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Architectural reconfiguration

Definition:The ability of a device or system 
architecture to change its structure over time
– Which structural aspects?
– What time scale?
– How controlled?

NB: some structural changes may result in 
behavioural changes



Dynamic reconfiguration

Aims to exploit architectural reconfiguration at 
run time in order to:
– Adapt to changing algorithmic needs as a 

computation progresses
– Improve application/system performance
– Reuse computational resources



Dynamic reconfiguration

Facilitates and supports
– Adaptive processes
– Dynamic environments
– Hardware independence
– Multitasking



Reconfigurable computing challenges

How to design efficient, cost-effective 
architectural mixes at device and system level
How to exploit operating niche
How to support  systems and application design
Killer apps: finding appeal and acceptance



The design challenge

Designing with short lead-times for short-lived, highly- 
customized applications
Skill base needs to span many layers and dimensions 
of abstraction: from logic circuit to application layer
– E.g. conceiving high-performance hard-wired algorithms 

Lack of integrated tools that exploit hardware 
capabilities



Formal modelling of 
dynamic reconfiguration



Goal of project: Basic language research

Discover semantic operators needed to model static 
and dynamic FPGA circuits
Learn how to compile down to those operators – how 
much can be automated?
Determine what aspects need to be expressed explicitly 
in the design language in order to guide the compiler



Not another language…

The goal is NOT to design yet another language for 
reconfigurable computing. 

Rather, the goal is to identify the key requirements 
of such a language and its compiler.



Our approach

Investigate the problem from a formal modelling 
perspective — we use a process algebra called 
“Circal” to model circuits, their structure and 
behaviour



How can Circal help?

Circal provides a means of describing concurrent 
systems in an uncluttered, abstract fashion
– Facilitates discovery of fundamental operations, semantics, 

syntax
Circal offers the possibility of producing circuits and 
translation schemes that are verifiably correct 
(equivalent to their specification)
Hope to make use of formal methods literature…



Circal background



Circal background

Process algebras such as CCS, CSP, and Circal 
(CIRcuit CALculus) appeared mid- to late-1970s
– Mathematical formalisms for describing & analyzing the 

behaviour of concurrent systems
• Allow behavioural specification, property checking, equivalence 

checking, formal verification



What is Circal?

Allows us to reason 
about processes that 
have state, and that 
perform or respond to 
actions



What is Circal?

Allows us to reason 
about processes that 
have state, and that 
perform or respond to 
actions
For example, we might 
model a change machine 
using a state diagram
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Modelling the user

We may be interested to 
know: 
– What is the composed 

behaviour of the cash machine 
and the user?

– Will the user ever get angry?
PAs define the rules that 
allow these and other 
questions to be answered



Circal basics

The Circal process algebra 
supports hierarchical, 
modular, and constructive 
description of interacting 
processes
Processes are behavioural 
objects that interact based 
on the occurrence of events
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Behavioural modelling in Circal

Behavioural operators



Behavioural modelling in Circal

P ← P0

Behavioural operators
– Process definition

P0



Behavioural modelling in Circal
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P0 ←Δ

Behavioural operators
– Process definition
– Process terminationP0



Behavioural modelling in Circal
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Behavioural operators
– Process definition
– Process termination
– Process evolution
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Behavioural modelling in Circal

P ← P0

P0 ← a P1 + c P1 + (a b) P1

P1 ← a P0

Behavioural operators
– Process definition
– Process termination
– Process evolution
– Deterministic choice
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Structural modelling in Circal

Structural operators
– Composition
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Structural modelling in Circal
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Q0

Structural operators
– Composition

• Evolve on shared events 
only when each is 
independently able to
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Structural modelling in Circal
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Structural modelling in Circal
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Structural modelling in Circal
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Structural operators
– Composition

• Evolve on shared events 
only when each is 
independently able to
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Structural modelling in Circal

Structural operators
– Composition
– Relabelling

• Similar to parameterization
• Supports reuse

i oQ i oQ



Structural modelling in Circal

Structural operators
– Composition
– Relabelling

• Similar to parameterization
• Supports reuse

S ← Q [c/o] ∗
 

Q [c/i]
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Structural modelling in Circal

Structural operators
– Composition
– Relabelling
– Abstraction

• Hides events from 
observer P ← P0

P0 ← a P1 + c P1 + (a b) P1

P1 ← a P0

a
P0 P1

(a b)
c

aa

c
b



Structural modelling in Circal

Structural operators
– Composition
– Relabelling
– Abstraction

• Hides events from 
observer

• Introduces non- 
deterministic behaviour

• Limited use in HW 
description

P – a ← P0

P0 ← P1 & c P1 & b P1

P1 ← P0

P0 P1

b
c

c

b



What Circal has been used for

Modelling & verifying digital (CMOS) circuits and 
asynchronous (micropipeline) systems
Verifying the timing, performance, and 
correctness of concurrent systems
Describing complex systems such as traffic 
networks using a CA framework



Circal as a specification language

Success with using Circal for digital design & 
verification led us to wonder:

Is Circal suitable as the basis of
a specification language for FPGAs?



Question has led to work on

Mapping Circal specifications to RL
Automatic support for virtualized circuit designs
Modelling DRL using a PA formalism
Determining what that provides us with



FPGA implementation of Circal



Mapping goals

Quick and easy instantiation of circuits
Distribute computation for scalability 
Speedup through concurrent execution
Use dynamic reconfiguration to overcome resource 
limitations
Provide scope for implementing dynamic specifications



Circuit realization of Circal

At the system level, a 
Circal specification is 
realized as an 
interconnection of 
independent, 
concurrently active 
process logic blocks and 
synchronisation logic
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r
s



Circuit realization of Circal (cont)

Each process logic block 
implements the 
behaviour specified by its 
process definitions
Of course the Circal 
composition law 
constrains process state 
transitions to those that 
are globally acceptable

event
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events in
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transition

enable
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state feedback
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Circuit activation

Processes respond to 
input events each cycle
State renewal consists 
of three phases:

event
bus

events in
process sort

select
state 

transition

enable
state

transition

process
state

request
signal

r

state feedback

synch
signal

s



Circuit activation (cont)

Processes respond to 
input events each cycle
State renewal consists 
of three phases:

1. Each process checks 
whether the event is 
acceptable to itself

event
bus

events in
process sort

select
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transition
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state
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state feedback
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Circuit activation (cont)

Processes respond to 
input events each cycle
State renewal consists 
of three phases:

1. Each process checks 
whether the event is 
acceptable to itself and 
raises a synchronization 
request signal if it is;

event
bus

events in
process sort

select
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transition
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state feedback
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s



Circuit activation (cont)

3 phase state renewal:
1. Check event acceptability;
2. Synchronization logic 

asserts a synchronization 
signal if all processes find 
the event acceptable; and

event
bus

events in
process sort

select
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transition
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Circuit activation (cont)

3 phase state renewal:
1. Check event acceptability;
2. Synchronization signal 

asserted; and
3. Each process enables the 

state transition guarded 
by the input event if 
synchronization is 
asserted.

event
bus

events in
process sort

select
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transition

process
state
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Circuit activation (cont)

3 phase state renewal:
1. Check event acceptability;
2. Synchronization signal 

asserted; and
3. Each process enables the 

state transition guarded 
by the input event if 
synchronization is 
asserted.

State is updated at the 
next clock edge

event
bus

events in
process sort

select
state 

transition

enable
state

transition

process
state

request
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r

state feedback

synch
signal

s



Design example
Consider

and

Applying the Circal composition law we get
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State renewal phase 1: 
Determining whether an event combination is valid

Consider just the logic for process P:

In state P0 the process 
responds to events in the set . . . . . . . . . . . . . 

Hence process P in state P0 accepts 
the boolean expression of events . . . . . . .   

Similarly, in state P1 , the process accepts . . . . . . . . . . . 

The synchronization request signal can thus be expressed as . . .
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State renewal phase 2: 
Checking global acceptability of an event

Done by forming the global conjunction of process 
synchronization request signals: ∏=

i
irs



State renewal phase 3: 
Allowing state transitions

Let DP0 and DP1 denote the boolean input functions for 
the P0 and P1 state flip-flops

Then from

we can derive
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Schematic for P*Q



Automatic place & route of flat design



1. Environmental Inputs:

EI(tlc, tlr, ni, or, ob);

- consists of input 
register and wires to 
right and bottom

- specified by coords 
of top left corner, 
number of inputs, 
and vector of wires 
to right & bottom

Module Generators



2. Buses:

B(tlc, tlr, wi, hi, or, aw);

- specified by coords 
of top left corner, 
width and height, 
orientation, and 
vector of active 
wires 

Module Generators



3. Input Junctions:

IJ(tlc, tlr, wi, or, ob);

- allows another process
to be added

- specified by coords 
of top left corner, 
width, and vector of 
outputs to right and
bottom

Module Generators



4. Minterms:

M(tlc, tlr, ni, mn);

- computes minterm,
passes input to right
and output to bottom

- specified by coords 
of top left corner, 
number of inputs, and
minterm number

Module Generators



5. Guards:

G(tlc, tlr, wi, ai, g, o);

- forms OR of selected
minterm wires with 
output to right

- specified by coords 
of top left corner, 
width, and vectors
of active inputs, inputs
to be ORed, and inputs
to be output below

Module Generators



6. Requestors:

R(tlc, tlr, hi, tp, ss, r);

- combine guards with
current state and pass
signals through their
body

- specified top left corner, 
height, and vectors
of throughputs (→),
state selectors (←), 
and requestors

Module Generators



7. OR gate trees:

OR(tlc, tlr, hi, ai, of);

- forms tree to right
and bottom, output
to right, or both left
and right

- specified by coords 
of top left corner, 
height, active input
vector, and output 
direction flag

Module Generators



8. Synch logic:

SL(tlc, tlr, hi, ai);

- forms AND tree of
inputs and distributes
outputs to rows below
inputs

- specified by coords 
of top left corner, 
height, and active 
input vector

Module Generators



9. State registers:

SR(tlc, tlr, tf);

- implements initial or 
non-initial state using
selector from N and 
enable from E

- specified by coords 
of top left corner, 
height, and state type 
flag

Module Generators



Overview of compiler operation



Drawbacks of compilation approach
Compile-time partitioning does not consider run- 
time need for resources
– Which processes need to be concurrently active?

Static allocations do not adapt to run-time 
availability of resources
– Distributed & multitasked environments

Static circuits do not readily support dynamic 
circuit behaviour or structure
– Power of reconfiguration remains untapped



An FPGA interpreter for Circal



Interpreter concept

We pre-process a spec until the functional parameters 
of modules are known
At run time, the interpreter looks after loading modules 
on an as needs basis
– Involves module placement, bitstream gen & config

The amount of logic loaded depends upon resource 
availability
– Currently load logic for state, but could dynamically load 

fragment of a new process hierarchy



Overview of interpreter operation



The Circal interpreter

Extends the design flow to run-time management & 
ongoing FPGA configuration — circuit design does not 
complete until execution has finished
Finalizes partitioning, logical, and physical mapping of 
circuits at run time
Determines through feedback which components to 
implement next
Elaborates & loads parts of the circuit as they are 
needed



Interpretation example

Consider the FSM for 
process P with 4 states

This process has the 
following Circal spec
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Static circuit implementation
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Circuit modelling & partitioning

Processes are modelled as state 
transition graphs and processes are 
partitioned according to their 
definitions
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Circuit modelling & partitioning

Processes are modelled as state 
transition graphs and processes are 
partitioned according to their 
definitions
Initially, the interpreter implements a 
sub-graph rooted at the initial state
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Circuit modelling & partitioning

Processes are modelled as state 
transition graphs and processes are 
partitioned according to their 
definitions
Initially, the interpreter implements a 
sub-graph rooted at the initial state
Nodes are included breadth-first 
until it is not possible to fit the 
transition logic for the next state244
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Circuit modelling & partitioning

Processes are modelled as state 
transition graphs and processes are 
partitioned according to their 
definitions
Initially, the interpreter implements a 
sub-graph rooted at the initial state
Nodes are included breadth-first 
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transition logic for the next state244
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Example
Suppose the array area for process P can only 
accommodate the behaviour for state P1
To determine which transition occurred, boundary state 
registers for P2 and P3 are needed as well
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b

(msb) c
IJ m0 m2 m5

m0 (P1 → P1)

m5 (P1 → P2)

m2 (P1 → P3)

Σ
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Σ
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r
s
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Determining circuitry to load next

When the boundary of the implemented sub- 
graph is reached, the interpreter builds a new 
sub-graph rooted at the boundary state that has 
become active
We use a quick estimate of the additional space 
needed by a state and its transition logic
– Estimator based on number of transitions from state



Constructing the new sub-graph

Suppose we can support 
the logic for T=6 
transitions in totalP2

P1

P3
P4

(a c)

a

(a b) c

b a

b



Constructing the new sub-graph

Suppose we can support 
the logic for T=6 transitions 
in total 
– P1, P2, & P3 can be 

implemented with T=5, but 
the inclusion of P4 with 
t4=2 is deemed infeasible

P2
P1

P3
P4

(a c)

a
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Constructing the new sub-graph

Suppose we can support 
the logic for T=6 transitions 
in total 
– P1, P2, & P3 can be 

implemented with T=5, but 
the inclusion of P4 with 
t4=2 is deemed infeasible

– When P4 becomes active, 
P2, P3, & P4 form a stable 
configuration

P2
P1

P3
P4

(a c)

a

(a b) c

b a

b



Detecting the need for 
reconfiguration

We support two modes of operation:
1. Observed mode: all process states are polled each cycle
2. Unobserved mode (such as in an embedded application): 

some small circuitry is added to each process in order to 
interrupt the VHM when a boundary state is reached



FPGA partitioning
FPGA area is statically partitioned to simplify run-time 
reconfiguration
Initially, space to accommodate the largest state for each 
process is allocated — this is then expanded to provide 
more space for additional states when possible 



Random process generation
Timing of sub-graph selection in front end with varied 
branching factors and circuit widths 
Worst-case timing measurements for circuit 
initialisation and update in the back end
Used 500Mhz, 512MB PIII, Java, JBits, and Celoxica 
XCV1000 board

Experimental assessment



Exploits fast 
carry chains and 
minimizes 
number of 
reconfiguration 
frames
Deploys routing 
framework to 
reduce rerouting 
overheads

Virtex layout



Sub-graph selection time (ms) 
vs Process width (CLB cols)



Initial bitstream generation time (s) 
vs Process width (CLB cols)



Generating circuit updates (ms) 
vs Process width (CLB cols)



Reconfiguration time (ms) 
vs Process width(CLB cols)



Analysis

High routing costs with JBits, even for highly 
structured circuits
– Constrains the designs that can be run-time reconfigured 

Capable of reconfiguring within 100ms 
– The current methodology is fine for control applications that 

can tolerate these delays
Lower bound on implementation delays in the order of 
10ms
– More hardware required for applications that cannot 

tolerate this



Further interpreter work

Performance improvement
– Better router
– Caching loops
– Better partitioning strategies?

Determining how to efficiently adapt to dynamic 
partition sizes 
Incorporating data flow into the Circal interpreter
Taking user’s performance objectives into account



Ongoing work



Generalized processes

Work done by Jérémie 
Detrey to implement 
hierarchy, abstraction 
and process creation
Developed on Wildcard 
XCV300 implementation 
of compiler



Abstract process interface

For the variety of process blocks required, a common 
process interface has been defined



FSM process

As before, only allows choice and guarding, but process 
can be switched on/off and provides for abstracted 
(internal) events



Implementing event abstraction



Hierarchical composition



Hybrid process

FSM-like behaviour
State could be composition or abstraction
For example, consider process P0 defined as
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Implementing hybrid processes

Determine the FSM part, called PFSM

Determine the other composition and abstraction 
processes, P1 ,…, Pn

Currently, lay them all out statically



Hybrid process block layout



Status

Tested these ideas by implementing (on the 
Wildcard) a Turing Machine using Circal as the 
specification language
– Involved use of hierarchy, composition, and 

abstraction
– Statically preallocated tape of given length, but 

activated tape squares as head moved over them



Future work

Support generalized processes in the interpreter
– Replace the interpreter front end
– Define dynamic layouts for generalized processes

Develop concepts for dynamic allocation of 
hybrid processes 



Conclusion



In summary

We’ve made progress towards describing and 
implementing static and automatically virtualized 
process logic from a high-level
– The ability to describe & implement traditional 

datapath elements needs to be incorporated
The real work in formally describing and 
implementing dynamic circuits is still to come…



Modelling reconfigurable devices

How can dynamic process creation/destruction be 
described in Circal?
– Need additional semantics
– Is Circal, indeed process algebra best?
– What hardware realisation supports the semantics?

Effort also going into deriving a low-level model of  
reconfiguration using Circal
– So far, we are focusing on the “reconfigurator”
– Intend this model to act as target of compiler/interpreter
– May need additional high-level syntax to steer compiler
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