
Operating Systems Support for 
Dynamically Reconfigurable Architectures 

» Run-time Partitioning for Just-in-time Compilation «

Oliver Diessel, UNSW
Grant Wigley and David Kearney, UniSA



Outline

• Motivate OS for Multi-tasking RS
• Some design options
• Task scheduling
• Compilation goals
• Models
• Task partitioning



Motivation for Multi-tasking

• Growing size of reconfigurable logic resource
• Growing range and integration of applications
• Orientation towards real-time tasks

→ How to manage/support large reconfigurable 
logic resource in a multitasked environment?
→ space- or time-shared?
→ fixed or variable partitioning?



Fixed Partition Size

Pros
• “easy” to design for
• supports location 

independence & fault 
tolerance

• “easy” to manage

Cons
• task performance can 

suffer
• internal fragmentation



Variable Partition Size

Pros
• allocation flexibility 

allows optimal 
performance to be 
achieved

• better utilization possible

Cons
• need to cope with dynamic 

resource availability — 
scheduling complexity

• external fragmentation



Coping with Variably Sized Tasks

• Wait for or preempt executing tasks

• Move executing tasks to free up space 

• Adapt incoming task to space available at run time
– requires fast partitioning, placement, and routing
– requires on-line scheduling of

• logic
• routing resources
• pins
• memory





Long-Term Goals

1. Develop accurate and efficient indicators that can 
tell us whether to accept or reject real-time 
reconfigurable computing tasks into common 
architectural models.

2. Develop algorithms and techniques that allow us 
to complete the physical design of tasks without 
contributing significantly to overheads.



Models

Task
• Netlisted combinational 

task graph (DAG)
– each vertex has associated 

area and latency
– each edge has associated 

width
• Dataset representing given 

number of cycles
• Off-line processing

Machine
• Single context logic 

resource of given area and 
pin count

• Assume fixed clock period
• Given amount of fast local 

buffer memory
• Assume reconfiguration 

time proportional to sum 
of vertex areas, sum of 
edge weights, and number 
of pins in config



Partitioning Goal

• Determine partitioning of DAG and a 
configuration sequence (subject to correctness, 
area, latency, pin, and buffer size constraints) that 
identifies for each partition the number of cycles it 
should execute for in order to minimize the total 
execution time 

• Do so quickly 

ri
li

i TNPR ∗+∑
=

)(
,1



First steps



Previous work in area

• Partitioning
– Survey: Alpert & Kahng, Integration, Aug 95
– Single Context:GajjalaPurna & Bhatia, TOC, Jun 99; 

Kaul & Vemuri, RAW99
– Multiple Context: Trimberger, FPGA98; Liu & Wong, 

FPGA99; Chang & Marek-Sadowska, TOC, Jun 99

• Placement
– Sankar & Rose, FPGA99

• Routing
– Swartz, Betz & Rose, FPGA98


	Operating Systems Support for �Dynamically Reconfigurable Architectures��» Run-time Partitioning for Just-in-time Compilation «
	Outline
	Motivation for Multi-tasking
	Fixed Partition Size
	Variable Partition Size
	Coping with Variably Sized Tasks
	Slide Number 7
	Long-Term Goals
	Models
	Partitioning Goal
	First steps
	Previous work in area

