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Abstract—Growing international interest in the development 

of space missions based on low-cost nano-/microsatellites 

demands new approaches to the design of reliable, low-cost, 

reconfigurable digital processing platforms. To meet these 

requirements, future systems will need to include application-

specific processors to handle control-dominated tasks and 

hardware accelerators to cope with data-intensive workloads. 

COTS FPGAs provide an ideal platform for meeting these 

requirements with application-specific processors implemented 

as soft or hard cores along with hardware accelerators on FPGA 

fabric. However, the main challenge to deploying reconfigurable 

systems in space is mitigating the impact of radiation-induced 

Single Event Upsets (SEUs). In considering the design of such 

heterogeneous systems, we present a survey of techniques 

commonly employed to guard against soft errors in application-

specific processors targeted at ASICs and assess their suitability 

to FPGA implementation when partial reconfiguration is used to 

deal with SEUs in logic circuits. Finally, we report on the 

development of the RUSH payload, to be deployed on the UNSW-

EC0 CubeSat due for launch in 2015, to test our design approach. 
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I.  INTRODUCTION 

The low-cost, nano-/microsatellite (1-50kg) segment, 
primarily based on the CubeSat standard and with applications 
in science, Earth Observation (EO) and reconnaissance, is 
expected to experience between 16.8% and 23.4% compound 
annual growth over the period 2013-2020 [1]. This burgeoning 
international interest in the development of satellite-based 
space missions demands new approaches to the design of 
reliable, low-cost, reconfigurable digital processing platforms. 

To meet these requirements, future space systems will 
need to include application-specific processors to handle 
control-dominated tasks and hardware accelerators to cope 
with data-intensive workloads. Some of these applications 
include secure and reliable communications, attitude 
determination and control, guidance, navigation and control as 
well as on-board image and Synthetic Aperture Radar (SAR) 
data processing and compression. Implementing these systems 
as Application-Specific Integrated Circuits (ASICs) is not 
viable due to their high cost, long lead times, and inflexibility. 
The implementation devices most suited to meeting these 

requirements are Commercial-Off-The-Shelf (COTS) Field-
Programmable Gate Arrays (FPGAs) with application-
specific processors implemented as soft or hard cores along 
with hardware accelerators on FPGA fabric. FPGAs, like 
custom hardware chips, provide the means for implementing 
custom processors and accelerators, they can also be 
reconfigured on demand to perform new or different functions, 
and have significantly lower lead times and associated costs. 
Furthermore, by reusing the same device to implement an 
architectural variation, FPGA reconfiguration can be exploited 
to reduce mission-critical parameters, such as the system’s 
size, mass and power requirements, which must be kept as 
small as possible. The main challenge to deploying 
reconfigurable systems in space, however, is radiation-induced 
Single Event Upsets (SEUs). 

As part of our ongoing research activity into rapid 
recovery from SEUs in reconfigurable hardware [2],[3], we 
are currently developing a payload for the University of New 
South Wales - Educational CubeSat Zero (UNSW-EC0) 
CubeSat as part of the European QB50 project to be launched 
in 2015 [4]. The RUSH (Rapid recovery from SEUs in 
Reconfigurable Hardware) payload will enable us to carry out 
in-situ flight testing of various FPGA-based rapid SEU 
detection and recovery approaches and compare them with 
vendor specific tools such as Soft Error Mitigation (SEM) 
from Xilinx [5].  

This paper considers heterogeneous systems consisting of 
application-specific processors and hardware accelerators 
implemented on FPGAs, and investigates the suitability of 
various circuit- and processor-based SEU detection and 
mitigation approaches with a view to final deployment on the 
UNSW-EC0 CubeSat RUSH payload. 

The paper is organized as follows: Section II provides an 
overview of ASIP soft-error mitigation approaches and 
assesses their suitability for FPGA based implementations. 
Section III provides details of approaches for rapid recovery 
from FPGA configuration memory upsets and discusses how 
these approaches could be applied to ASIPs. The RUSH 
payload and experiment are detailed in Section IV, while 
concluding remarks are given in Section V. 



II.  ASIP SOFT-ERROR MITIGATION 

Application-Specific Instruction-set Processors (ASIPs) 
are tailored by analyzing the characteristics of the specific 
application(s) that will be executed in the ASIPs. ASIPs are 
typically used in embedded systems, where properties such as 
area, power, and performance are critical. An ASIP can be 
tailored by including custom instructions to improve 
performance, or by removing unnecessary components based 
on the mapped application(s) to reduce power, or by adding 
custom components to improve reliability. In contrast, 
General-Purpose Processors (GPPs) are designed to support a 
wide range of applications, and are not therefore customized 
for a particular set of applications. As embedded systems are 
commonly used in safety-critical applications such as 
aerospace, automotive, medical electronics, etc., maintaining 
the system’s reliability is of great importance. 

ASIPs are typically implemented in standard cells (such as 
ASICs), where radiation-induced soft errors mainly impact on 
sequential logic. For example, the register file and on-chip 
memory are the vulnerable parts of ASIPs implemented as 
ASICs, whereas the circuits themselves, such as the adder 
circuit, remain largely unaffected. However, when an ASIP is 
implemented in an FPGA device, the entire circuit is 
implemented in configuration memory, including the 
combinational circuit elements and the component 
interconnections. Since SRAM-based FPGA fabrics are 
susceptible to radiation-induced SEUs, the functionality of 
FPGA-based ASIPs can be affected, and unless they go 
corrected, configuration memory SEUs have the appearance of 
permanent errors in ASICs. 

Existing processor-level soft-error countermeasures for 
ASIPs can be grouped into two major categories: hardware 
(Section II-A1, II-A2, and II-A3) and software (Section II-B1, 
and II-B2) based approaches. In this section, we present and 
elaborate a few representative genres of techniques in both 
categories when considering FPGA implementations. The 
fundamental idea behind these techniques, which detect and 
recover from errors, is to add redundancy into the system with 
regards to architectural states e.g., register file and memory. 
The techniques are compared with the literature on SEU 
mitigation for soft FPGA-based GPPs in Section II-C. Note 
that since Error-Correcting Codes (ECC) are well established 
for storage elements such as the register file and memory, in 
this discussion we focus on the entire processor or the 
execution of instructions in the datapath pipeline. For each 
genre of techniques, we introduce the concept, system impact, 
and applicability to FPGA implementation. 

A. Hardware-based soft error mitigation approaches 

1) Instruction Space Triple Modular Redundancy: 
Instruction space triple modular redundancy (space-TMR) 

adds two redundant instruction executions in parallel with the 
usual instruction execution, and recovers the error by selecting 
the result in majority with minimal overhead on processor 
performance. Theoretically, N-MR is able to detect errors 
when N=2 by comparing two results from two modules, and 
recover errors when N=3 by performing majority voting with 
three results from three modules.  

Since ASIPs are typically implemented using pipelined 
datapaths, each pipeline stage or indeed the entire pipeline can 
be triplicated based on the cost constraints such as area, 
power, and performance (delay). Fig. 1 depicts an example for 
space-TMR where the EXecution pipeline stage (EX) is tripli-
cated, and the three outputs are passed to a voter, before the 
final commit of the instruction at the Write-Back (WB) stage. 
The other stages could be triplicated as well to achieve better 
reliability, however this would incur additional area and power 
overheads. The impact of the approach on the processor 
architecture is to triplicate hardware components that execute 
the instructions i.e. the EX unit and to add a majority voting 
hardware unit. Thus, the main impact is hardware complexity, 
which leads to additional area and power costs. The additional 
hardware complexity is slightly more than twice that of the 
EX unit.  

Considering FPGA implementations, instruction space-
TMR is applicable to soft processors for which the RTL 
description of the processor is available so that the required 
modifications to the architecture can be made. However, 
modifying the architecture is infeasible for hard-core 
processors and commercially acquired soft processors for 
which the RTL is generally not provided.  

2) Instruction Time Triple Modular Redundancy:  
Instruction time-TMR triplicates the execution of an 

instruction in a temporal manner. The redundant executions 
are generated by re-issuing the instruction two additional 
times. The result of the instruction is committed after majority 
voting on the three results. For example, the work in [6] locks 
the Program Counter (PC) and executes the same instruction 
three times starting from the Instruction Fetch (IF) stage. In 
the first two executions, the output of the instruction is saved 
without committing at the WB stage. In the last execution, the 
three outputs are voted upon and then committed at the WB 
stage. 

The major architectural impact of instruction time-TMR is 
the logic to handle re-issuing of the instruction, temporary 
storage to hold the results before majority voting, and the 
majority-voting unit. The additional hardware is insignificant 
in comparison to instruction space-TMR. However, the perfor-
mance of the processor is decreased by a factor of 3, due to the 
additional issues per instruction.  

 

Fig. 1. Instruction space-TMR 



The applicability of instruction time-TMR to FPGA 
implementation is the same as for space-TMR. For hard and 
commercial soft IP, adding the re-issue logic, the temporary 
storage and majority voter are infeasible. For soft processors 
for which the RTL is available, the approach could be used. 

3) Instruction Checkpoint Recovery: 
Instruction Checkpoint Recovery (CR) is a recovery-only 

solution to soft errors or transient faults. Performing CR at 
each instruction within a basic block [7] allows the processor 
to save a subset of the architectural state as a backup. These 
preserved values can be used to re-write/restore the 
architectural state that was modified by the basic block (this 
process is called rollback or restoration), when an error is 
detected at the end of the block. Generally, instruction CR 
ensures that the execution of the program is backed up and can 
be recovered periodically. 

For example, the original instruction ADD R2, R3, R4 adds 
the values of register R3 and R4 in the register file and writes 
the result into register R2. With CR enhancement, this 
instruction will first save the current value of R2 into a 
specialized reliable storage unit before committing the new 
value at the WB stage. Similarly, all the instructions in the 
current basic block that modify the values of the register file or 
data memory are enhanced to store the current values before 
being committed. If an SEU is detected at the end of the basic 
block, an interrupt is triggered to execute specialized rollback 
instructions that fetch the previous values from storage to 
write them back into the corresponding locations of the 
register file or data memory. It is worth noting that 
comparisons (branch instructions) are customized to trigger 
rollbacks internally when errors are detected. 

A variety of detection techniques can be applied with CR. 
One possibility is a control-flow based detection technique [8]. 
In this work, a compile-time signature of every basic block of 
the program is calculated by performing an XOR of the 
machine code (however more advanced encoding techniques 
could be applied as well). These signatures are then inserted 
into the corresponding basic blocks. At runtime, specialized 
hardware calculates a signature for the executed instructions. 
At the end of each basic block specialized hardware in branch 
instructions is used to compare the compile-time and runtime 
signatures. A mismatch of the signatures indicates the 
presence of an SEU in the instruction stream. 

Instruction CR augments the architecture of the processor 
with: a checkpoint buffer, logic for managing the update of the 
checkpoint buffer i.e. reading architectural states and writing 
to the checkpoint buffer, and logic for flushing the pipeline 
and rewriting architectural states. The detection method 
imposes additional architectural modifications. There are 
similar limitations to the application of this technique to 
FPGA-based ASIPs as for the previous two approaches. 

B. Software-based soft error mitigation approaches 

1) Software-Implemented Error Recovery: 
Software-Implemented Error Recovery (SIER) is a solely 

software-based approach. Following TMR principles, SIER 
triplicates each instruction to allow majority voting as the 
program is executed [9]. Each instruction copy uses different 

registers and different memory locations so as to not interfere 
with the others. As all instructions are processed using the 
original hardware the processor architecture does not need to 
be modified. For example, instruction ADD R2, R3, R4 is 
transformed to three instructions ADD R2, R3, R4, ADD R2’, 
R3’, R4’, and ADD R2”, R3”, R4”. Where R2, R2’ and R2” 
are the different registers representing the same variable in the 
program. These three instructions are executed sequentially. 
An extra segment of code is inserted after these three 
instructions are executed to vote on the value of R2 at runtime. 

SIER necessitates modification of the compiler backend 
e.g., to perform register allocation. The voting segment can be 
added directly into the program. The SIER program code 
length is at least there times that of the original code, but the 
processor hardware is not modified. Applying SIER to FPGA 
implementations is feasible since SIER does not modify the 
processor architecture. However, memory costs might increase 
due to the increased code size. 

2) Profile-Guided Code Transformation: 
Profile-Guided Code Transformation (PGCT) alters the 

software code based on an analysis of the program. The 
program is profiled to understand the dependencies between 
instructions, liveliness of variables/registers, and the execution 
frequency of instructions to determine the vulnerability of 
each instruction. The transformations include loop unrolling 
and data type reassignment [10]. By transforming the code, the 
variables that are estimated to be vulnerable to soft error are 
enhanced (to reduce their chance of corruption). For example, 
considering instruction ADD R2, R3, R4, decreasing the time 
period that a variable/register (e.g., R2 or R3 or R4) spends in 
more vulnerable sequential logic (e.g., register file) and 
increasing the time period that it spends in less vulnerable 
sequential logic (such as memory with ECC) can increase the 
reliability of that variable. Hence, by applying these 
transformations, the vulnerability of the program can be 
reduced by up to 90%, as reported in [10]. 

PGCT induces no hardware complexity cost. However, the 
code size might change and the resultant performance can be 
degraded as well. To implement PGCT, the compiler backend 
must be modified to allow the transformation. In addition, 
knowledge of the processor architecture is needed to perform 
the vulnerability analysis. For example, to calculate the 
vulnerability of an instruction, the area and logic type of the 
hardware components occupied by that instruction are used. 
This technique is applicable to FPGAs since no hardware 
modifications are needed. However the increase in code size 
may affect the memory requirement. 

C. Discussion 

Table I summarizes the processor-level techniques discussed 
in this section. The techniques of column 1 are evaluated with 
respect to the characteristics of cols 2–6. Overall, the 
hardware-based techniques induce considerable area 
overheads, whereas the software-based ones result in 
execution time and instruction space penalties. With regard to 
FPGA applicability, most of the hardware-based techniques 
require the baseline processor architecture to be transparent 
and described in RTL, while software-based techniques 
simply require more memory.  



TABLE I.  SUMMARY OF PROCESSOR-LEVEL SEU MITIGATION TECHNIQUES 

Technique Hardware Impact Software Impact Performance Impact 
FPGA Applicability 

Hard/Commercial Soft IP RTL Soft IP 

S-TMR Significant (>3x) None 
Critical path can be 
impacted by voters 

N/A Applicable 

T-TMR Insignificant None Significant (>3x) N/A Applicable 

CR 
Dependent on number of 

states and storage type 

Insignificant 

(rollback routine) 
Insignificant N/A Applicable 

SIER 
None (memory for additional 

code lines) 
Significant (>3x) Significant (>3x) Applicable Applicable 

PGCT 
None (memory for additional 

code lines) 
Dependent on code 

Dependent on 

transformations 
Applicable Applicable 

 

SEU mitigation in soft FPGA-based GPPs has been 
studied extensively – we outline some representative examples 
of the work. [11] and [12] studied dual modular redundancy 
(DMR) at the processor level, operating Leon2 [11] and 
MicroBlaze (MB) [12] in lock step, and performing 
checkpointing and recovery to correct datapath memory 
errors. Configuration memory errors (CMEs) were corrected 
by scrubbing and partial reconfiguration (PR), respectively. 
[13] used TMR to protect MBs and synchronized the register 
state after PR to correct CMEs. [14] have employed DMR at 
the IF and EX stages of an OpenRISC processor; instruction 
execution is stalled, the faulty stage is reconfigured, and the 
instruction is re-executed when an error is detected. The work 
to date has tended to focus on mitigation techniques and 
reported the impact on area and performance. In contrast, our 
research goals are to achieve specified performance criteria 
(area, speed and power) while meeting recovery time 
guarantees. 

In soft ASIPs targeted at FPGAs, time-TMR and CR 
techniques do not guard against configuration memory errors 
because they do not provide any redundancy in the processing 
hardware. Currently, we therefore focus on spatial-TMR and 
outline our approach to recovering from configuration 
memory errors in the next section.  

 

III. RAPID RECOVERY FROM FPGA CONFIGURATION  

MEMORY UPSETS 

The configuration memory of COTS FPGAs, being 
implemented in SRAM, is as prone to corruption due to 
radiation as the memory elements (FFs and BRAMs) of user 
circuits. Therefore, when COTS FPGAs are used in radiation 
prone environments, it is necessary to provide protection from 
radiation and/or methods for detecting and recovering from 
radiation-induced configuration memory errors. Moreover, in 
time critical applications, it is also desirable to detect and 
recover from errors very quickly.  

There are two principal methods for detecting and 
recovering from configuration memory SEUs in COTS 
FPGAs. The first, direct method, typically referred to as 
scrubbing, involves scanning the configuration memory 
checking for upsets either via ECC associated with individual 
configuration frames, or by comparison with a golden 
reference stored off-chip in protected memory. Any elements 
that have been modified are refreshed in the course of the 
scan. FPGA vendors, such as Xilinx, provide in-built 
components to perform this function [5]. An alternative, 

indirect method, involves checking the behaviour of the user 
circuit, and reloading the circuit configuration if the circuit no 
longer behaves as expected [3],[15]. In the latter case, TMR is 
typically employed to identify the module in error, and 
dynamic partial reconfiguration is used to reconfigure the 
erroneous unit. Built-in self-tests could also be employed to 
check correct functioning of the user circuits. 

The scrubbing technique is usually deployed as a 
background process that operates periodically. There can 
therefore be a considerable delay between errors occurring and 
them being detected and corrected. The TMR-based approach, 
on the other hand, is able to detect errors in the unit that is 
affected by checking for repeated errors. If the module that is 
triplicated is acyclic, then the occurrence of repeated errors in 
the same unit suggests its configuration memory is corrupted 
since transient errors affecting the datapath only give rise to 
isolated errors. Of course, if the module includes feedback 
paths, then even a transient error can lead to recycling of the 
erroneous value, and potentially give rise to multiple errors at 
the output. In any case, when the TMR-based approach 
determines that a unit is in error, it can trigger a partial 
reconfiguration (PR) of that unit, which can therefore be 
expected to incur less delay in correcting the error and require 
less energy as partial reconfiguration is only triggered when 
needed.  

Regardless of the detection and configuration memory 
correction method used, thought must also be given to 
recovering the state of the affected user circuits. This detail is 
less comprehensively studied in the literature. When scrubbing 
is used, the designer needs to employ additional mechanisms, 
such as TMR and checkpointing, in the user circuit to recover 
the state. TMR-based approaches rely on checking each 
feedback state or on waiting until the circuit enters a known 
state before resynchronizing the constituent modules of a 
TMR component [16]. In [3] the circuit to be protected is 
partitioned into acyclic components with each feedback edge 
being voted upon (see Fig. 2). After a module is reconfigured, 
its state is resynchronized with that of its siblings when the 
inputs to the module (including any feedback edges that have 
been voted upon) have emerged as outputs. The latency of the 
component therefore determines the resynchronization delay. 

As outlined in the previous section, we propose using 
spatial-TMR to protect ASIPs for which the RTL description 
is available. It is relatively straightforward to then triplicate 
any single stage of a pipelined architecture whereby the 
pipeline register contents are voted upon. For example, 
triplicating just the EXecute stage (as depicted in Fig. 1) 



involves instantiating three copies of the ALU and the result 
(EX/WB pipeline) registers. The contents of the result 
registers are voted upon, and the majority value is then again 
used as a singular value to access memory or to be written 
back to the register file. This scheme allows transient errors in 
any single EX unit to be overwritten. Since the EX stage is 
invariably acyclic in structure, when any one unit is found to 
be in error over successive clock cycles, it is more likely that 
this has been caused by a configuration memory upset than for 
it to have been caused by successive datapath SEUs. A partial 
reconfiguration of that unit is then triggered. While the unit is 
being reconfigured, its two siblings continue to operate and 
the voter continues to check that they agree. After the partial 
reconfiguration of the erroneous unit has been completed, the 
output of the reconfigured unit can once again be expected to 
agree with that of its siblings after the next instruction is 
executed and its result is registered. 
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Fig. 2. PR-based recovery from configuration memory SEU errors  

The same approach can be used to protect the instruction 
decode, register fetch, and register writeback logic after an 
ALU or memory load instruction. The on-chip control logic 
for off-chip memory accesses on instruction fetches, loads and 
stores can also be triplicated. Since off-chip memory is readily 
protected with ECC, triplicating the storage as well should not 
be necessary except in the most sensitive of applications.  

For the above approach to be applicable, each component 
that is to be protected must be partitioned into acyclic sub-
components. This is also a requirement of any extraneous 
accelerator or glue logic that is to be protected. Some means 
of coordinating the requests for reconfiguration between many 
voters and the reconfiguration controller also needs to be 
implemented. In [2], we outlined and assessed a token-ring 
architecture we use to implement a Reconfiguration Control 
Network (RCN) for this purpose (Fig. 2). The resulting system 
is resilient to radiation-induced errors as long as these errors 
don’t re-occur at time intervals that are shorter than the time it 
takes to detect a configuration memory error, communicate a 
reconfiguration request, perform a partial reconfiguration, and 
resynchronize the reconfigured module. This design criterion 
determines the maximum component size and latency we need 
for reliable operation [2], [3]. 

IV. THE QB50 RUSH PAYLOAD AND EXPERIMENT 

The QB50 project, funded through the European Union 
Framework Programme 7 (FP7) and overseen by the Von 
Karman Institute (VKI) in Belgium, is a planned network of 
around 50, 2U and 3U CubeSats due to launch in 2015 into 
Low Earth Orbit (LEO) that aims to provide a temporal and 
spatial image of the largely unexplored lower thermosphere. 
The individual CubeSats of the QB50 mission are to be 
developed by various universities around the world compliant 
with the QB50 requirements [17] and are expected to carry 
one of the three VKI sensor payloads. 

RUSH is one of three payloads that are currently under 
development for the UNSW-EC0 QB50 CubeSat. The primary 
objective of this payload is to demonstrate and validate new 
approaches to rapidly recovering from SEUs in reconfigurable 
hardware. The experimental goals of the payload are: 

 Demonstrate and validate the partial reconfiguration 
approach to rapidly recovering from SEUs in 
reconfigurable hardware. 

 Compare reconfiguration time and power consumption of 
scrubbing with partial reconfiguration approach  

 Map SEU event occurrences in the thermosphere 

 Demonstrate in-orbit reconfiguration. 

Refer to Fig. 3 for a block diagram of the RUSH payload. 

As can be observed from Fig. 3, at the heart of the RUSH 
payload design is a Xilinx Artix 7 XC7A200T FPGA, chosen 
for its high logic density to power consumption ratio. The 
FPGA is connected to two flash devices. One stores the base 
configurations for the FPGA, while the other stores the partial 
bitstreams of the modules that can be partially reconfigured 
via Dynamic Partial Reconfiguration (DPR). The FPGA is 
connected via a UART interface to a Microcontroller Unit 
(MCU) which acts as an interface between the FPGA and the 
UNSW-EC0 CubeSat system bus, and communicates with the 
On-Board Computer (OBC) via the I2C interface. 
Additionally, the MCU oversees the overall operation of the 
RUSH payload and controls the power-up/down of the FPGA 
as well as logging of the SEU detection and recovery statistics 
along with power consumption details. To fulfil the 
requirements for the MCU in the proposed design, a 
Microsemi SmartFusion 2 System-On-Chip (SoC) was 
selected. Furthermore, since the SoC is based on non-volatile 
FLASH memory it is resilient to SEUs [18]. A small number 
of additional components provide ancillary functions such as 
providing regulated power, clock sources, programming 
interfaces and status indicators. 

The primary objective of the RUSH experiment is to test 
and validate new approaches to rapidly recovering from soft 
errors in reconfigurable hardware involving accelerator logic 
and soft ASIPs and to compare the performance of the 
approach with that of the Xilinx SEM controller [5]. To this 
end, two configurations will be developed that are essentially 
identical in terms of their resource utilization, whereby one 
configuration will employ the method outlined in Section III 
to guard against and recover from soft errors in user logic and 
configuration memory, and the other configuration will utilize 



the SEM controller to continuously scan and scrub the FPGA 
configuration memory. To enable comparison of SEU 
susceptibility and recovery, the two configurations comprise 
essentially the same circuitry, but the SEM configuration will 
not partially reconfigure its triplicated components. 

Xilinx Artix-7 FPGAMicrosemi
SmartFusion

SOC

Power 
Regulation

Cubesat 
System 

Bus

External Program/Debug 
Connectors

Configuration Flash

Flash Controller

5
V

0

5
V

0

U
A

R
T 0

I2
C

I2
C I2C

U
A

R
TUART

5V0

Flash Interface

Flash Interface

100MHz 
Oscillator

JTAGJTAG

JTAGUART_DEBUG

UART 1

C
o

n
figu

ratio
n

 
C

o
n

tro
l IO

UART

CLKIN

JTAG

Spare IO 
Connector

Debug 
LEDs

Spare IO

C
o

n
figu

ratio
n

 
C

o
n

tro
l IO

Power 
Control IO

Power 
Control IO

GPIOs

CLKIN

SPI 
Flash

SP
I

SP
I SPI

Spare IO

GPIOs

GPIOs

 

Fig. 3. RUSH payload block diagram. 

The experiment will play a vital role in testing the 
susceptibility of Artix-7 FPGAs in low-earth orbit, and will 
demonstrate the use of dynamic partial reconfiguration on an 
FPGA in space. The design will be composed of two base 
components: a Portable Instruction Set Architecture (PISA)-
based Advanced Encryption Standard (AES) custom processor 
with triplicated execution units, and a Block Adaptive 
Quantization (BAQ) circuit, chosen for its utilization of all 
FPGA resource types (LUTs, FFs, DSPs, and BRAMs). These 
base components will be replicated to fill the FPGA area, 
thereby creating the largest possible surface for SEUs to 
occur. During the experiment the SEU events will be logged 
by the MCU and the time, location, and time to recover will be 
transmitted to Earth when UNSW-EC0 passes over any of the 
ground stations available for the QB50 mission. Due to power 
limitations of the UNSW-EC0, the RUSH experiment will not 
run continuously. To deal with this, the available uptime will 
be evenly distributed between the two configurations. 
Furthermore, activity of both configurations will be scheduled 
such that they occur at similar times and locations. 

V. CONCLUSIONS 

We have argued for the need to support soft ASIPs and 
logic in COTS FPGAs for future low-cost space missions. We 
have surveyed techniques commonly employed to guard 
against soft errors in ASIPs targeted at ASICs, where the 
processor state is susceptible to corruption and assessed the 
applicability of these techniques to ASIPs implemented on 
FPGAs. We have outlined an experiment that is to be 
conducted as part of QB50 in 2015 involving an off-the-shelf 

Xilinx Artix-7 FPGA that will be flown into a low-earth orbit. 
As part of the experiment we will trial approaches to 
protecting soft processor and logic circuits that are expected to 
result in quicker recovery and lower power consumption than 
standard techniques. Our experiment will also help to gauge 
the susceptibility of modern high-density COTS FPGAs to 
SEUs in the thermosphere. If our methods prove to be 
beneficial, we aim to refine and generalize them to provide a 
low-cost, rapid development platform for protecting FPGA-
based processor and logic systems against radiation-induced 
soft errors. 
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