TMR systems inevitably include non-redundant components
such as the clock network, ICAP and off-chip ports, which also
introduce single points of failure when used. Therefore, in order to
further improve system reliability, the non-replicated modules
should be triplicated, if possible, so as to be protected from SEUs
along with the other TMR components of the system. Since these
components may be distributed across the device, a standard partial
reconfiguration design flow [15] cannot be used to recover them in
a modular fashion. One solution is to use a hybrid approach, called
frame- and module-based configuration memory error recovery

(FMER), which combines modular recovery of triplicated
components with the scrubbing of single points of failure to
achieve enhanced reliability and availability with reduced power
[8]. VRVC complements FMER in order to provide the best
possible protection for the triplicated components.

A limitation of the reliability models proposed in this paper is
that the number of failure cases increases exponentially with the
number of TMR components in the system, which impacts on the
scalability of our approach. Approximation methods that reduce the
complexity of the reliability models will be considered in the next
stage of our work. It should be noted that other approaches such as
Markov models [9, 38] face the same problem since the number of
states increases exponentially with increasing component numbers.

Our results are based on a limited exploration of the GA
parameter space. Further experimentation needs to be undertaken
to assess the full potential of our approach. To obtain better system
reliabilities, the initial PS and the maximum number of generations
of the outer GA may need to be increased and the applications of
the selection, mutation and crossover operators may need to be
modified.

Finally, it should be noted that in our work we have neglected
the additional system vulnerability that accrues from the memory
used to store the schedule. However, this overhead is small, being
on the order of tens of bytes, and therefore does not pose a concern
for overall system reliability, particularly since it can also be
readily protected using ECC such as single error correction, double
error detection which is readily available in modern FPGAs.

8 Concluding remarks and future work
In this paper, we have presented reliability models for TMR–MER
systems that consist of an arbitrary number of components, whose
voters are checked in either round-robin order or at variable rates.

Fig. 9  Ratio of MTTF for VRVC to MTTF for round robin for the exemplar
system while the number of generations, the PS and the UB of the initial
check rate are varied

 
Table 4 Average number of errors found in components
Design Number of errors ek, %
BST3 38,828 (39.1)
SR3 26,701 (26.9)
BST2 13,830 (13.9)
SR2 9643 (9.7)
SR1 4522 (4.6)
BST1 4053 (4.1)
BAQ 684 (0.7)
FIFO 696 (0.7)
FIR 396 (0.4)
 

Table 5 MTTD errors
Configuration\Δto 71 μs 142 μs 355 μs 711 μs
round robin, μs 320 (–

39%)
639 (–37%) 1596 (–

45%)
3200 (–
53%)

VSE, μs 290 (–
26%)

580 (–25%) 1451 (–
31%)

2905 (–
39%)

VRVC, μs 230 (0%) 465 (0%) 1105 (0%) 2088 (0%)
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We have proposed a GA to derive a voter checking schedule that
has the potential to significantly enhance the system reliability. We
assert that any FPGA-based TMR system that uses an RCN to
provide random access to component voters can benefit from using
variable-rate scheduling to prioritise checks of more vulnerable
components. The benefits become more significant as the radiation
level increases and/or as the checking frequency decreases.

The results show that using VRVC improves the mean time for
the system to fail by up to 400% compared with checking voters in
a round-robin manner. The results also show that the MTTFs of
TMR–MER systems employing VRVC are greater than those that
employ a VSE [10] to choose the next component to check at run
time. Moreover, we have shown that the power consumption of
TMR–MER systems can be significantly reduced by reducing the
clock frequency of the RC without compromising system
reliability. Finally, through fault injection testing, we have
demonstrated that the MTTD errors can be reduced by 44 and 30%
on average, respectively, when VRVC is used instead of round
robin and VSE.

Our future work will consider adaptive scheduling of voter
checks based on the radiation level of the surrounding environment
with the aim of optimising the system reliability and power
consumption. We also intend to consider including a user-defined
metric (e.g. the criticality level of each TMR component) in our
reliability models since some components such as clock managers
are more critical than others despite being small in terms of their
essential bit count.
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