
Overview and Investigation of SEU Detection and

Recovery Approaches for FPGA-based

Heterogeneous Systems

Ediz Cetin
1
, Oliver Diessel

2
, Tuo Li

2
, Jude A. Ambrose

2
, Thomas Fisk

1
, Sri Parameswaran

2
, Andrew G. Dempster

1

1
School of Electrical Engineering & Telecommunications

University of New South Wales,

Sydney, Australia

{e.cetin, t.fisk, a.dempster}@unsw.edu.au

2
School of Computer Science and Engineering

University of New South Wales,

Sydney, Australia

{odiessel, tuol, ajangelo, sridevan}@cse.unsw.edu.au

Abstract—Growing international interest in the development

of space missions based on low-cost nano-/microsatellites

demands new approaches to the design of reliable, low-cost,

reconfigurable digital processing platforms. To meet these

requirements, future systems will need to include application-

specific processors to handle control-dominated tasks and

hardware accelerators to cope with data-intensive workloads.

COTS FPGAs provide an ideal platform for meeting these

requirements with application-specific processors implemented

as soft or hard cores along with hardware accelerators on FPGA

fabric. However, the main challenge to deploying reconfigurable

systems in space is mitigating the impact of radiation-induced

Single Event Upsets (SEUs). In considering the design of such

heterogeneous systems, we present a survey of techniques

commonly employed to guard against soft errors in application-

specific processors targeted at ASICs and assess their suitability

to FPGA implementation when partial reconfiguration is used to

deal with SEUs in logic circuits. Finally, we report on the

development of the RUSH payload, to be deployed on the UNSW-

EC0 CubeSat due for launch in 2015, to test our design approach.

Keywords—single event upsets, FPGA, CubeSats, QB50

I. INTRODUCTION

The low-cost, nano-/microsatellite (1-50kg) segment,
primarily based on the CubeSat standard and with applications
in science, Earth Observation (EO) and reconnaissance, is
expected to experience between 16.8% and 23.4% compound
annual growth over the period 2013-2020 [1]. This burgeoning
international interest in the development of satellite-based
space missions demands new approaches to the design of
reliable, low-cost, reconfigurable digital processing platforms.

To meet these requirements, future space systems will
need to include application-specific processors to handle
control-dominated tasks and hardware accelerators to cope
with data-intensive workloads. Some of these applications
include secure and reliable communications, attitude
determination and control, guidance, navigation and control as
well as on-board image and Synthetic Aperture Radar (SAR)
data processing and compression. Implementing these systems
as Application-Specific Integrated Circuits (ASICs) is not
viable due to their high cost, long lead times, and inflexibility.
The implementation devices most suited to meeting these

requirements are Commercial-Off-The-Shelf (COTS) Field-
Programmable Gate Arrays (FPGAs) with application-
specific processors implemented as soft or hard cores along
with hardware accelerators on FPGA fabric. FPGAs, like
custom hardware chips, provide the means for implementing
custom processors and accelerators, they can also be
reconfigured on demand to perform new or different functions,
and have significantly lower lead times and associated costs.
Furthermore, by reusing the same device to implement an
architectural variation, FPGA reconfiguration can be exploited
to reduce mission-critical parameters, such as the system’s
size, mass and power requirements, which must be kept as
small as possible. The main challenge to deploying
reconfigurable systems in space, however, is radiation-induced
Single Event Upsets (SEUs).

As part of our ongoing research activity into rapid
recovery from SEUs in reconfigurable hardware [2],[3], we
are currently developing a payload for the University of New
South Wales - Educational CubeSat Zero (UNSW-EC0)
CubeSat as part of the European QB50 project to be launched
in 2015 [4]. The RUSH (Rapid recovery from SEUs in
Reconfigurable Hardware) payload will enable us to carry out
in-situ flight testing of various FPGA-based rapid SEU
detection and recovery approaches and compare them with
vendor specific tools such as Soft Error Mitigation (SEM)
from Xilinx [5].

This paper considers heterogeneous systems consisting of
application-specific processors and hardware accelerators
implemented on FPGAs, and investigates the suitability of
various circuit- and processor-based SEU detection and
mitigation approaches with a view to final deployment on the
UNSW-EC0 CubeSat RUSH payload.

The paper is organized as follows: Section II provides an
overview of ASIP soft-error mitigation approaches and
assesses their suitability for FPGA based implementations.
Section III provides details of approaches for rapid recovery
from FPGA configuration memory upsets and discusses how
these approaches could be applied to ASIPs. The RUSH
payload and experiment are detailed in Section IV, while
concluding remarks are given in Section V.

II. ASIP SOFT-ERROR MITIGATION

Application-Specific Instruction-set Processors (ASIPs)
are tailored by analyzing the characteristics of the specific
application(s) that will be executed in the ASIPs. ASIPs are
typically used in embedded systems, where properties such as
area, power, and performance are critical. An ASIP can be
tailored by including custom instructions to improve
performance, or by removing unnecessary components based
on the mapped application(s) to reduce power, or by adding
custom components to improve reliability. In contrast,
General-Purpose Processors (GPPs) are designed to support a
wide range of applications, and are not therefore customized
for a particular set of applications. As embedded systems are
commonly used in safety-critical applications such as
aerospace, automotive, medical electronics, etc., maintaining
the system’s reliability is of great importance.

ASIPs are typically implemented in standard cells (such as
ASICs), where radiation-induced soft errors mainly impact on
sequential logic. For example, the register file and on-chip
memory are the vulnerable parts of ASIPs implemented as
ASICs, whereas the circuits themselves, such as the adder
circuit, remain largely unaffected. However, when an ASIP is
implemented in an FPGA device, the entire circuit is
implemented in configuration memory, including the
combinational circuit elements and the component
interconnections. Since SRAM-based FPGA fabrics are
susceptible to radiation-induced SEUs, the functionality of
FPGA-based ASIPs can be affected, and unless they go
corrected, configuration memory SEUs have the appearance of
permanent errors in ASICs.

Existing processor-level soft-error countermeasures for
ASIPs can be grouped into two major categories: hardware
(Section II-A1, II-A2, and II-A3) and software (Section II-B1,
and II-B2) based approaches. In this section, we present and
elaborate a few representative genres of techniques in both
categories when considering FPGA implementations. The
fundamental idea behind these techniques, which detect and
recover from errors, is to add redundancy into the system with
regards to architectural states e.g., register file and memory.
The techniques are compared with the literature on SEU
mitigation for soft FPGA-based GPPs in Section II-C. Note
that since Error-Correcting Codes (ECC) are well established
for storage elements such as the register file and memory, in
this discussion we focus on the entire processor or the
execution of instructions in the datapath pipeline. For each
genre of techniques, we introduce the concept, system impact,
and applicability to FPGA implementation.

A. Hardware-based soft error mitigation approaches

1) Instruction Space Triple Modular Redundancy:
Instruction space triple modular redundancy (space-TMR)

adds two redundant instruction executions in parallel with the
usual instruction execution, and recovers the error by selecting
the result in majority with minimal overhead on processor
performance. Theoretically, N-MR is able to detect errors
when N=2 by comparing two results from two modules, and
recover errors when N=3 by performing majority voting with
three results from three modules.

Since ASIPs are typically implemented using pipelined
datapaths, each pipeline stage or indeed the entire pipeline can
be triplicated based on the cost constraints such as area,
power, and performance (delay). Fig. 1 depicts an example for
space-TMR where the EXecution pipeline stage (EX) is tripli-
cated, and the three outputs are passed to a voter, before the
final commit of the instruction at the Write-Back (WB) stage.
The other stages could be triplicated as well to achieve better
reliability, however this would incur additional area and power
overheads. The impact of the approach on the processor
architecture is to triplicate hardware components that execute
the instructions i.e. the EX unit and to add a majority voting
hardware unit. Thus, the main impact is hardware complexity,
which leads to additional area and power costs. The additional
hardware complexity is slightly more than twice that of the
EX unit.

Considering FPGA implementations, instruction space-
TMR is applicable to soft processors for which the RTL
description of the processor is available so that the required
modifications to the architecture can be made. However,
modifying the architecture is infeasible for hard-core
processors and commercially acquired soft processors for
which the RTL is generally not provided.

2) Instruction Time Triple Modular Redundancy:
Instruction time-TMR triplicates the execution of an

instruction in a temporal manner. The redundant executions
are generated by re-issuing the instruction two additional
times. The result of the instruction is committed after majority
voting on the three results. For example, the work in [6] locks
the Program Counter (PC) and executes the same instruction
three times starting from the Instruction Fetch (IF) stage. In
the first two executions, the output of the instruction is saved
without committing at the WB stage. In the last execution, the
three outputs are voted upon and then committed at the WB
stage.

The major architectural impact of instruction time-TMR is
the logic to handle re-issuing of the instruction, temporary
storage to hold the results before majority voting, and the
majority-voting unit. The additional hardware is insignificant
in comparison to instruction space-TMR. However, the perfor-
mance of the processor is decreased by a factor of 3, due to the
additional issues per instruction.

Fig. 1. Instruction space-TMR

The applicability of instruction time-TMR to FPGA
implementation is the same as for space-TMR. For hard and
commercial soft IP, adding the re-issue logic, the temporary
storage and majority voter are infeasible. For soft processors
for which the RTL is available, the approach could be used.

3) Instruction Checkpoint Recovery:
Instruction Checkpoint Recovery (CR) is a recovery-only

solution to soft errors or transient faults. Performing CR at
each instruction within a basic block [7] allows the processor
to save a subset of the architectural state as a backup. These
preserved values can be used to re-write/restore the
architectural state that was modified by the basic block (this
process is called rollback or restoration), when an error is
detected at the end of the block. Generally, instruction CR
ensures that the execution of the program is backed up and can
be recovered periodically.

For example, the original instruction ADD R2, R3, R4 adds
the values of register R3 and R4 in the register file and writes
the result into register R2. With CR enhancement, this
instruction will first save the current value of R2 into a
specialized reliable storage unit before committing the new
value at the WB stage. Similarly, all the instructions in the
current basic block that modify the values of the register file or
data memory are enhanced to store the current values before
being committed. If an SEU is detected at the end of the basic
block, an interrupt is triggered to execute specialized rollback
instructions that fetch the previous values from storage to
write them back into the corresponding locations of the
register file or data memory. It is worth noting that
comparisons (branch instructions) are customized to trigger
rollbacks internally when errors are detected.

A variety of detection techniques can be applied with CR.
One possibility is a control-flow based detection technique [8].
In this work, a compile-time signature of every basic block of
the program is calculated by performing an XOR of the
machine code (however more advanced encoding techniques
could be applied as well). These signatures are then inserted
into the corresponding basic blocks. At runtime, specialized
hardware calculates a signature for the executed instructions.
At the end of each basic block specialized hardware in branch
instructions is used to compare the compile-time and runtime
signatures. A mismatch of the signatures indicates the
presence of an SEU in the instruction stream.

Instruction CR augments the architecture of the processor
with: a checkpoint buffer, logic for managing the update of the
checkpoint buffer i.e. reading architectural states and writing
to the checkpoint buffer, and logic for flushing the pipeline
and rewriting architectural states. The detection method
imposes additional architectural modifications. There are
similar limitations to the application of this technique to
FPGA-based ASIPs as for the previous two approaches.

B. Software-based soft error mitigation approaches

1) Software-Implemented Error Recovery:
Software-Implemented Error Recovery (SIER) is a solely

software-based approach. Following TMR principles, SIER
triplicates each instruction to allow majority voting as the
program is executed [9]. Each instruction copy uses different

registers and different memory locations so as to not interfere
with the others. As all instructions are processed using the
original hardware the processor architecture does not need to
be modified. For example, instruction ADD R2, R3, R4 is
transformed to three instructions ADD R2, R3, R4, ADD R2’,
R3’, R4’, and ADD R2”, R3”, R4”. Where R2, R2’ and R2”
are the different registers representing the same variable in the
program. These three instructions are executed sequentially.
An extra segment of code is inserted after these three
instructions are executed to vote on the value of R2 at runtime.

SIER necessitates modification of the compiler backend
e.g., to perform register allocation. The voting segment can be
added directly into the program. The SIER program code
length is at least there times that of the original code, but the
processor hardware is not modified. Applying SIER to FPGA
implementations is feasible since SIER does not modify the
processor architecture. However, memory costs might increase
due to the increased code size.

2) Profile-Guided Code Transformation:
Profile-Guided Code Transformation (PGCT) alters the

software code based on an analysis of the program. The
program is profiled to understand the dependencies between
instructions, liveliness of variables/registers, and the execution
frequency of instructions to determine the vulnerability of
each instruction. The transformations include loop unrolling
and data type reassignment [10]. By transforming the code, the
variables that are estimated to be vulnerable to soft error are
enhanced (to reduce their chance of corruption). For example,
considering instruction ADD R2, R3, R4, decreasing the time
period that a variable/register (e.g., R2 or R3 or R4) spends in
more vulnerable sequential logic (e.g., register file) and
increasing the time period that it spends in less vulnerable
sequential logic (such as memory with ECC) can increase the
reliability of that variable. Hence, by applying these
transformations, the vulnerability of the program can be
reduced by up to 90%, as reported in [10].

PGCT induces no hardware complexity cost. However, the
code size might change and the resultant performance can be
degraded as well. To implement PGCT, the compiler backend
must be modified to allow the transformation. In addition,
knowledge of the processor architecture is needed to perform
the vulnerability analysis. For example, to calculate the
vulnerability of an instruction, the area and logic type of the
hardware components occupied by that instruction are used.
This technique is applicable to FPGAs since no hardware
modifications are needed. However the increase in code size
may affect the memory requirement.

C. Discussion

Table I summarizes the processor-level techniques discussed
in this section. The techniques of column 1 are evaluated with
respect to the characteristics of cols 2–6. Overall, the
hardware-based techniques induce considerable area
overheads, whereas the software-based ones result in
execution time and instruction space penalties. With regard to
FPGA applicability, most of the hardware-based techniques
require the baseline processor architecture to be transparent
and described in RTL, while software-based techniques
simply require more memory.

TABLE I. SUMMARY OF PROCESSOR-LEVEL SEU MITIGATION TECHNIQUES

Technique Hardware Impact Software Impact Performance Impact
FPGA Applicability

Hard/Commercial Soft IP RTL Soft IP

S-TMR Significant (>3x) None
Critical path can be
impacted by voters

N/A Applicable

T-TMR Insignificant None Significant (>3x) N/A Applicable

CR
Dependent on number of

states and storage type

Insignificant

(rollback routine)
Insignificant N/A Applicable

SIER
None (memory for additional

code lines)
Significant (>3x) Significant (>3x) Applicable Applicable

PGCT
None (memory for additional

code lines)
Dependent on code

Dependent on

transformations
Applicable Applicable

SEU mitigation in soft FPGA-based GPPs has been
studied extensively – we outline some representative examples
of the work. [11] and [12] studied dual modular redundancy
(DMR) at the processor level, operating Leon2 [11] and
MicroBlaze (MB) [12] in lock step, and performing
checkpointing and recovery to correct datapath memory
errors. Configuration memory errors (CMEs) were corrected
by scrubbing and partial reconfiguration (PR), respectively.
[13] used TMR to protect MBs and synchronized the register
state after PR to correct CMEs. [14] have employed DMR at
the IF and EX stages of an OpenRISC processor; instruction
execution is stalled, the faulty stage is reconfigured, and the
instruction is re-executed when an error is detected. The work
to date has tended to focus on mitigation techniques and
reported the impact on area and performance. In contrast, our
research goals are to achieve specified performance criteria
(area, speed and power) while meeting recovery time
guarantees.

In soft ASIPs targeted at FPGAs, time-TMR and CR
techniques do not guard against configuration memory errors
because they do not provide any redundancy in the processing
hardware. Currently, we therefore focus on spatial-TMR and
outline our approach to recovering from configuration
memory errors in the next section.

III. RAPID RECOVERY FROM FPGA CONFIGURATION

MEMORY UPSETS

The configuration memory of COTS FPGAs, being
implemented in SRAM, is as prone to corruption due to
radiation as the memory elements (FFs and BRAMs) of user
circuits. Therefore, when COTS FPGAs are used in radiation
prone environments, it is necessary to provide protection from
radiation and/or methods for detecting and recovering from
radiation-induced configuration memory errors. Moreover, in
time critical applications, it is also desirable to detect and
recover from errors very quickly.

There are two principal methods for detecting and
recovering from configuration memory SEUs in COTS
FPGAs. The first, direct method, typically referred to as
scrubbing, involves scanning the configuration memory
checking for upsets either via ECC associated with individual
configuration frames, or by comparison with a golden
reference stored off-chip in protected memory. Any elements
that have been modified are refreshed in the course of the
scan. FPGA vendors, such as Xilinx, provide in-built
components to perform this function [5]. An alternative,

indirect method, involves checking the behaviour of the user
circuit, and reloading the circuit configuration if the circuit no
longer behaves as expected [3],[15]. In the latter case, TMR is
typically employed to identify the module in error, and
dynamic partial reconfiguration is used to reconfigure the
erroneous unit. Built-in self-tests could also be employed to
check correct functioning of the user circuits.

The scrubbing technique is usually deployed as a
background process that operates periodically. There can
therefore be a considerable delay between errors occurring and
them being detected and corrected. The TMR-based approach,
on the other hand, is able to detect errors in the unit that is
affected by checking for repeated errors. If the module that is
triplicated is acyclic, then the occurrence of repeated errors in
the same unit suggests its configuration memory is corrupted
since transient errors affecting the datapath only give rise to
isolated errors. Of course, if the module includes feedback
paths, then even a transient error can lead to recycling of the
erroneous value, and potentially give rise to multiple errors at
the output. In any case, when the TMR-based approach
determines that a unit is in error, it can trigger a partial
reconfiguration (PR) of that unit, which can therefore be
expected to incur less delay in correcting the error and require
less energy as partial reconfiguration is only triggered when
needed.

Regardless of the detection and configuration memory
correction method used, thought must also be given to
recovering the state of the affected user circuits. This detail is
less comprehensively studied in the literature. When scrubbing
is used, the designer needs to employ additional mechanisms,
such as TMR and checkpointing, in the user circuit to recover
the state. TMR-based approaches rely on checking each
feedback state or on waiting until the circuit enters a known
state before resynchronizing the constituent modules of a
TMR component [16]. In [3] the circuit to be protected is
partitioned into acyclic components with each feedback edge
being voted upon (see Fig. 2). After a module is reconfigured,
its state is resynchronized with that of its siblings when the
inputs to the module (including any feedback edges that have
been voted upon) have emerged as outputs. The latency of the
component therefore determines the resynchronization delay.

As outlined in the previous section, we propose using
spatial-TMR to protect ASIPs for which the RTL description
is available. It is relatively straightforward to then triplicate
any single stage of a pipelined architecture whereby the
pipeline register contents are voted upon. For example,
triplicating just the EXecute stage (as depicted in Fig. 1)

involves instantiating three copies of the ALU and the result
(EX/WB pipeline) registers. The contents of the result
registers are voted upon, and the majority value is then again
used as a singular value to access memory or to be written
back to the register file. This scheme allows transient errors in
any single EX unit to be overwritten. Since the EX stage is
invariably acyclic in structure, when any one unit is found to
be in error over successive clock cycles, it is more likely that
this has been caused by a configuration memory upset than for
it to have been caused by successive datapath SEUs. A partial
reconfiguration of that unit is then triggered. While the unit is
being reconfigured, its two siblings continue to operate and
the voter continues to check that they agree. After the partial
reconfiguration of the erroneous unit has been completed, the
output of the reconfigured unit can once again be expected to
agree with that of its siblings after the next instruction is
executed and its result is registered.

M
o

d
u

le
 1

M
o

d
u

le
 2

M
o

d
u

le
 3

Triplicated

Component

Voter/Reconfiguration

Request & Resync.

Feedback Output

Downstream

Logic

Upstream

Logic

Feedback Output

Input

ICAP R
e

c
o

n
fi
g

u
ra

ti
o

n

C
o

n
tr

o
l Off-chip

Partial

bit-stream

storage

Token Ring

Reconfiguration

Control Network

FPGA

Fig. 2. PR-based recovery from configuration memory SEU errors

The same approach can be used to protect the instruction
decode, register fetch, and register writeback logic after an
ALU or memory load instruction. The on-chip control logic
for off-chip memory accesses on instruction fetches, loads and
stores can also be triplicated. Since off-chip memory is readily
protected with ECC, triplicating the storage as well should not
be necessary except in the most sensitive of applications.

For the above approach to be applicable, each component
that is to be protected must be partitioned into acyclic sub-
components. This is also a requirement of any extraneous
accelerator or glue logic that is to be protected. Some means
of coordinating the requests for reconfiguration between many
voters and the reconfiguration controller also needs to be
implemented. In [2], we outlined and assessed a token-ring
architecture we use to implement a Reconfiguration Control
Network (RCN) for this purpose (Fig. 2). The resulting system
is resilient to radiation-induced errors as long as these errors
don’t re-occur at time intervals that are shorter than the time it
takes to detect a configuration memory error, communicate a
reconfiguration request, perform a partial reconfiguration, and
resynchronize the reconfigured module. This design criterion
determines the maximum component size and latency we need
for reliable operation [2], [3].

IV. THE QB50 RUSH PAYLOAD AND EXPERIMENT

The QB50 project, funded through the European Union
Framework Programme 7 (FP7) and overseen by the Von
Karman Institute (VKI) in Belgium, is a planned network of
around 50, 2U and 3U CubeSats due to launch in 2015 into
Low Earth Orbit (LEO) that aims to provide a temporal and
spatial image of the largely unexplored lower thermosphere.
The individual CubeSats of the QB50 mission are to be
developed by various universities around the world compliant
with the QB50 requirements [17] and are expected to carry
one of the three VKI sensor payloads.

RUSH is one of three payloads that are currently under
development for the UNSW-EC0 QB50 CubeSat. The primary
objective of this payload is to demonstrate and validate new
approaches to rapidly recovering from SEUs in reconfigurable
hardware. The experimental goals of the payload are:

 Demonstrate and validate the partial reconfiguration
approach to rapidly recovering from SEUs in
reconfigurable hardware.

 Compare reconfiguration time and power consumption of
scrubbing with partial reconfiguration approach

 Map SEU event occurrences in the thermosphere

 Demonstrate in-orbit reconfiguration.

Refer to Fig. 3 for a block diagram of the RUSH payload.

As can be observed from Fig. 3, at the heart of the RUSH
payload design is a Xilinx Artix 7 XC7A200T FPGA, chosen
for its high logic density to power consumption ratio. The
FPGA is connected to two flash devices. One stores the base
configurations for the FPGA, while the other stores the partial
bitstreams of the modules that can be partially reconfigured
via Dynamic Partial Reconfiguration (DPR). The FPGA is
connected via a UART interface to a Microcontroller Unit
(MCU) which acts as an interface between the FPGA and the
UNSW-EC0 CubeSat system bus, and communicates with the
On-Board Computer (OBC) via the I2C interface.
Additionally, the MCU oversees the overall operation of the
RUSH payload and controls the power-up/down of the FPGA
as well as logging of the SEU detection and recovery statistics
along with power consumption details. To fulfil the
requirements for the MCU in the proposed design, a
Microsemi SmartFusion 2 System-On-Chip (SoC) was
selected. Furthermore, since the SoC is based on non-volatile
FLASH memory it is resilient to SEUs [18]. A small number
of additional components provide ancillary functions such as
providing regulated power, clock sources, programming
interfaces and status indicators.

The primary objective of the RUSH experiment is to test
and validate new approaches to rapidly recovering from soft
errors in reconfigurable hardware involving accelerator logic
and soft ASIPs and to compare the performance of the
approach with that of the Xilinx SEM controller [5]. To this
end, two configurations will be developed that are essentially
identical in terms of their resource utilization, whereby one
configuration will employ the method outlined in Section III
to guard against and recover from soft errors in user logic and
configuration memory, and the other configuration will utilize

the SEM controller to continuously scan and scrub the FPGA
configuration memory. To enable comparison of SEU
susceptibility and recovery, the two configurations comprise
essentially the same circuitry, but the SEM configuration will
not partially reconfigure its triplicated components.

Xilinx Artix-7 FPGAMicrosemi
SmartFusion

SOC

Power
Regulation

Cubesat
System

Bus

External Program/Debug
Connectors

Configuration Flash

Flash Controller

5
V

0

5
V

0

U
A

R
T 0

I2
C

I2
C I2C

U
A

R
TUART

5V0

Flash Interface

Flash Interface

100MHz
Oscillator

JTAGJTAG

JTAGUART_DEBUG

UART 1

C
o

n
figu

ratio
n

C

o
n

tro
l IO

UART

CLKIN

JTAG

Spare IO
Connector

Debug
LEDs

Spare IO

C
o

n
figu

ratio
n

C

o
n

tro
l IO

Power
Control IO

Power
Control IO

GPIOs

CLKIN

SPI
Flash

SP
I

SP
I SPI

Spare IO

GPIOs

GPIOs

Fig. 3. RUSH payload block diagram.

The experiment will play a vital role in testing the
susceptibility of Artix-7 FPGAs in low-earth orbit, and will
demonstrate the use of dynamic partial reconfiguration on an
FPGA in space. The design will be composed of two base
components: a Portable Instruction Set Architecture (PISA)-
based Advanced Encryption Standard (AES) custom processor
with triplicated execution units, and a Block Adaptive
Quantization (BAQ) circuit, chosen for its utilization of all
FPGA resource types (LUTs, FFs, DSPs, and BRAMs). These
base components will be replicated to fill the FPGA area,
thereby creating the largest possible surface for SEUs to
occur. During the experiment the SEU events will be logged
by the MCU and the time, location, and time to recover will be
transmitted to Earth when UNSW-EC0 passes over any of the
ground stations available for the QB50 mission. Due to power
limitations of the UNSW-EC0, the RUSH experiment will not
run continuously. To deal with this, the available uptime will
be evenly distributed between the two configurations.
Furthermore, activity of both configurations will be scheduled
such that they occur at similar times and locations.

V. CONCLUSIONS

We have argued for the need to support soft ASIPs and
logic in COTS FPGAs for future low-cost space missions. We
have surveyed techniques commonly employed to guard
against soft errors in ASIPs targeted at ASICs, where the
processor state is susceptible to corruption and assessed the
applicability of these techniques to ASIPs implemented on
FPGAs. We have outlined an experiment that is to be
conducted as part of QB50 in 2015 involving an off-the-shelf

Xilinx Artix-7 FPGA that will be flown into a low-earth orbit.
As part of the experiment we will trial approaches to
protecting soft processor and logic circuits that are expected to
result in quicker recovery and lower power consumption than
standard techniques. Our experiment will also help to gauge
the susceptibility of modern high-density COTS FPGAs to
SEUs in the thermosphere. If our methods prove to be
beneficial, we aim to refine and generalize them to provide a
low-cost, rapid development platform for protecting FPGA-
based processor and logic systems against radiation-induced
soft errors.

REFERENCES

[1] SpaceWorks, “Nano/Microsatellite Market Assessment”. 2013,
Available at: bit.ly/17p9M5F

[2] E. Cetin, O. Diessel, L. Gong, V. Lai, “Reconfiguration Network Design
for SEU Recovery in FPGAs”, ISCAS, June 2014.

[3] E. Cetin, O. Diessel, L. Gong, V. Lai, “Towards Bounded Error
Recovery Time in FPGA-Based TMR Circuits Using Dynamic Partial
Reconfiguration”, FPL, September 2013.

[4] QB50 Project Description, [Online]. Available:
https://www.qb50.eu/index.php/project-description

[5] “LogiCORE IP Soft Error Mitigation Controller v4.1 Product Guide”,”
Xilinx App. Note PG036 April 2, 2014.

[6] T. Li, M. Shafique, J. A. Ambrose, S. Rehman, J. Henkel, and S.
Parameswaran, “Raster: Runtime adaptive spatial/temporal error
resiliency for embedded processors,” in DAC, 2013 pp. 62:1–62:7.

[7] T. Li, R. Ragel, and S. Parameswaran, “Reli: Hardware/software check-
point and recovery scheme for embedded processors,” in DATE, 2012,
pp. 875–880.

[8] R. G. Ragel and S. Parameswaran, “Impres: Integrated monitoring for
processor reliability and security,” in DAC, 2006, pp. 502–505.

[9] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-level
software-only recovery,” IEEE Micro, vol. 27, no. 1, pp. 36–47, 2007.

[10] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable software
for unreliable hardware: Embedded code generation aiming at
reliability,” in CODES+ISSS, Oct 2011, pp. 237–246.

[11] M. Sonza Reorda, M. Violante, C. Meinhardt, and R. Reis, “A low-cost
SEE mitigation solution for soft-processors embedded in systems on
programmable chips”, DATE, 2009, pp. 352-357.

[12] H.-M. Pham, S. Pillement, S. J. Piestrak, “Low-Overhead Fault-
Tolerance Technique for a Dynamically Reconfigurable Softcore
Processor,” IEEE Trans. Comp., vol. 62, no. 6, pp. 1179-1192, 2013.

[13] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga, and I.
Sueyoshi, “Improving the Robustness of a Softcore Processor against
SEUs by Using TMR and Partial Reconfiguration,” FCCM, 2010, pp.47-
54.

[14] A. Vavousis, A. Apostolakis, and M. Psarakis, “A Fault Tolerant
Approach for FPGA Embedded Processors Based on Runtime Partial
Reconfiguration,” JETTA, vol. 29, no. 6, pp. 805-823, 2013.

[15] C. Bolchini, A. Miele, and D. M. Santambrogio, “TMR and partial
dynamic reconfiguration to mitigate SEU faults in FPGAs,” in DFT, Sep
2007, pp. 87–95.

[16] C. Pilotto, J. R. Azambuja, and L. F. Kastensmidt, “Synchronizing triple
modular redundant designs in dynamic partial reconfiguration
applications,” in SBCCI, 2008, pp. 199–204.

[17] “QB50 System Requirements and Recommendations and Interface
Control Document, Issue 3,” VKI, Tech. Rep., Feb. 2013.

[18] Microsemi Corp., SmartFusion Customisable System-on-Chip (cSoC),
2013. http://www.actel.com/documents/SmartFusion_DS.PDF

