Enabling RTR for Industry

Oliver Diessel & Shannon Koh

Computer Science & Engineering
The University of New South Wales

Embedded, Real-Time and Operating Systems Program

National ICT Australia

What is RTR?

Partial restructuring of a system while it is active

- At what scale?
 Gate/wire/block/module/device/board/system
- When?
 At startup/mode switch (externally or internally triggered)
- How long should it take?
 Limited by device or optimization algorithms

What is the promise of RTR?

- Adaptive hardware
 - Better performance; smaller area; lower power
 - Multifunctional/virtual hardware
 - More with less

Greater computational power?

How does industry want to use it?

• Industry's goal is to maximize profit

Equivalent to minimizing costs (development, production, unit delivery, upgrade) and maximizing sales (utility, affordability, desirability)

How does RTR help?

- RTR can potentially help with utility, affordability, upgradability & desirability
 - But these are not easily measurable
- Low NRE for configurable systems, but what about RTR systems?
 - Design for (most (successful)) RTR is probably still a long way off being commoditized
- And what about the price/performance niche?
 - When does RTR confer a benefit?

SIREN: Satnav Interference Rejection Engine¹

• Use emerging GNSS signal diversity to mitigate effects of interference...

Second generation project to develop open
 FPGA-based satellite navigation/timing solutions

Standard Zarlink GPS receiver design

"NAMURU"

Eora: *ngamuru* means 'to see the way' or 'compass'

Navigation Aid Made at UNSW for Reconfiguration Use

Effect of CW interference

GPS/ Galileo Spectrum

Figure 1: Galileo Frequency Plan

SIREN concept

- Predict/detect when signals are affected by interference
- Swap compromised channels for ones that are not
- Derive a navigation solution from the resulting set

- Aiming for positioning/timing estimates at 100Hz
- Goal is to integrate techniques into a single chip solution

SIREN RTR challenges

- Develop correlator layouts that can rapidly be reconfigured
- Develop a systems architecture that supports partial dynamic reconfiguration
- Integrate processor-based control and internal reconfiguration into a single-chip solution
- Testing

L1 correlator design

L2c correlator design

L5 correlator design

Resource estimates

Tracking Loop Elements	4-LUTs/FFs Needed		
	L1	L2c	L5
Carrier mixer	8	8	8
Code mixer	6	6	12
Carrier NCO	60	60	60
Code NCO	51	51	51
EPL shift register	3	3	6
Code Generator	90	120	140
Integrators	96	96	240
NH code mixer			3606
Sum	320	350	4200

Reconfiguration delay estimates

Configuration Delay (µs)				
	CPL << CP	CPL ≈ CP		
	400	710		
L2	472	787		
L5	787	1,023		
L1 ↔ L2	80	315		

The COMMA Approach Module Placement¹

- Module slots occupy a V4
 "page" 16 CLBs x ½ width
- Slots may be subdivided
- May also be aggregated

¹ Shannon Koh's work

The COMMA Approach Wiring Harness

- Provides interconnect between module pins and device pins
- Connect modules to wires via slice macros
- Tailored to the application

The COMMA Approach Pin Virtualisation

 Connect module pins to slice macros via
 Reconfigurable Data Ports

COMMA Design: Configuration Epochs

COMMA Design: Optimisation

What support does industry need to make more/better use of RTR?

- Motivation to explore the applicability of RTR
- Design exploration tools that allow RTR to be rapidly modelled and assessed at a high level
- Synthesis tools
 - Optimize across configurations
 - Minimize area & power; maximize performance
 - Automate RTR infrastructure provision
 - Minimize overheads at the various levels in the design hierarchy
 - Resource management, communications, controllers, OS, run-time environments
- Validation & verification tools
- Vendor support

What support are they getting?
Why aren't they looking at our research?

Can we make a difference?

YES, but we might have to change...

Grand challenges

- Companies can't take the risk to do much explorative research, so academics have an opportunity
- We may need to aggregate efforts and plan to make an impact

Collaborate

- Applications are the driver for innovation in support technology
- Do one project per year with industry and publish results in trade/industry journals

Can we make a difference?

Commoditize

 Don't stop at developing an algorithm and benchmarking your prototype – take it as far as you can... is it commercializable?
 What needs to change to make a product out of your design?

Benchmarks

 Develop benchmarks that allow improvements to be measured and efforts to be compared

Vendor support

- Bridge the gap between vendors and end users
- Get our enhancements supported by Xilinx/Altera