
Towards High-Level Specification &
Synthesis of Dynamic Process Logic

School of Computer Science and Engineering,
The University of New South Wales, Australia

School of Computer Science & Software Engineering,
The University of Western Australia, Australia

Oliver Diessel
Usama Malik
Keith So

George Milne

Overview

Goals & challenges of dynamic reconfiguration
Formal modelling of dynamic reconfiguration
– A Circal primer
– FPGA implementation of Circal
– An FPGA interpreter for Circal

Ongoing work
Conclusion

Architectural reconfiguration

Definition:The ability of a device or system
architecture to change its structure over time
– Which structural aspects?
– What time scale?
– How controlled?

NB: some structural changes may result in
behavioural changes

Dynamic reconfiguration

Aims to exploit architectural reconfiguration at
run time in order to:
– Adapt to changing algorithmic needs as a

computation progresses
– Improve application/system performance
– Reuse computational resources

Dynamic reconfiguration

Facilitates and supports
– Adaptive processes
– Dynamic environments
– Hardware independence
– Multitasking

Reconfigurable computing challenges

How to design efficient, cost-effective
architectural mixes at device and system level
How to exploit operating niche
How to support systems and application design
Killer apps: finding appeal and acceptance

The design challenge

Designing with short lead-times for short-lived, highly-
customized applications
Skill base needs to span many layers and dimensions
of abstraction: from logic circuit to application layer
– E.g. conceiving high-performance hard-wired algorithms

Lack of integrated tools that exploit hardware
capabilities

Formal modelling of
dynamic reconfiguration

Goal of project: Basic language research

Discover semantic operators needed to model static
and dynamic FPGA circuits
Learn how to compile down to those operators – how
much can be automated?
Determine what aspects need to be expressed explicitly
in the design language in order to guide the compiler

Not another language…

The goal is NOT to design yet another language for
reconfigurable computing.

Rather, the goal is to identify the key requirements
of such a language and its compiler.

Our approach

Investigate the problem from a formal modelling
perspective — we use a process algebra called
“Circal” to model circuits, their structure and
behaviour

How can Circal help?

Circal provides a means of describing concurrent
systems in an uncluttered, abstract fashion
– Facilitates discovery of fundamental operations, semantics,

syntax
Circal offers the possibility of producing circuits and
translation schemes that are verifiably correct
(equivalent to their specification)
Hope to make use of formal methods literature…

Circal background

Circal background

Process algebras such as CCS, CSP, and Circal
(CIRcuit CALculus) appeared mid- to late-1970s
– Mathematical formalisms for describing & analyzing the

behaviour of concurrent systems
• Allow behavioural specification, property checking, equivalence

checking, formal verification

What is Circal?

Allows us to reason
about processes that
have state, and that
perform or respond to
actions

What is Circal?

Allows us to reason
about processes that
have state, and that
perform or respond to
actions
For example, we might
model a change machine
using a state diagram

CM1 CM2

CM3

CM4

CM5

aDollar

4Qtrs
empty

U3

U1

empty

U2

U4
U5

4Qtrs

aDollar

empty
anger

Modelling the user

We may be interested to
know:
– What is the composed

behaviour of the cash machine
and the user?

– Will the user ever get angry?
PAs define the rules that
allow these and other
questions to be answered

Circal basics

The Circal process algebra
supports hierarchical,
modular, and constructive
description of interacting
processes
Processes are behavioural
objects that interact based
on the occurrence of events

S

QP

U V

S
b

d

a
c

P Qc

a

b

dc a

b
d

Behavioural modelling in Circal

Behavioural operators

Behavioural modelling in Circal

P ← P0

Behavioural operators
– Process definition

P0

Behavioural modelling in Circal

P ← P0

P0 ←Δ

Behavioural operators
– Process definition
– Process terminationP0

Behavioural modelling in Circal

P ← P0

P0 ← a P1

Behavioural operators
– Process definition
– Process termination
– Process evolution

a
P0 P1

Behavioural modelling in Circal

P ← P0

P0 ← a P1 + c P1 + (a b) P1

P1 ← a P0

Behavioural operators
– Process definition
– Process termination
– Process evolution
– Deterministic choice

a
P0 P1

(a b)

c

a

Structural modelling in Circal

Structural operators
– Composition

Q0 Q1
d
b

a
P0 P1

(a b)

c

a

Structural modelling in Circal

S ← P0 ∗

Q0

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

Structural modelling in Circal

S ← P0 ∗

Q0

P0 ∗

Q0 ← c P1 ∗

Q0

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P1
c

P1 xQ0
c

Structural modelling in Circal

S ← P0 ∗

Q0

P0 ∗

Q0 ← c P1 ∗

Q0

P1 ∗

Q0 ← a P0 ∗

Q1

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0 P1 xQ0
c

Q1

a
P0

a

P0 xQ1
a

Structural modelling in Circal

S ← P0 ∗

Q0

P0 ∗

Q0 ← c P1 ∗

Q0

P1 ∗

Q0 ← a P0 ∗

Q1

P0 ∗

Q1 ← c P1 ∗

Q1

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P0 xQ1

P1 xQ0
c

a

P0 P1
c

P1 xQ1

c

Structural modelling in Circal

S ← P0 ∗

Q0
P0 ∗

Q0 ← c P1 ∗

Q0 + d P0 ∗

Q1 + a P1 ∗

Q1

+ (c d) P1 ∗

Q1
P1 ∗

Q0 ← a P0 ∗

Q1 + d P1 ∗

Q1

P0 ∗

Q1 ← c P1 ∗

Q1
P1 ∗

Q1 ←Δ

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P0 xQ1

P1 xQ0

P1 xQ1

c
c

a

da

d

(c d)

Structural modelling in Circal

S ← P0 ∗

Q0
P0 ∗

Q0 ← c P1 ∗

Q0 + d P0 ∗

Q1 + a P1 ∗

Q1

+ (c d) P1 ∗

Q1
P1 ∗

Q0 ← a P0 ∗

Q1 + d P1 ∗

Q1

P0 ∗

Q1 ← c P1 ∗

Q1
P1 ∗

Q1 ←Δ

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P0 xQ1

P1 xQ0

P1 xQ1

c
c

a

da

d

(c d)

Structural modelling in Circal

S ← P0 ∗

Q0
P0 ∗

Q0 ← c P1 ∗

Q0 + d P0 ∗

Q1 + a P1 ∗

Q1

+ (c d) P1 ∗

Q1
P1 ∗

Q0 ← a P0 ∗

Q1 + d P1 ∗

Q1

P0 ∗

Q1 ← c P1 ∗

Q1
P1 ∗

Q1 ←Δ

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P0 xQ1

P1 xQ0

P1 xQ1

c
c

a

da

d

(c d)

Structural modelling in Circal

S ← P0 ∗

Q0
P0 ∗

Q0 ← c P1 ∗

Q0 + d P0 ∗

Q1 + a P1 ∗

Q1

+ (c d) P1 ∗

Q1
P1 ∗

Q0 ← a P0 ∗

Q1 + d P1 ∗

Q1

P0 ∗

Q1 ← c P1 ∗

Q1
P1 ∗

Q1 ←Δ

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P0 xQ1

P1 xQ0

P1 xQ1

c
c

a

da

d

(c d)

Structural modelling in Circal

S ← P0 ∗

Q0
P0 ∗

Q0 ← c P1 ∗

Q0 + d P0 ∗

Q1 + a P1 ∗

Q1

+ (c d) P1 ∗

Q1
P1 ∗

Q0 ← a P0 ∗

Q1 + d P1 ∗

Q1

P0 ∗

Q1 ← c P1 ∗

Q1
P1 ∗

Q1 ←Δ

(DEADLOCK)

Structural operators
– Composition

• Evolve on shared events
only when each is
independently able to

Q0 Q1

a
d
b

P0 P1

(a b)

c

a

P0 xQ0

P0 xQ1

P1 xQ0

P1 xQ1

c
c

a

da

d

(c d)

Structural modelling in Circal

Structural operators
– Composition
– Relabelling

• Similar to parameterization
• Supports reuse

i oQ i oQ

Structural modelling in Circal

Structural operators
– Composition
– Relabelling

• Similar to parameterization
• Supports reuse

S ← Q [c/o] ∗

Q [c/i]

i oQ i oQ

i

c

Q oQ

Structural modelling in Circal

Structural operators
– Composition
– Relabelling
– Abstraction

• Hides events from
observer P ← P0

P0 ← a P1 + c P1 + (a b) P1

P1 ← a P0

a
P0 P1

(a b)
c

aa

c
b

Structural modelling in Circal

Structural operators
– Composition
– Relabelling
– Abstraction

• Hides events from
observer

• Introduces non-
deterministic behaviour

• Limited use in HW
description

P – a ← P0

P0 ← P1 & c P1 & b P1

P1 ← P0

P0 P1

b
c

c

b

What Circal has been used for

Modelling & verifying digital (CMOS) circuits and
asynchronous (micropipeline) systems
Verifying the timing, performance, and
correctness of concurrent systems
Describing complex systems such as traffic
networks using a CA framework

Circal as a specification language

Success with using Circal for digital design &
verification led us to wonder:

Is Circal suitable as the basis of
a specification language for FPGAs?

Question has led to work on

Mapping Circal specifications to RL
Automatic support for virtualized circuit designs
Modelling DRL using a PA formalism
Determining what that provides us with

FPGA implementation of Circal

Mapping goals

Quick and easy instantiation of circuits
Distribute computation for scalability
Speedup through concurrent execution
Use dynamic reconfiguration to overcome resource
limitations
Provide scope for implementing dynamic specifications

Circuit realization of Circal

At the system level, a
Circal specification is
realized as an
interconnection of
independent,
concurrently active
process logic blocks and
synchronisation logic

P

Q

Z

events

Process
logic blocks

request
signals

synch signal

r
s

Circuit realization of Circal (cont)

Each process logic block
implements the
behaviour specified by its
process definitions
Of course the Circal
composition law
constrains process state
transitions to those that
are globally acceptable

event
bus

events in
process sort

select
state

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

Circuit activation

Processes respond to
input events each cycle
State renewal consists
of three phases:

event
bus

events in
process sort

select
state

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

Circuit activation (cont)

Processes respond to
input events each cycle
State renewal consists
of three phases:

1. Each process checks
whether the event is
acceptable to itself

event
bus

events in
process sort

select
state

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

Circuit activation (cont)

Processes respond to
input events each cycle
State renewal consists
of three phases:

1. Each process checks
whether the event is
acceptable to itself and
raises a synchronization
request signal if it is;

event
bus

events in
process sort

select
state

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

Circuit activation (cont)

3 phase state renewal:
1. Check event acceptability;
2. Synchronization logic

asserts a synchronization
signal if all processes find
the event acceptable; and

event
bus

events in
process sort

select
state

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

Circuit activation (cont)

3 phase state renewal:
1. Check event acceptability;
2. Synchronization signal

asserted; and
3. Each process enables the

state transition guarded
by the input event if
synchronization is
asserted.

event
bus

events in
process sort

select
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

enable
state

transition

Circuit activation (cont)

3 phase state renewal:
1. Check event acceptability;
2. Synchronization signal

asserted; and
3. Each process enables the

state transition guarded
by the input event if
synchronization is
asserted.

State is updated at the
next clock edge

event
bus

events in
process sort

select
state

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s

Design example
Consider

and

Applying the Circal composition law we get

01

110
bQQ

dQaQQ
←

+←

Δ←∗
∗←∗

∗+∗←∗
∗+∗+∗+∗←∗

11

1110

111001

1011011100)(

QP
QcPQP

QdPQaPQP
QdPQPcdQcPQaPQP

P1

Q0 Q1

P0

a

a, (a b), c
a, d

b

01

1110)(
aPP

cPPabaPP
←

++←

State renewal phase 1:
Determining whether an event combination is valid

Consider just the logic for process P:

In state P0 the process
responds to events in the set

Hence process P in state P0 accepts
the boolean expression of events

Similarly, in state P1 , the process accepts

The synchronization request signal can thus be expressed as . . .

01

1110)(
aPP

cPPabaPP
←

++←

{ }.cbac,ba,c,abcba

).(cabcbacbacba +++

).(cbacba +

.).().(10 PcbacbaPcabcbacbacbarP +++++=

State renewal phase 2:
Checking global acceptability of an event

Done by forming the global conjunction of process
synchronization request signals: ∏=

i
irs

State renewal phase 3:
Allowing state transitions

Let DP0 and DP1 denote the boolean input functions for
the P0 and P1 state flip-flops

Then from

we can derive

01

1110)(
aPP

cPPabaPP
←

++←

110

001

.).]..([
.)...(

1

0

PsPcbaPcbacabcbasD
PsPcbaPcbasD

P

P

++++=
++=

Schematic for P*Q

Automatic place & route of flat design

1. Environmental Inputs:

EI(tlc, tlr, ni, or, ob);

- consists of input
register and wires to
right and bottom

- specified by coords
of top left corner,
number of inputs,
and vector of wires
to right & bottom

Module Generators

2. Buses:

B(tlc, tlr, wi, hi, or, aw);

- specified by coords
of top left corner,
width and height,
orientation, and
vector of active
wires

Module Generators

3. Input Junctions:

IJ(tlc, tlr, wi, or, ob);

- allows another process
to be added

- specified by coords
of top left corner,
width, and vector of
outputs to right and
bottom

Module Generators

4. Minterms:

M(tlc, tlr, ni, mn);

- computes minterm,
passes input to right
and output to bottom

- specified by coords
of top left corner,
number of inputs, and
minterm number

Module Generators

5. Guards:

G(tlc, tlr, wi, ai, g, o);

- forms OR of selected
minterm wires with
output to right

- specified by coords
of top left corner,
width, and vectors
of active inputs, inputs
to be ORed, and inputs
to be output below

Module Generators

6. Requestors:

R(tlc, tlr, hi, tp, ss, r);

- combine guards with
current state and pass
signals through their
body

- specified top left corner,
height, and vectors
of throughputs (→),
state selectors (←),
and requestors

Module Generators

7. OR gate trees:

OR(tlc, tlr, hi, ai, of);

- forms tree to right
and bottom, output
to right, or both left
and right

- specified by coords
of top left corner,
height, active input
vector, and output
direction flag

Module Generators

8. Synch logic:

SL(tlc, tlr, hi, ai);

- forms AND tree of
inputs and distributes
outputs to rows below
inputs

- specified by coords
of top left corner,
height, and active
input vector

Module Generators

9. State registers:

SR(tlc, tlr, tf);

- implements initial or
non-initial state using
selector from N and
enable from E

- specified by coords
of top left corner,
height, and state type
flag

Module Generators

Overview of compiler operation

Drawbacks of compilation approach
Compile-time partitioning does not consider run-
time need for resources
– Which processes need to be concurrently active?

Static allocations do not adapt to run-time
availability of resources
– Distributed & multitasked environments

Static circuits do not readily support dynamic
circuit behaviour or structure
– Power of reconfiguration remains untapped

An FPGA interpreter for Circal

Interpreter concept

We pre-process a spec until the functional parameters
of modules are known
At run time, the interpreter looks after loading modules
on an as needs basis
– Involves module placement, bitstream gen & config

The amount of logic loaded depends upon resource
availability
– Currently load logic for state, but could dynamically load

fragment of a new process hierarchy

Overview of interpreter operation

The Circal interpreter

Extends the design flow to run-time management &
ongoing FPGA configuration — circuit design does not
complete until execution has finished
Finalizes partitioning, logical, and physical mapping of
circuits at run time
Determines through feedback which components to
implement next
Elaborates & loads parts of the circuit as they are
needed

Interpretation example

Consider the FSM for
process P with 4 states

This process has the
following Circal spec

244
4)(3

322
32)(1

PaPcP
PbaP

PaPbP
PbPcaP

+←
←

+←
+←P2

P1

P3
P4

(a c)

a

(a b)
c

b a

b

Static circuit implementation

244
4)(3

322
32)(1

PaPcP
PbaP

PaPbP
PbPcaP

+←
←

+←
+←

P2
P1

P3
P4

(a c)

a

(a b)
c

b
a

b

(lsb) a
b

(msb) c
IJ m0 m1 m2 m3 m4 m5

m0 (P1 → P1)

m5 (P1 → P2)

m0 + m2 (P2 → P2)

m1 (P4 → P2)

m2 (P1 → P3)

m1 (P2 → P3)

m0 (P3 → P3)

m3 (P3 → P4)

m0 + m4 (P4 → P4)

P1 P2 P3 P4

Σ

Σ

Σ

Σ

Σ

Σ

mn = minterm n
= AND
= OR

r
s

SL

Circuit modelling & partitioning

Processes are modelled as state
transition graphs and processes are
partitioned according to their
definitions

244
4)(3

322
321

PaPcP
PbaP

PaPbP
PbPc)(aP

+←
←

+←
+←

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b

Circuit modelling & partitioning

Processes are modelled as state
transition graphs and processes are
partitioned according to their
definitions
Initially, the interpreter implements a
sub-graph rooted at the initial state

244
4)(3

322
321

PaPcP
PbaP

PaPbP
PbPc)(aP

+←
←

+←
+←

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b

Circuit modelling & partitioning

Processes are modelled as state
transition graphs and processes are
partitioned according to their
definitions
Initially, the interpreter implements a
sub-graph rooted at the initial state
Nodes are included breadth-first
until it is not possible to fit the
transition logic for the next state244

4)(3
322

321

PaPcP
PbaP

PaPbP
PbPc)(aP

+←
←

+←
+←

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b

Circuit modelling & partitioning

Processes are modelled as state
transition graphs and processes are
partitioned according to their
definitions
Initially, the interpreter implements a
sub-graph rooted at the initial state
Nodes are included breadth-first
until it is not possible to fit the
transition logic for the next state244

4)(3
322

321

PaPcP
PbaP

PaPbP
PbPc)(aP

+←
←

+←
+←

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b

Example
Suppose the array area for process P can only
accommodate the behaviour for state P1
To determine which transition occurred, boundary state
registers for P2 and P3 are needed as well

(lsb) a
b

(msb) c
IJ m0 m2 m5

m0 (P1 → P1)

m5 (P1 → P2)

m2 (P1 → P3)

Σ

Σ

Σ

mn = minterm n
= AND
= OR

P1 P2 P3
r
s

SL
Σ

Σ

Determining circuitry to load next

When the boundary of the implemented sub-
graph is reached, the interpreter builds a new
sub-graph rooted at the boundary state that has
become active
We use a quick estimate of the additional space
needed by a state and its transition logic
– Estimator based on number of transitions from state

Constructing the new sub-graph

Suppose we can support
the logic for T=6
transitions in totalP2

P1

P3
P4

(a c)

a

(a b) c

b a

b

Constructing the new sub-graph

Suppose we can support
the logic for T=6 transitions
in total
– P1, P2, & P3 can be

implemented with T=5, but
the inclusion of P4 with
t4=2 is deemed infeasible

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b

Constructing the new sub-graph

Suppose we can support
the logic for T=6 transitions
in total
– P1, P2, & P3 can be

implemented with T=5, but
the inclusion of P4 with
t4=2 is deemed infeasible

– When P4 becomes active,
P2, P3, & P4 form a stable
configuration

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b

Detecting the need for
reconfiguration

We support two modes of operation:
1. Observed mode: all process states are polled each cycle
2. Unobserved mode (such as in an embedded application):

some small circuitry is added to each process in order to
interrupt the VHM when a boundary state is reached

FPGA partitioning
FPGA area is statically partitioned to simplify run-time
reconfiguration
Initially, space to accommodate the largest state for each
process is allocated — this is then expanded to provide
more space for additional states when possible

Random process generation
Timing of sub-graph selection in front end with varied
branching factors and circuit widths
Worst-case timing measurements for circuit
initialisation and update in the back end
Used 500Mhz, 512MB PIII, Java, JBits, and Celoxica
XCV1000 board

Experimental assessment

Exploits fast
carry chains and
minimizes
number of
reconfiguration
frames
Deploys routing
framework to
reduce rerouting
overheads

Virtex layout

Sub-graph selection time (ms)
vs Process width (CLB cols)

Initial bitstream generation time (s)
vs Process width (CLB cols)

Generating circuit updates (ms)
vs Process width (CLB cols)

Reconfiguration time (ms)
vs Process width(CLB cols)

Analysis

High routing costs with JBits, even for highly
structured circuits
– Constrains the designs that can be run-time reconfigured

Capable of reconfiguring within 100ms
– The current methodology is fine for control applications that

can tolerate these delays
Lower bound on implementation delays in the order of
10ms
– More hardware required for applications that cannot

tolerate this

Further interpreter work

Performance improvement
– Better router
– Caching loops
– Better partitioning strategies?

Determining how to efficiently adapt to dynamic
partition sizes
Incorporating data flow into the Circal interpreter
Taking user’s performance objectives into account

Ongoing work

Generalized processes

Work done by Jérémie
Detrey to implement
hierarchy, abstraction
and process creation
Developed on Wildcard
XCV300 implementation
of compiler

Abstract process interface

For the variety of process blocks required, a common
process interface has been defined

FSM process

As before, only allows choice and guarding, but process
can be switched on/off and provides for abstracted
(internal) events

Implementing event abstraction

Hierarchical composition

Hybrid process

FSM-like behaviour
State could be composition or abstraction
For example, consider process P0 defined as

)d(cb
)(ca

ba

02

01

210

−+←
∗+←

+←

SPP
RQPP

PPP

P1 P2

P0Q ∗ R S - d

c
a

a b
b

c

Implementing hybrid processes

Determine the FSM part, called PFSM

Determine the other composition and abstraction
processes, P1 ,…, Pn

Currently, lay them all out statically

Hybrid process block layout

Status

Tested these ideas by implementing (on the
Wildcard) a Turing Machine using Circal as the
specification language
– Involved use of hierarchy, composition, and

abstraction
– Statically preallocated tape of given length, but

activated tape squares as head moved over them

Future work

Support generalized processes in the interpreter
– Replace the interpreter front end
– Define dynamic layouts for generalized processes

Develop concepts for dynamic allocation of
hybrid processes

Conclusion

In summary

We’ve made progress towards describing and
implementing static and automatically virtualized
process logic from a high-level
– The ability to describe & implement traditional

datapath elements needs to be incorporated
The real work in formally describing and
implementing dynamic circuits is still to come…

Modelling reconfigurable devices

How can dynamic process creation/destruction be
described in Circal?
– Need additional semantics
– Is Circal, indeed process algebra best?
– What hardware realisation supports the semantics?

Effort also going into deriving a low-level model of
reconfiguration using Circal
– So far, we are focusing on the “reconfigurator”
– Intend this model to act as target of compiler/interpreter
– May need additional high-level syntax to steer compiler

	Towards High-Level Specification & Synthesis of Dynamic Process Logic
	Overview
	Architectural reconfiguration
	Dynamic reconfiguration
	Dynamic reconfiguration
	Reconfigurable computing challenges
	The design challenge
	Formal modelling of �dynamic reconfiguration
	Goal of project: Basic language research
	Not another language…
	Our approach
	How can Circal help?
	Circal background
	Circal background
	What is Circal?
	What is Circal?
	Modelling the user
	Circal basics
	Behavioural modelling in Circal
	Behavioural modelling in Circal
	Behavioural modelling in Circal
	Behavioural modelling in Circal
	Behavioural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	Structural modelling in Circal
	What Circal has been used for
	Circal as a specification language
	Question has led to work on
	FPGA implementation of Circal
	Mapping goals
	Circuit realization of Circal
	Circuit realization of Circal (cont)
	Circuit activation
	Circuit activation (cont)
	Circuit activation (cont)
	Circuit activation (cont)
	Circuit activation (cont)
	Circuit activation (cont)
	Design example
	State renewal phase 1: �Determining whether an event combination is valid
	State renewal phase 2: �Checking global acceptability of an event
	State renewal phase 3: �Allowing state transitions
	Schematic for P*Q
	Automatic place & route of flat design
	Module Generators
	Module Generators
	Module Generators
	Module Generators
	Module Generators
	Module Generators
	Module Generators
	Module Generators
	Module Generators
	Overview of compiler operation
	Drawbacks of compilation approach
	An FPGA interpreter for Circal
	Interpreter concept
	Overview of interpreter operation
	The Circal interpreter
	Interpretation example
	Static circuit implementation
	Circuit modelling & partitioning
	Circuit modelling & partitioning
	Circuit modelling & partitioning
	Circuit modelling & partitioning
	Example
	Determining circuitry to load next
	Constructing the new sub-graph
	Constructing the new sub-graph
	Constructing the new sub-graph
	Detecting the need for reconfiguration
	FPGA partitioning
	Experimental assessment
	Virtex layout
	Sub-graph selection time (ms) �vs Process width (CLB cols)
	Initial bitstream generation time (s) �vs Process width (CLB cols)
	Generating circuit updates (ms) �vs Process width (CLB cols)
	Reconfiguration time (ms) �vs Process width(CLB cols)
	Analysis
	Further interpreter work
	Ongoing work
	Generalized processes
	Abstract process interface
	FSM process
	Implementing event abstraction
	Hierarchical composition
	Hybrid process
	Implementing hybrid processes
	Hybrid process block layout
	Status
	Future work
	Conclusion
	In summary
	Modelling reconfigurable devices

